

Negative Amplituhedron geometry and amplitudes at strong coupling

Jaroslav Trnka

Center for Quantum Mathematics and Physics (QMAP), University of California, Davis, USA

work with Nima Arkani-Hamed and Johannes Henn

Motivation

Use Amplituhedron picture for planar N=4 SYM amplitudes, perform all-loop order calculation, go to strong coupling, compare with integrability and eventually study the "strong coupling geometry"

Outline

- ❖ Amplituhedron: geometric picture for scattering amplitudes in planar N=4 SYM theory
- Define "negative geometries" which naturally give the logarithm of the amplitude to all loop orders
- Define IR finite object by freezing one of the loops and integrated over the others, relation to Wilson loop picture
- Approximation: special class of negative geometries, evaluate to all loops, resummation, strong coupling limit

Amplituhedron

(Arkani-Hamed, JT 2013)

(Arkani-Hamed, Thomas, JT 2017)

Four point amplitudes

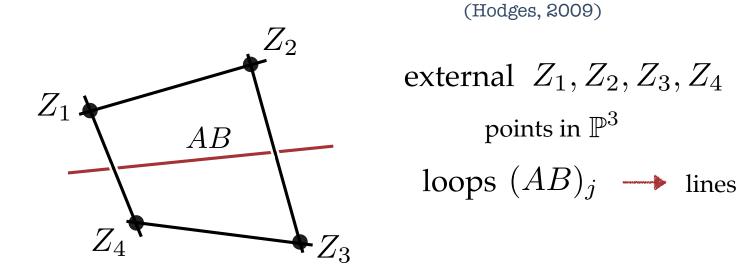
- In this talk we are interested in 4pt amplitudes in planar N=4 SYM theory
- Amplituhedron picture for the all-loop integrand

$$M_4 = \int \Omega_4$$
 dlog form on the Amplituhedron geometry

- * Amplitude M_4 is divergent and needs to be regulated
- * The integrand form Ω_4 is rational and finite

Amplituhedron geometry

Convenient kinematical variables: momentum twistors



- * Fixed convex external data: $\langle 1234 \rangle = \epsilon_{abcd} Z_1^a Z_2^b Z_3^c Z_4^d > 0$
- * Amplituhedron: configuration space of all lines $(AB)_j$

One-loop Amplituhedron

* One-loop Amplituhedron: configuration of all lines (AB) which satisfy following conditions

$$\langle AB12 \rangle, \langle AB23 \rangle, \langle AB34 \rangle, \langle AB14 \rangle > 0, \qquad \langle AB13 \rangle, \langle AB24 \rangle < 0$$
where $\langle AB12 \rangle = \epsilon_{abcd} Z_A^a Z_B^b Z_1^c Z_2^d$

Convenient parametrization

$$Z_A = Z_1 + xZ_2 + yZ_4$$
 $Z_B = Z_3 - zZ_2 + wZ_4$

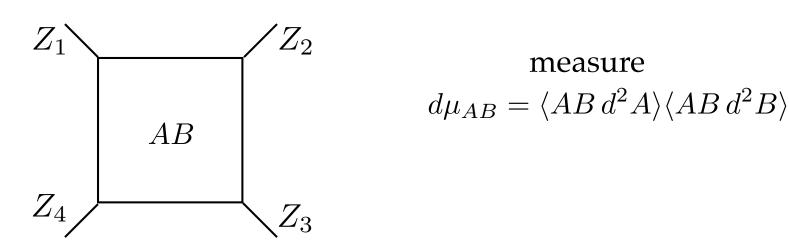
the space reduces to

One-loop Amplituhedron

Logarithmic form on this space

$$\Omega = \frac{dx}{x} \frac{dy}{y} \frac{dz}{z} \frac{dw}{w} = \frac{d\mu_{AB} \langle 1234 \rangle^2}{\langle AB12 \rangle \langle AB23 \rangle \langle AB34 \rangle \langle AB14 \rangle}$$

