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Motuvation

+ Use Amplituhedron picture for planar N=4 SYM
amplitudes, perform all-loop order calculation, go to
strong coupling, compare with integrability and
eventually study the “strong coupling geometry”



Outline

+ Amplituhedron: geometric picture for scattering amplitudes
in planar N=4 SYM theory

+ Define “negative geometries” which naturally give the
logarithm of the amplitude to all loop orders

+ Define IR finite object by freezing one of the loops and
integrated over the others, relation to Wilson loop picture

+ Approximation: special class of negative geometries,
evaluate to all loops, resummation, strong coupling limit



Amplituhedron

(Arkani-Hamed, JT 2013)
(Arkani-Hamed, Thomas, JT 2017)



Four point amplitudes
+ In this talk we are interested in 4pt amplitudes in
planar N=4 SYM theory

+ Amplituhedron picture for the all-loop integrand

dlog form on the
Amplituhedron geometry

M4:/Q44~/

+ Amplitude M, is divergent and needs to be regulated

+ The integrand form €, is rational and finite



Amplituhedron geometry

<+ Convenient kinematical variables: momentum twistors
(Hodges, 2009)

external 21,45, 23,244

points in P3

loops (AB); —» lines

+ Fixed convex external data: (1234) = eqcaZ8 252525 > 0

+ Amplituhedron: configuration space of all lines (AB);



One-loop Amplituhedron

+ One-loop Amplituhedron: configuration of all lines (AB)
which satisfy following conditions

(AB12), (AB23),(AB34),(AB14) >0,  (AB13),(AB24) < 0

where (AB12) = eqpq 2% 2% 2523

+ Convenient parametrization
La=241+xdy+yLy g =Jds — 24y +wly
the space reduces to

x,Yy,z,w >0



One-loop Amplituhedron

+ Logarithmic form on this space

drdydzdw duap(1234)?

Q

r y z w (AB12)(AB23)(AB34)(AB14)
+ This corresponds to the one-loop box integral

Z Z9

measure

dpap = (ABd*A){ABd*B)
AB




Two-loop Amplituhedron

+ Configuration of two lines (AB) and (CD)

each line lives in the one-loop Amplituhedron

(AB12), (AB23), (AB34), (AB14) >0,  (AB13),(AB24) < 0
(CD12),(CD23),(CD34),(CD14) >0,  (CD13),(CD24) < 0

if nothing else is imposed: square of one-loop problem

() = AB X CD




Two-loop Amplituhedron

+ Impose mutual positivity condition (ABCD) > 0

L1,Y1, <1, W1 >O $27y27227w2>0

D1z = — (21 — z2) (w1 —wz2) — (y1 — y2)(21 — 22) >0

+ Logarithmic form: two-loop integrand
Zl ZZ

T1Wo + Tow1 + Y129 + Yoz
O — 1W2 2W1 T Y122 T Y221 _ AR oD + eyl
T1Y121W1T2Y222w2 D19

Z4 Zg



L.-loop Amplituhedron

+ At L-loops we have configuration of L lines (AB);
¢ each line in the one-loop Amplituhedron

¢ for any two lines we impose ((AB);(AB);) >0

* In our usual parametrization
Ti, Yi, Ziy Wi > 0 Dij = —(zi — x5)(wi —wj) = (Y —y;)(2 = 25) >0

This is a very complicated space and captures
the complexity of L-loop integrand

) = + many others




Graphical notation

+ We introduced a graphic notation:
¢ vertex: loop line (AB);
¢ blue dashed link: mutual positivity condition ((AB);(AB);) > 0

+ We denote the dlog form on the two-loop space
AB CD



Negative geometry




Mutual negativity

+ Complement to mutual positivity:

(ABCD) <0

+ Graphical notation:

f K \ no condition on

(ABCD) <0  (ABCD) >0 (ABCD)

+ Express all positive links using negative and empty



New formula for form

+ New formula for L-loop Amplituhedron dlog form:

a
QAL) = €ooF-i0 —Z( 1)#() v /
N e’ all G
.»

sum over all graphs

+ Example: L=3

W= L AN



Exponentiation

+ We can now write a formal sum over all loops

oo

0(g) = 3 (49 0(AL) where 2(4) = 1
L=0

+ The formula for Q(g) exponentiates

Q(g) = exp Z (_1)E(G)(—92)L

all connected
graphs G

+ We take the logarithm of both sides and expand in g



Fxpansion of the log

+ The L-loop logarithm is then

log Q(g) = Qp= ) (-)¥9
(g2 ol
with L vertices

+ We are left with the collection of all connected graphs
with negative links



Collinear safety




Positivity and planarity

+ Mutual positivity ensures the object is planar
Z (AB) cuts lines (12) and (34)
(CD) cuts lines (23) and (14)
“non-planar cut”

here forced (ABCD) < 0

Our connected graphs with
negative links are not planar

(CD)

+ Products of amplitudes are also not planar

Example: one-loop square space — no constraint on (ABCD)



Implications of negativity

+ Collinear configuration of line (AB)

