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Introduction
• In usual CHY formalism, we map the kinematic space of n-particle scattering to the moduli space of n-

punctured Riemann sphere (CP1). CEGM formalism[2] generalises this to generalised bi-adjoint scalar
amplitudes, defined as the integral on n-punctured CPk−1.

• Generalised scattering potential:

S(k) =
∑

a1<a2<···<ak
sa1a2···ak log |a1a2 · · · ak|, (1)

where sa1a2···ak are generalized Mandelstam variables, and |a1a2 · · · ak| are the determinant of the k × k
minor of n× k matrix with the inhomogeneous coordinates of the punctures a1, a2, · · · , ak as entries.

• Scattering equations:

Eia :=
∂S(k)

∂xai
= 0. (2)

• The n-point amplitude is given by,

m
(k)
n (α|β) = 1

vol(SL(k,C))

∫ n∏
a=1

k−1∏
i=1

dxai

n∏
a=1

k−1∏
i=1

δ(Eia)PT
(k)(α)PT (k)(β), (3)

where the Parke-Taylor factor with canonical ordering,

PT (k)(I) =
1

|12 · · · k||2 · · · k + 1| · · · |n− k + 1 n− k + 2 · · ·n|
. (4)

• The usual CHY bi-adjoint scalar amplitudes for n particle scattering are related to An−3 cluster algebra.
For a given general k and n value, CEGM amplitudes are related to Gr(k, n) cluster algebra. These k > 2
amplitudes do not have a physical intepretation, as of yet.

Soft theorems for k=2

Single soft limit
• Take n-th particle to be soft, and Mandelstam variables scale as,

sna = τ ŝna, lim τ → 0, a ∈ {1, 2, · · · , n− 1}. (5)

• Scattering equations,

Ea =

n−1∑
b=1,b6=a

sab
xa − xb

= 0, En = τ

n−1∑
b=1

ŝnb
xn − xb

= 0. (6)

• We cansider soft limit in bi-adjoint scalar amplitude,

m
(2)
n (I|I) = S

(2)
n m

(2)
n−1(I|I), (7)

where the single soft factor,

S
(2)
n =

1

τ

[
1

ŝnn−1
+

1

ŝn 1

]
. (8)

Double soft limit
• In the adjacent double soft limit, contributions from the degenerate solutions dominate over those of the

non-degenerate ones.
• Take the adjacent n-th and (n-1)-th particles to be soft simultaneously, and Mandelstam variables scale as,

sna = τ ŝna, sn−1 a = τ ŝn−1 a snn−1 = τ2ŝnn−1, a ∈ {1, 2, · · · , n− 2}. (9)

• Scattering equations,

Ea =
n−2∑

b=1,b6=a

sab
xa − xb

= 0,

En−1 = τ
n−2∑
b=1

ŝn−1 b
xn−1 − xb

+ τ2
ŝn−1n

xn−1 − xn
= 0, En = τ

n−2∑
b=1

ŝn b
xn − xb

− τ2 ŝn−1n
xn−1 − xn

= 0. (10)

• The simultaneous double soft factor,

S
(2)
DS =

1

τ3
1

ŝnn−1

[
1

ŝn−1n−2 + ŝnn−2
+

1

ŝn−1 1 + ŝn 1

]
. (11)

pn−2

kn−1 kn

1

sn−1 n
× 1

sn−1 n−2 + sn n−2

p1

knkn−1

1

sn−1 n
× 1

sn−1 1 + sn 1

• The non-adjacent simultaneous double soft factor is subleading and scales as τ−2.

Single soft theorem for generalised bi-adjoint scalars

Single soft limit for k = 3

• For general k ≥ 3, we will consider the regular solutions of the scattering equations because singular
solutions will contribute in subleading order as shown in [3].