This corresponds to the one-loop box integral

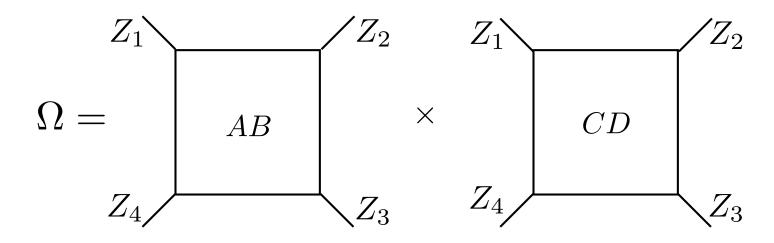


Two-loop Amplituhedron

* Configuration of two lines (AB) and (CD) each line lives in the one-loop Amplituhedron

$$\langle AB12 \rangle, \langle AB23 \rangle, \langle AB34 \rangle, \langle AB14 \rangle > 0,$$
 $\langle AB13 \rangle, \langle AB24 \rangle < 0$ $\langle CD12 \rangle, \langle CD23 \rangle, \langle CD34 \rangle, \langle CD14 \rangle > 0,$ $\langle CD13 \rangle, \langle CD24 \rangle < 0$

if nothing else is imposed: square of one-loop problem



Two-loop Amplituhedron

• Impose mutual positivity condition $\langle ABCD \rangle > 0$

$$x_1, y_1, z_1, w_1 > 0$$
 $x_2, y_2, z_2, w_2 > 0$
 $D_{12} = -(x_1 - x_2)(w_1 - w_2) - (y_1 - y_2)(z_1 - z_2) > 0$

Logarithmic form: two-loop integrand

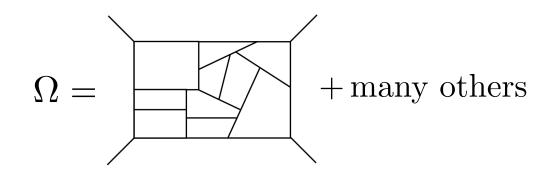
$$\Omega = \frac{x_1 w_2 + x_2 w_1 + y_1 z_2 + y_2 z_1}{x_1 y_1 z_1 w_1 x_2 y_2 z_2 w_2 D_{12}} = AB \quad CD \quad + \text{cycl}$$

L-loop Amplituhedron

- * At L-loops we have configuration of L lines $(AB)_i$
 - each line in the one-loop Amplituhedron
 - for any two lines we impose $\langle (AB)_i(AB)_j \rangle > 0$
- In our usual parametrization

$$x_i, y_i, z_i, w_i > 0$$
 $D_{ij} = -(x_i - x_j)(w_i - w_j) - (y_i - y_j)(z_i - z_j) > 0$

This is a very complicated space and captures the complexity of L-loop integrand



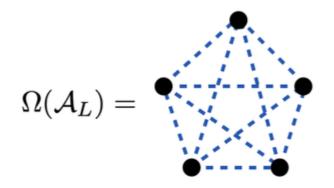
Graphical notation

- We introduced a graphic notation:
 - vertex: loop line $(AB)_i$
 - blue dashed link: mutual positivity condition $\langle (AB)_i(AB)_j \rangle > 0$
- We denote the dlog form on the two-loop space

$$AB \quad CD$$

$$\blacksquare \quad \Omega(\mathcal{A}_2)$$

The L-loop dlog form: complete graph



Negative geometry

Mutual negativity

Complement to mutual positivity:

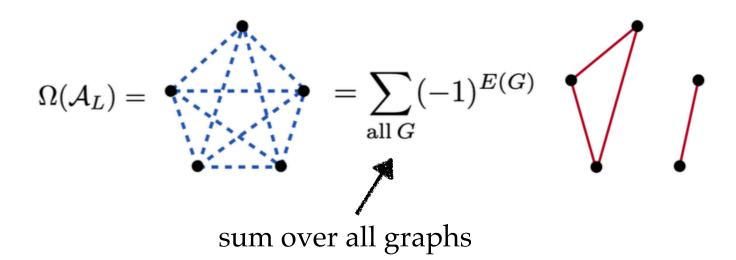
$$\langle ABCD \rangle < 0$$

Graphical notation:

Express all positive links using negative and empty

New formula for form

New formula for L-loop Amplituhedron dlog form:



Example: L=3

Exponentiation

We can now write a formal sum over all loops

$$\Omega(g) = \sum_{L=0}^{\infty} (-g^2)^L \Omega(\mathcal{A}_L)$$
 where $\Omega(\mathcal{A}_0) = 1$

* The formula for $\Omega(g)$ exponentiates

$$\Omega(g) = \exp\left\{ \sum_{\substack{\text{all connected} \\ \text{graphs } G}} (-1)^{E(G)} (-g^2)^L \right\}$$

* We take the logarithm of both sides and expand in g

Expansion of the log

The L-loop logarithm is then

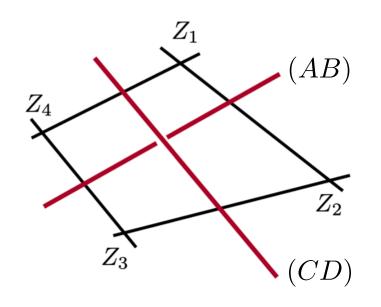
$$\log \Omega(g) \Big|_{(-g^2)^L} = \widetilde{\Omega}_L = \sum_{\substack{\text{all connected} \\ \text{graphs } G \\ \text{with } L \text{ vertices}}} (-1)^{E(G)}$$

We are left with the collection of all connected graphs with negative links

Collinear safety

Positivity and planarity

Mutual positivity ensures the object is planar



(AB) cuts lines (12) and (34)

(CD) cuts lines (23) and (14)

"non-planar cut"

here forced $\langle ABCD \rangle < 0$

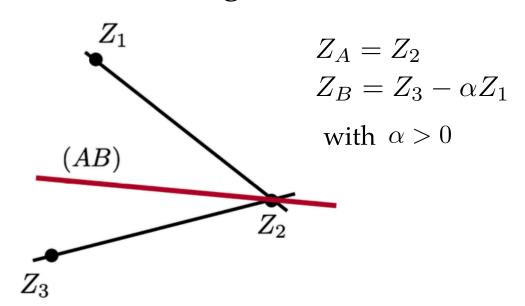
Our connected graphs with negative links are not planar

Products of amplitudes are also not planar

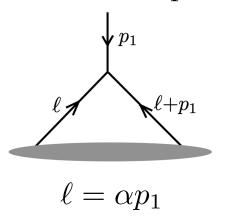
Example: one-loop square space — no constraint on $\langle ABCD \rangle$

Implications of negativity

* Collinear configuration of line (AB)



in momentum space

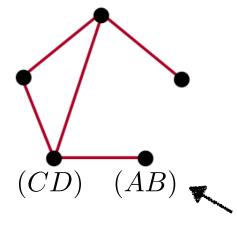


* This is forbidden if we have $\langle ABCD \rangle < 0$

because
$$\langle ABCD \rangle = \langle CD23 \rangle + \alpha \langle CD12 \rangle > 0$$

Implications of negativity

 Connected graph: each vertex connected to at least one other vertex — that link is the mutual negativity condition



no loop line can access any collinear region

 $\langle ABCD \rangle < 0$ is violated if the line (AB) accesses the collinear region

◆ Only all lines simultaneously access collinear region

all
$$\langle (AB)_i(AB)_j \rangle = 0$$

IR finite object

IR divergences

- IR divergences: caused by singularities of the integrand in the collinear (and soft) regions
- For N=4 SYM: no collinear support = no IR divergences
- IR finite integrals: either no massless corners or special

numerators

Example: chiral pentagons

 $\begin{array}{c}
3 & 4 \\
 & \text{nu} \\
 & 5 \\
 & = \frac{1}{\langle A \rangle}
\end{array}$