Z1 ZA = Zo in momentum space
ZB — Z3 — O(Zl
P1
with a >0
(AB) 14 l+p1
Z
t = ap

Z3

+ This is forbidden if we have (ABCD) < 0

because (ABCD) = (CD23) + a({CD12) > 0

all positive



Implications of negativity

+ Connected graph: each vertex connected to at least one
other vertex — that link is the mutual negativity condition

no loop line can access
any collinear region

(C€D) (AB) LN (ABCD) < 0 is violated if the

line (AB) accesses the collinear region

+ Only all lines simultaneously access collinear region
all ((AB)i(AB);) =0



IR finite object




IR divergences

+ IR divergences: caused by singularities of the integrand in
the collinear (and soft) regions

* For N=4 SYM: no collinear support = no IR divergences

+ IR finite integrals: either no massless corners or special
(Arkani-Hamed, Bourjaily, Cachazo, Trnka 2010)
numerators 3 4 . .
K numerator cancels all collinear regions

Example: ) - v

chiral pentagons _ dpap{AB(123)N(456))(1256)
~ (AB45)(AB56)(AB16)(AB12)(AB23)




IR divergences

+ Connected graph with negative links: integrate the form —
only very mild IR divergence

/QFZG%(...H@G)

+ Simplest examples: N (AB) (CD)

(o = o—e

SRR ONPaN

each graph generates only dlvergence




Logarithm of the amplitude

+ From amplitudes point of view:
M=MO 4 gM® 4+ ¢2M3? 4 3BFMO) 4+ A M@ 4 .

expand the logarithm

log M = gMW + ¢2 [.M(z) — %(M(l))Ql + ¢° [M(?’) — M@ 4 %(M(l))?’]

L4 [M(4> _ M@ _ %(M(m)z + MO (M2 — i(M(l))‘l] +...

the IR divergence has simple structure to all loops

(L)
log M = — Z g*r FCHSI; + O (1/e)
= (Le)




Frozen loop

+ IR divergence in connected graphs, and hence in log M
from all lines simultaneously in collinear region
which is a part of the integration region

+ Freeze one of the lines, and integrate over all others:
no collinear support — IR finite object

JT"F(ABO) = /d,uABl ---d/LABL_lﬁF

for each connected graph



Definition of IR finite object

+ Define the same object for the logarithm of the
amplitude (= sum over all connected graphs)

F= ® —(—92)®—°

b
frozen loop + (—g?%)? ®_‘_' t3 @< 2 ®q } negatwe link
— (=9%)* < ®+H ®<I\ @@ }

7\




Definition of IR finite object

< This is IR finite function of one cross ratio

(ABg12)(ABy34)
(ABo14)(ABy23)

Flg,2) z =

+ This object is also natural from the dual Wilson loop picture
(Alday, Buchbinder, Tseytlin, 2011) (Englund, Roiban, 2011) 9 3

<WF(£U1,$2,£E3,CE4)L($0)> . 1 13%333%4

/ <WF(£C17$2,$37374)> 7T2 .’L’%Ogjgowgoxio (g’ ) )

Wilson loop with Lagrangian 2 3
insertion at point X
F=—¢°F ! 4




Low loop order results

We can find the dlog forms for all graphs {21 and integrate

L =9 X—e = [7r2 +log2(z)]

X)—eo—o = —11—2 (7% +log?(2)] x [57* + log® 2]

— 1
L=3 @i == [ +1og? <"
L og? z + log? 2 19




Trees and ladders




Trees vs loops in the loop space

+ We see in L=3 that “tree” graphs are much simpler
than “loop” graph

+ In fact, we can find the dlog form for all tree graphs

SIE I
k= 1
vertices —¥ links

Dy, = (AB,12)(AB,23)(AB34)(AB;,14)
n'%) = (AB;13)(AB;24) + (AB;24)(AB;13)



Trees vs loops in the loop space

+ We also have closed formula for all one-loop graphs but
they are more complicated

+ Note that both tree and loop graphs have the same
number of standard loops

These are all L=4 graphs, but the forms and integrated formulas
get more complicated with more graph loops




lL.adders

+ Tree approximation: only tree graphs are considered

J

+ There is even more special class of tree graphs: “ladders’

fladder(gaz) — (—92) X)—e +(—92)2 X)—e—e

+(=9°)° @—eo—e—s +(=9*)* —e—eo—eo—o ...