• In the single soft limit by taking the n-th puncture to be soft the scattering equantions become,

E
(i)
a =

n−2∑
{b,c}6={a,n}

sabc
|abc|

∂

∂x
(i)
a

|abc| = 0, E
(i)
n = τ

∑
1≤a<b≤n−1

ŝabn
|abn|

∂

∂x
(i)
n

|abn| = 0, i = 1, 2. (12)

• Here we have encounter two types of singularities collision and collinear singulaties.
• The single soft factor,

S
(3)
n =

1

τ2
1∑n−1

a=2 ŝ1 a n

(
1

ŝ1 2n
+

1

ŝn−1n 1

)
+

1∑n−2
a=1 ŝn−1n a

(
1

ŝn−1n 1
+

1

ŝn−2n−1n

)
+

1

ŝn−2n−1nŝn 1 2
.

(13)

Single soft limit for arbitrary k
• In [3], the single soft factor for arbitrary k value was evaluated in terms of the generalised Mandelstam

variables by an iterative procedure.

• The scaling of the soft factor can be seen to be τ−(k−1).

Double soft theorem for k = 3

• The scattering equations, with n-th and (n-1)-th punctures to be soft, are,

E
(i)
a =

∑
b,c 6=a,n−1,n

sabc
|abc|

∂

∂x
(i)
a

|abc|, ∀a,

E
(i)
n−1 = τ

∑
a,b 6=n−1,n

ŝab n−1
|ab n− 1|

∂

∂x
(i)
n−1
|ab n− 1| + τ2

n−2∑
a=1

ŝa n−1n
|a n− 1n|

∂

∂x
(i)
n−1
|a n− 1n| = 0,

E
(i)
n = τ

∑
a,b 6=n−1,n

ŝab n
|ab n|

∂

∂x
(i)
n

|ab n| + τ2
n−2∑
a=1

ŝa n−1n
|a n− 1n|

∂

∂x
(i)
n

|a n− 1n| = 0, i = 1, 2. (14)

• In this limit the adjacent degenerate configuration gives leading order contribution.

• The double soft factor, when the two soft punctures collide in the degenerate limit,

S
(3)
DS =

τ−6

n−2∑
a=1

ŝa n−1n

(
1

ŝn−1n 1
+

1

ŝn−2n−1n

)

×

[
1

(ŝn−3n−2n−1 + ŝn−3n−2n)(ŝn−1 12 + ŝn12)

+
1

n−3∑
a=1

(ŝa n−2n−1 + ŝa n−2n)

(
1

ŝn−3n−2n−1 + ŝn−3n−2n
+

1

ŝn−2n−1 1 + ŝn−2n 1

)

+
1

n−2∑
a=2

(ŝa n−1 1 + ŝan1)

(
1

ŝn−2n−1 1 + ŝn−2n 1
+

1

ŝn−1 12 + ŝn12

)]
. (15)

• The configuration, when the soft punctures are collinear to one hard puncture, produces subleading contri-
bution compared to the case when two soft punctures collide.

Simultaneous double soft theorem for arbitrary k
• For arbitrary k value, the leading order double soft factor comes from the degenerate configuration. The

degenerate solution of the scattering equation comes from two different situations,

1. when two adjacent punctures, say n-th and (n− 1)-th, on CP(k−1) infinitesimally approach each other,
2. when two adjacent soft punctures and (k−2) number of hard punctures lie in a codimension one subspace.

• For the above both cases the determinant |a1a2 · · · ak| ∼ O(τ ), where the parameter τ defines the soft limit
in terms of the generalized Mandelstam variables given below,

sa1 a2··· ak−1 n = τ ŝa1 a2···ak−1 n,
sa1 a2··· ak−1 n−1 = τ ŝa1 a2···ak−1 n−1,

sa1 a2··· ak−2 n−1 n = τ2 ŝa1 a2···ak−2 n−1 n. (16)

• In the leading order the configuration(1), mentioned above, dominates over the other for degenerate adjacent
case. The non-degenerate solutions contribute in further lower order in the adjacent double soft factor.

• The simultaneous double soft factor for the adjacent soft external states n and (n− 1) is,

S
(k)
DS =

1∑
1≤a1···<ak−2≤n−2

sa1···ak−2 n−1 n
S(k−1)

(
sa1···ak−2 m→ sa1···ak−2 n−1 n

)
S(k) , (17)

where the single soft factor S(k−1) for k−1 is defined with m as the composite level for ‘n−1 n, and S(k) is
the single soft factor for k, but with the shifted generalised Mandelstam variable (sa1···ak−1 n+sa1···ak−1 n−1).