(Arkani-Hamed, Bourjaily, Cachazo, Trnka 2010) numerator cancels all collinear regions

$$= \frac{d\mu_{AB}\langle AB(123)\cap(456)\rangle\langle 1256\rangle}{\langle AB45\rangle\langle AB56\rangle\langle AB16\rangle\langle AB12\rangle\langle AB23\rangle}$$

IR divergences

 Connected graph with negative links: integrate the form only very mild IR divergence

$$\int \Omega_{\Gamma} = \frac{1}{\epsilon^2}(\dots) + \mathcal{O}\left(\frac{1}{\epsilon}\right)$$

Simplest examples:

$$\widetilde{\Omega}_2 = (AB) (CD)$$

$$\widetilde{\Omega}_{3} = (AB)_{1} (AB)_{3} (AB)_{1} (AB)_{3} (AB)_{1} (AB)_{3} (AB)_{1} (AB)_{3} (AB)_{1} (AB)_{3}$$

each graph generates only $\frac{1}{\epsilon^2}$ divergence

Logarithm of the amplitude

From amplitudes point of view:

$$M = M^{(0)} + gM^{(1)} + g^2M^{(2)} + g^3M^{(3)} + g^4M^{(4)} + \dots$$

expand the logarithm

$$\log M = gM^{(1)} + g^2 \left[M^{(2)} - \frac{1}{2} (M^{(1)})^2 \right] + g^3 \left[M^{(3)} - M^{(2)} M^{(1)} + \frac{1}{3} (M^{(1)})^3 \right]$$
$$+ g^4 \left[M^{(4)} - M^{(3)} M^{(1)} - \frac{1}{2} (M^{(2)})^2 + M^{(2)} (M^{(1)})^2 - \frac{1}{4} (M^{(1)})^4 \right] + \dots$$

the IR divergence has simple structure to all loops

$$\log M = -\sum_{L>1} g^{2L} \frac{\Gamma_{\text{cusp}}^{(L)}}{(L\epsilon)^2} + \mathcal{O}(1/\epsilon)$$

Frozen loop

- * IR divergence in connected graphs, and hence in $\log M$ from all lines simultaneously in collinear region which is a part of the integration region
- Freeze one of the lines, and integrate over all others:
 no collinear support IR finite object

$$\mathcal{F}_{\Gamma}(AB_0) = \int d\mu_{AB_1} \dots d\mu_{AB_{L-1}} \Omega_{\Gamma}$$

for each connected graph

Definition of IR finite object

Define the same object for the logarithm of the amplitude (= sum over all connected graphs)

$$F = \bigotimes - (-g^2) \bigotimes - (-g^2) \otimes - (-g^2)^2 \left\{ \bigotimes - (-g^2)^2 \left\{ \bigotimes$$

Definition of IR finite object

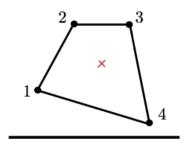
This is IR finite function of one cross ratio

$$\mathcal{F}(g,z) \qquad z = \frac{\langle AB_0 12 \rangle \langle AB_0 34 \rangle}{\langle AB_0 14 \rangle \langle AB_0 23 \rangle}$$

This object is also natural from the dual Wilson loop picture

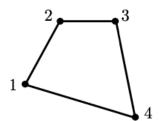
(Alday, Buchbinder, Tseytlin, 2011)

$$\frac{\langle W_F(x_1, x_2, x_3, x_4) \mathcal{L}(x_0) \rangle}{\langle W_F(x_1, x_2, x_3, x_4) \rangle} = \frac{1}{\pi^2} \frac{x_{13}^2 x_{24}^2}{x_{10}^2 x_{20}^2 x_{30}^2 x_{40}^2} F(g; z)$$