+ Because of the simple structure of the dlog form, we can
find the Laplace operator which acts on graphs as

o CD___’ — C)

To Iy T




Closed formula for ladders

+ We have a function of single cross ratio, rewrite the
differential operator as

1
§(Zaz)2ﬂadder(ga Z) + g2fladder(ga Z) =0

which is solved by
cos(v/2glog 2)
Fladder (9, —
ddex (9, 2) cosh(v/2gT)

(satisfying certain boundary conditions)



All trees

<+ Next, we consider the sum over all trees

+ For that it is useful to define the generating function for all
trees with special link

"rtree(gaz) — ®Q Htree(gv'z) — ®_©

We can check that both functions are related

Firee (g, z) — oMtree(9,2)



All trees

+ We can applv the same differential operator on any
tree graph s 2

|:| T4 L T4
Zo Zs5 - L5

To L1 T

)
%,

+ From that we can read off an equation for Hi,ee(g, 2)

o0 = o

1
5 (20:) Hiree (9, 2) + g7 (%) = 0



All trees

+ With proper boundary conditions we can solve this
equation

A? A A
ftree(g, z) — © where = 1

2 (A 2
g% (24 +1) 2gcos T

+ We can use our formulas for Fiadder (9, 2) and Fireo (g, 2)

to go to strong coupling and also find
contributions to cusp anomalous dimension



Strong coupling




Strong coupling of ladders

+ At strong coupling the ladder contribution is
exponentially suppressed

1
fiadder(g; Z) < < 26—\/§g7r gz>>1 0

cosh(v/2gm)

This is similar as what we would get from summing
actual ¢° ladder diagrams

(Broadhurst, Davydychev, 2010)

P3
r + + + + .o
/

P Pa

P




Strong coupling of ladders

+ Qur ladders are very different, but the only thing they

have in common is the number of internal ((AB);(AB);)
propagators in the integrand form

both have (L-1) propagators but very different numerators



Strong coupling of ladders

+ The exponential suppression is in contrast with the
full gamma cusp result

-1

which is linear at strong coupling

F(z)gz—>1 s 2(1—2)+(2+1)logz] +....

<+ In comparison the sum over trees is
1 .

2 + O (—) Missing g term
g

2
(142

tree —

But still has 1/g expansion unlike ladders!



(Gamma cusp




From F to gamma cusp

+ Recall the expression for the logarithm of the amplitude

LG
logM ==Y ¢g*" =20 + O (1/e)
= (Le)
+ The cusp anomalous dimension is
2L (L
CUSP Z g Fgugp

L>1

and can be obtained from function F'(g, 2)

(Alday, Henn, Sikorowski, 2013) (Henn, Korchemsky, Mistlberger 2019)

0 .
g(‘?_FCUSp(g ) = —21[F(g,2)] where ZI[F]= sin(mp)




From F to gamma cusp

<« For the sum of ladders we can finish the calculation
4

s

I‘la,dder (g ) log cosh ( \/571‘9 )

which is very close to I'gctagon(9) which controls

the six-point remainder function in particular limit

I‘la,dder (g ) = 2 Foctagon ( % )

(Kostov, Petkova, Serban, 2019) (Basso, Dixon, Papathanasiou, 2020) (Caron-Huot, Coronado, 2021)



From F to gamma cusp

+ We just need to expand Firee(g, 2) in powers of z

Firee(g,2) = A Z (mA)(—1)™ ZmA

Plugging back into the formula for gamma cusp

24 ,
90T tree(g) = - (—1)™ sin(mmA)
m=0
44 A A
= —tan | — where — = 1
708 2 29 COS (T)

Can not solve it analytically but we will
extract strong coupling data



Asymptotics of gamma cusp

+ Now we look at the weak and strong coupling

asymptotic of gamma cusp
radius of convergence

4g% — 89+ gx 1 g = 0.25
r — 4 7 '
cusp(g) {29_63)’52%_'_”.9»1
(Beisert, Eden, Staudacher, 2005)
for ladders

P (g) 49 — 8(ag* + - - gk1
ladder 19 4y/2g — 41082 4 42Vom 4 g €= g = (.35

no 1/g terms

less non-perturbative



Asymptotics of gamma cusp

+ Now we look at the weak and strong coupling

asymptotic of gamma cusp
radius of convergence

492_8C294_|_...g<<1 g = 0.25
I — o 7 |
cusp(g) {29_ 61:52§+--- g>>1

(Beisert, Eden, Staudacher, 2005)

while for trees

49° — 89" +--- gk 1

2gt gt g>1

1_‘tree(g) — {

All the correct qualitative behavior



Comparison at weak coupling

+ Compare numerically weak coupling coefficients

ri; = Z gzk C

i,k
c .
k>1 7,k

Pladder/cusp = 9° + 9" + 0.73¢% + 0.44¢° + 0.25¢'° + 0.14¢'* 4+ 0.07¢™* + ... .

Peusp/tree = 9° + 9" + 0.929° + 0.83¢° + 0.74¢'° 4 0.63¢'% + 0.53¢™* + . ... .

X

better numerical approximation



Summary/Outlook




Summary

+ Logarithm of the amplitude: expansion in terms of
dlog forms on negative geometries, manifest IR

+ Freeze one loop: IR finite object

+ Summing ladders and all trees, strong coupling,
gamma cusp — trees give correct qualitative behavior

+ The function of z— no g term: need “loops of loops”



Outlook

+ Calculate geometric “loop” corrections: forms and
integrals, new differential operators needed

+ Strong coupling: see how the correct behavior for F(z)
emerges

+ Extension to five points - more cross ratios

(Arkani-Hamed, Chicherin, Henn, JT, in progress)



Thank you!