• The leading simultaneous double soft factor for the adjacent case scales as τ−3(k−1) as τ → 0, and the
non-adjacent double soft factor contributes in the subleading order for arbitrary k-value.

Conclusions and future directions
• Relation between the Gr(3, 6) amplitude and four point one-loop integrand in cubic biadjoint scalar field

theory is studied in [1].

• Factorisations of the amplitude can be given in the moduli space using the CEGM classification of bound-
aries of the moduli space.

• Appearance of the higher order poles could be a signature of composite particles or multiparticle states con-
tributing to the amplitude.

• It would be interesting to generalise our results to multiple soft theorem.

• Study of subalgebras of cluster algebra from CEGM moduli space maybe interesting for applications to
Gr(4, n) amplitudes relevant for the study of SYM amplitudes.
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Abstract

Amplitude-level factorization has been long understood in terms of a product of loop-expanded soft-gluon currents and
hard scattering matrix element, both of which are IR divergent. A more recent work by Angeles-Martinez, Forshaw and
Seymour (AMFS) expressed the factorization in an ordered evolution approach involving IR finite one-loop insertions where
the virtual momentum is constrained in a highly non-trivial way by the kT of the adjacent real emissions. The proof of AMFS
result at one-loop in QCD, however, involves many diagrams, and only after summing over all the diagrams does the correct
ordering variable emerge. This highlights the difficulty in extending the result to higher orders. We present using effective
operators in the Glauber-SCET Lagrangian, an elegant and a significantly compact proof of the AMFS result, involving only
a few diagrams, that offers clean physical insights and makes higher order extension of the AMFS result tractable.

1 Introduction

1.1 Amplitude for ordered soft gluon emissions
Consider amplitude for N ordered soft gluon emissions from n hard partons with momenta {pi} with

{pµi } � q
µ
1 � . . .� q

µ
N (1)∣∣∣∣∣MN

]
= (gµε)NJ(qN ) . . .J(q1)

∣∣∣∣∣M(p1, . . . , pn)
]
, (2)

Both the hard matrix element and soft gluon amplitudes have the loop expansion:

|M(p1, . . . , pn)] =
∣∣∣∣∣M (0)

0
]
+

∣∣∣∣∣M (1)
0

]
+ . . . , J(q) = J(0)(q) + J(1)(q) + . . . , (3)

At one-loop accuracy, we have

J(1)(qm+1) = 1
2
n+m∑
j=1

n+m∑
k=1

d(1)
jk (qm+1) ,

∣∣∣∣∣M (1)
0

]
= n∑
i=2

i−1∑
j=1

Iij(0, ωij)
∣∣∣∣∣M (0)

0
]
, ωij ≡ 2pi · pj , (4)

IR divergent soft gluon emission and virtual corrections:

d(1)
ij (q) ≡ αs

2π
cΓ
ε2

Tq ·Ti


e−iπδ̃ij

e−iπδ̃iqe−iπδ̃jq
4πµ2

(
q

(ij)
⊥

)2



ε

dij(q) , Iij(0, ωij) ≡
αs
2π
cΓ
ε2

Ti ·Tj

e
−iπδ̃ij4πµ

2

ωij



ε

,

Which IR divergences survive in the multiple, ordered soft gluon amplitude?

1.2 The AMFS Result
Angeles-Martinez, Forshaw and Seymour [1] (AMFS) re-expressed the result in an ordered evolution approach,
involving IR finite one-loop insertions bounded by kT of soft gluon emissions.