Wilson loop with Lagrangian insertion at point x_0

$$F = -g^2 \mathcal{F}$$



Low loop order results

We can find the dlog forms for all graphs Ω_{Γ} and integrate

$$L = 2 \qquad \bigotimes - \bullet = [\pi^2 + \log^2(z)]$$

$$\bigotimes - \bullet = -\frac{1}{12} [\pi^2 + \log^2(z)] \times [5\pi^2 + \log^2 z]$$

$$L = 3 \qquad \bigotimes - \frac{1}{2} [\pi^2 + \log^2 z]^2$$

$$\bigotimes - \frac{1}{6} \log^4 z + \log^2 z \left[-\frac{2}{3} \text{Li}_2 \left(\frac{1}{z+1} \right) - \frac{2}{3} \text{Li}_2 \left(\frac{z}{z+1} \right) + \frac{\pi^2}{9} \right]$$

$$+ \log z \left[4 \text{Li}_3 \left(\frac{z}{z+1} \right) - 4 \text{Li}_3 \left(\frac{1}{z+1} \right) \right] - \frac{2}{3} \left[\text{Li}_2 \left(\frac{1}{z+1} \right) + \text{Li}_2 \left(\frac{z}{z+1} \right) - \frac{\pi^2}{6} \right]^2$$

 $-\frac{8}{3}\pi^2\left[\operatorname{Li}_2\left(\frac{1}{z+1}\right)+\operatorname{Li}_2\left(\frac{z}{z+1}\right)-\frac{\pi^2}{6}\right]-8\operatorname{Li}_4\left(\frac{1}{z+1}\right)-8\operatorname{Li}_4\left(\frac{z}{z+1}\right)-\frac{\pi^4}{18}.$

Trees and ladders

Trees vs loops in the loop space

- ❖ We see in L=3 that "tree" graphs are much simpler than "loop" graph
- In fact, we can find the dlog form for all tree graphs

$$\widetilde{\Omega} = \prod_{k=1}^{L} \frac{d\mu_k}{D_k} \times \prod_{\Gamma} n^{(ij)}$$
 vertices links

$$D_k = \langle AB_k 12 \rangle \langle AB_k 23 \rangle \langle AB_k 34 \rangle \langle AB_k 14 \rangle$$
$$n^{(ij)} = \langle AB_i 13 \rangle \langle AB_j 24 \rangle + \langle AB_i 24 \rangle \langle AB_j 13 \rangle$$

Trees vs loops in the loop space

- We also have closed formula for all one-loop graphs but they are more complicated
- Note that both tree and loop graphs have the same number of standard loops

These are all L=4 graphs, but the forms and integrated formulas get more complicated with more graph loops

Ladders

- Tree approximation: only tree graphs are considered
- There is even more special class of tree graphs: "ladders"

$$\mathcal{F}_{\text{ladder}}(g,z) = (-g^2) \otimes - + (-g^2)^2 \otimes - + (-g^2)^4 \otimes - + \dots$$

$$+ (-g^2)^3 \otimes - + (-g^2)^4 \otimes - + \dots$$

* Because of the simple structure of the dlog form, we can find the Laplace operator which acts on graphs as

$$\Box_{x_0} \bigotimes_{x_0} - \underbrace{\qquad \qquad }_{x_1} = \bigotimes_{x_1}$$

Closed formula for ladders

 We have a function of single cross ratio, rewrite the differential operator as

$$\frac{1}{2}(z\partial z)^2 \mathcal{F}_{\text{ladder}}(g,z) + g^2 \mathcal{F}_{\text{ladder}}(g,z) = 0$$

which is solved by

$$\mathcal{F}_{\mathrm{ladder}}(g, z) = \frac{\cos(\sqrt{2}g \log z)}{\cosh(\sqrt{2}g\pi)}$$

(satisfying certain boundary conditions)

All trees

- Next, we consider the sum over all trees
- For that it is useful to define the generating function for all trees with special link