Figure 1: The three lines in the AMFS result

∣∣∣∣∣M (1)
N

]
= (gµε)N


N∏
k=1

J(0)(qk)


n∑
i=2

∑
j<i

I(ij)(q(ij)
1⊥ , ωij)


∣∣∣∣∣M (0)

0
]

(5)

+ (gµε)N N∑
m=1


N∏

k=m+1
J(0)(qk)



n+m−1∑
i=2

∑
j<i

I(ij)(q(ij)
m+1⊥, q

(ij)
m⊥)



m∏
`=1

J(0)(q`)

∣∣∣∣∣M (0)

0
]

+ (gµε)N N∑
m=1


N∏

k=m+1
J(0)(qk)



n+m−1∑
j,k=1

I(n+m)j(q((n+m)j)
m+1⊥ , q

(jk)
m⊥ )djk(qm)



m−1∏
`=1

J(0)(q`)

∣∣∣∣∣M (0)

0
]
,

where

I(ij)(a, b) = αs
2πTi ·Tj


4πµ2

b2

ε
1 + iπδ̃ij − εln

2pi · pj
b2

−
4πµ2

a2

ε
1 + iπδ̃ij − εln

2pi · pj
a2


 . (6)

Features:
1.Virtual loop-momentum bounded by kT of adjacent real emissions.
2.Novel amplitude level QCD coherence where the IR divergences originating only from the very last,
softest, gluon emission remain, and the rest cancel.

3.Markovian in nature but cannot be exponentiated! No analog in SCET
4. Interesting memory effect: In the last line kT of the last emission must be evaluated in the rest frame
of its parent-dipole, (jk)

1.3 Derivation using QCD graphs (Very Complicated!)
Focus on the imaginary part of one-loop diagrams by evaluating
cut diagrams.

• Involves many diagrams with careful grouping
•Only after summing over all the diagrams does the correct

ordering variable emerge
•Extremely hard to extend to higher orders!

Once again, the result in limits 2 and 3 can be deduced by taking the corresponding collinear
limit of the leading expression in limit 1, Eq. (4.28).

The leading cuts in limits 1–3 are presented in Fig. 12 and can be expressed in terms of
the two colour tensors in Eq. (4.28), which are illustrated in the final column of the figure.
There are additional graphs, other than the ones shown, that involve the four-gluon vertex
but, along with the ghost graphs, these are sub-leading. In limit 1 all cuts in this figure are
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Figure 3: Caption

2

Figure 12. Leading graphs in limits 1–3. Their contributions are projected onto the two colour
structures in the final column.

leading except that with a four-gluon vertex. The non-trivial way in which these graphs
combine to deliver Eq. (4.28) is illustrated by considering, as an example, the graphs that
give rise to the term with Lorentz structure

� i⇡

8⇡2

pj · "1

pj · q1

q1 · "2

q1 · q2
(4.36)

in the first line of Eq. (4.28). The first five graphs of each colour structure are all lead-
ing. In the case of the first colour structure (the top half of Fig. 12) we label these
{G1a, G1b, G1c, G1d, G1e}. The first two of these cancel exactly, whilst the others give

G1c = �3

2

Z pj ·q2

pj ·q1

dl2T
l2T

� 3

2

Z 2q1·q2

0

dl2T
l2T

, (4.37)

G1d =
3

2

Z 2q1·q2

0

dl2T
l2T

, (4.38)

G1e = �
Z 2q1·q2

0

dl2T
l2T

+
1

2

Z pj ·q2

pj ·q1

dl2T
l2T

. (4.39)

In stark contrast, for the second colour structure the first two graphs again cancel exactly
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Figure 2: Graphs for cuts through soft gluons
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1

Figure 7. Diagrammatic representation of how to group the graphs that give rise to the transverse
momentum-ordered expression in the case of two emissions at one loop. There are 12 more structures
to consider: 8 are obtained by permuting (i $ j) and the other four are obtained by permuting
(1 $ 2) and (i $ j, 1 $ 2) in groups 3 and 7.

In limits 1–3, every row in Fig. 7 either adds up to a subleading expression or to one of the
terms in Eqs. (4.1)–(4.3). This figure contains all of the leading contributions arising from
the 36 different graphs with eikonal cuts.