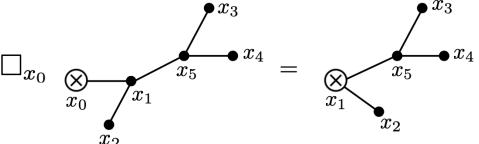
$$\mathcal{F}_{\mathrm{tree}}(g,z) = \bigotimes$$
 $\mathcal{H}_{\mathrm{tree}}(g,z) = \bigotimes$

We can check that both functions are related

$$\mathcal{F}_{\text{tree}}(g,z) = e^{\mathcal{H}_{\text{tree}}(g,z)}$$

All trees

* We can apply the same differential operator on any tree graph p_{x_3}



• From that we can read off an equation for $\mathcal{H}_{\text{tree}}(g,z)$

All trees

With proper boundary conditions we can solve this equation

$$\mathcal{F}_{\text{tree}}(g,z) = \frac{A^2}{g^2} \frac{z^A}{(z^A + 1)^2}, \quad \text{where} \quad \frac{A}{2g\cos\frac{\pi A}{2}} = 1$$

* We can use our formulas for $\mathcal{F}_{ladder}(g, z)$ and $\mathcal{F}_{tree}(g, z)$ to go to strong coupling and also find contributions to cusp anomalous dimension

Strong coupling

Strong coupling of ladders

 At strong coupling the ladder contribution is exponentially suppressed

$$\mathcal{F}_{\text{ladder}}(g;z) \le \frac{1}{\cosh(\sqrt{2}g\pi)} \le 2e^{-\sqrt{2}g\pi} \stackrel{g\gg 1}{\to} 0$$

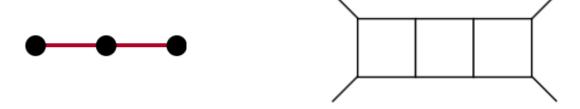
This is similar as what we would get from summing actual ϕ^3 ladder diagrams

(Broadhurst, Davydychev, 2010)

$$p_2$$
 p_3 p_4 p_4

Strong coupling of ladders

* Our ladders are very different, but the only thing they have in common is the number of internal $\langle (AB)_i(AB)_j \rangle$ propagators in the integrand form



both have (L-1) propagators but very different numerators

Strong coupling of ladders

The exponential suppression is in contrast with the full gamma cusp result

$$F(z) \stackrel{g \gg 1}{=} g \frac{z}{(z-1)^3} [2(1-z) + (z+1)\log z] + \dots$$

which is linear at strong coupling

In comparison the sum over trees is

$$F_{\text{tree}} = -\frac{z}{(1+z)^2} + \mathcal{O}\left(\frac{1}{g}\right)$$
 Missing g term

But still has 1/g expansion unlike ladders!

Gamma cusp

From F to gamma cusp

Recall the expression for the logarithm of the amplitude

$$\log M = -\sum_{L \ge 1} g^{2L} \frac{\Gamma_{\text{cusp}}^{(L)}}{(L\epsilon)^2} + \mathcal{O}(1/\epsilon)$$

The cusp anomalous dimension is

$$\Gamma_{\text{cusp}}(g) = \sum_{L \ge 1} g^{2L} \Gamma_{\text{cusp}}^{(L)}$$

and can be obtained from function F(g, z)

(Alday, Henn, Sikorowski, 2013) (Henn, Korchemsky, Mistlberger 2019)

$$g \frac{\partial}{\partial g} \Gamma_{\text{cusp}}(g) = -2\mathcal{I}[F(g, z)]$$
 where $\mathcal{I}[z^p] = \frac{\sin(\pi p)}{\pi p}$

From F to gamma cusp

For the sum of ladders we can finish the calculation

$$\Gamma_{\text{ladder}}(g) = \frac{4}{\pi} \log \cosh(\sqrt{2\pi}g)$$

which is very close to $\Gamma_{\rm octagon}(g)$ which controls the six-point remainder function in particular limit

$$\Gamma_{\mathrm{ladder}}(g) = 2 \Gamma_{\mathrm{octagon}}(\frac{g}{\sqrt{2}})$$

(Kostov, Petkova, Serban, 2019)

(Basso, Dixon, Papathanasiou, 2020)

(Caron-Huot, Coronado, 2021)

From F to gamma cusp

* We just need to expand $F_{\text{tree}}(g, z)$ in powers of z

$$F_{\text{tree}}(g, z) = A \sum_{m=0}^{\infty} (mA)(-1)^m z^{mA}$$

Plugging back into the formula for gamma cusp

$$g\partial_g \Gamma_{\text{tree}}(g) = -\frac{2A}{\pi} \sum_{m=0}^{\infty} (-1)^m \sin(\pi m A)$$
$$= \frac{4A}{\pi} \tan\left(\frac{\pi A}{2}\right) \quad \text{where} \quad \frac{A}{2g\cos\left(\frac{\pi A}{2}\right)} = 1$$

Can not solve it analytically but we will extract strong coupling data

Asymptotics of gamma cusp

Now we look at the weak and strong coupling asymptotic of gamma cusp

$$\Gamma_{\text{cusp}}(g) \to \begin{cases}
4g^2 - 8\zeta_2 g^4 + \cdots & g \ll 1 \\
2g - \frac{6\log 2}{4\pi} \frac{1}{g} + \cdots & g \gg 1
\end{cases}$$
 $g_* = 0.25$

radius of convergence

$$g_* = 0.25$$

(Beisert, Eden, Staudacher, 2005)

for ladders

$$\Gamma_{\text{ladder}}(g) \to \begin{cases}
4g^2 - 8\zeta_2 g^4 + \cdots & g \ll 1 \\
4\sqrt{2}g - 4\frac{\log 2}{\pi} + \frac{4}{\pi}e^{-2\sqrt{2}g\pi} + \cdots & g \gg 1
\end{cases}$$
 $\leftarrow g_* = 0.35$

no 1/g terms

less non-perturbative

Asymptotics of gamma cusp

Now we look at the weak and strong coupling asymptotic of gamma cusp

$$\Gamma_{\text{cusp}}(g) \to \begin{cases}
4g^2 - 8\zeta_2 g^4 + \cdots & g \ll 1 \\
2g - \frac{6\log 2}{4\pi} \frac{1}{g} + \cdots & g \gg 1
\end{cases}$$
 $g_* = 0.25$

radius of convergence

$$g_* = 0.25$$

(Beisert, Eden, Staudacher, 2005)

while for trees

$$\Gamma_{\text{tree}}(g) \to \begin{cases}
4g^2 - 8\zeta_2 g^4 + \cdots & g \ll 1 \\
\frac{8}{\pi} g + \frac{1}{\pi} \frac{1}{g} + \cdots & g \gg 1
\end{cases}$$
 $formula = 0.21$

All the correct qualitative behavior

Comparison at weak coupling

Compare numerically weak coupling coefficients

$$r_{i/j} = \sum_{k \ge 1} g^{2k} \frac{c_{i,k}}{c_{j,k}}$$

$$r_{\text{ladder/cusp}} = g^2 + g^4 + 0.73g^6 + 0.44g^8 + 0.25g^{10} + 0.14g^{12} + 0.07g^{14} + \dots$$

$$r_{\text{cusp/tree}} = g^2 + g^4 + 0.92g^6 + 0.83g^8 + 0.74g^{10} + 0.63g^{12} + 0.53g^{14} + \dots$$

better numerical approximation

Summary/Outlook

Summary

- Logarithm of the amplitude: expansion in terms of dlog forms on negative geometries, manifest IR
- Freeze one loop: IR finite object
- Summing ladders and all trees, strong coupling,
 gamma cusp trees give correct qualitative behavior
- ❖ The function of z no g term: need "loops of loops"

Outlook

- Calculate geometric "loop" corrections: forms and integrals, new differential operators needed
- Strong coupling: see how the correct behavior for F(z) emerges
- Extension to five points more cross ratios

(Arkani-Hamed, Chicherin, Henn, JT, in progress)