In order to illustrate how the transverse momentum ordered integrals arise, we will
consider two examples in some detail. We start by taking a closer look at the first row of
six graphs in Fig. 7. All of these graphs have only a single cut, corresponding to production

– 12 –

Figure 3: Grouping of 2 real emission diagrams in
QCD graphs for cuts through hard partons

2 Derivation using Glauber-SCET
Derive the AMFS result in Eq. (5) in Soft Collinear Effective Theory with Glauber operators [2] with only
a handful of diagrams.
1. Hard scattering operator with Soft Wilson lines:

On = ∑
Γ

∫  n∏
i=1

dωi

[O(0)
n

(
{ωi, ni}

)∣∣∣∣∣
n∏
i=1

Sni
∣∣∣∣∣Cn,Γ

(
{ωi}

)]
. (7)

2. Glauber operators:

Oijnisnj = Oi
ni ·

1
P2
⊥

Ô(ninj)
s

1
P2
⊥
·Oj

nj , Oijnis = Oi
ni ·

1
P2
⊥

Oni,j
s (8)

3. Correspondence between QCD and SCET result:
[
{Cj} ∪ {ai}

∣∣∣∣∣(gµε)NJ(qN ) . . .J(q1)
∣∣∣∣∣M(p1, . . . , pn)

]
(9)

= ∑
Γ

∫  n∏
i=1

dωi


{Cj} ∪ {ai}

∣∣∣∣∣∣∣〈{pi}, {qj}|
T O(0)

n

(
{ωi, ni}

) n∏
i=1

Snie
i ∫ d4x′OG(x′)

|0〉
∣∣∣∣∣Cn,Γ

(
{ωi}

)]
.

Glauber graphs allow us to efficiently calculate the imaginary part of the amplitude.

2.1 Derivation using a recursive EFT sequence
Step 1: Amplitude for single gluon emission

Combine the matrix element with the Wilson coefficient:
Im

∣∣∣∣∣∣C[1]
n ({ωi}, µ)

 = n∑
i=1

∑
j<i

C(ij)(µ, ωij)
∣∣∣∣∣M0

]
, C(ij) = Im

[
I(ij)] . (10)

One gluon emission at one loop:

Im

{ai}, C1

∣∣∣∣∣∣∣〈(q1, ε1), {pi}|On
(
{ωi, ni}

)
|0〉

∣∣∣∣∣∣∣Cn
(
{ωi}, µ

)

[1]

(11)

=
{ai}, C1

∣∣∣∣∣∣∣
g ε1 · J(0)(q1)× Im

∣∣∣∣∣∣C[1]
n ({ωi}, µ)

 + G1(a+b+c)(m, q1, µ)× Re
∣∣∣∣∣∣C[0]
n ({ωi}, µ)




= g
{ai}, C1

∣∣∣∣∣∣∣

ε1 · J(0)(q1) n∑
i=1

∑
j<i

C(ij)(q(ij)
1⊥ , ωij)

+ n∑
i=1


∑
j<i

C(ij)(m, q(ij)
1⊥ ) ε1 · J(0)(q1) + ∑

j 6=i
C(q1j)(m, q(ij)

1⊥ ) ε1 · dji(q1)



∣∣∣∣∣M0

]
.

Step 2: Resolve the soft emission and update the hard scattering and Glauber operators

Ohard scatter
n+1 = ∫  n+1∏

i=1
dωi

[On+1({ω1, n1, ωi, ni})
∣∣∣∣∣Cn+1({ω1, ωi}, µ)

]
. (12)

[
On+1({ω1, n1, ωi, ni})

∣∣∣∣∣ ≡
[
On

(
{ωi, ni}

)∣∣∣∣∣
g

n∑
i=1

ni · Ban1⊥,ω1

ni · q1
Ta
i

 . (13)

Calculate the imaginary part of theWilson coefficient for the
low energy EFT by one-loop Glauber graphs:

J(0)(q1)Im
∣∣∣∣∣∣∣C

[1]
n+1({q(ij)

1⊥ , ωi}, µ)
 = J(0)(q1) n∑

i=1
∑
j<i

C(ij)(q(ij)
1⊥ , ωij)

∣∣∣∣∣M0
]

(14)

+ n∑
i=1


∑
j<i

C(ij)(µ, q(ij)
1⊥ )J(0)(q1) + ∑

j 6=i
C(q1i)(µ, q(ij)

1⊥ )dij(q1)

∣∣∣∣∣M0

]
.

Step 3: Recycle the single gluon emission result and derive AMFS by induction

Two soft gluon emissions at one-loop:

Im
{C1, C2} ∪ {ai}

∣∣∣∣∣∣∣〈(q2, ε2), (q1, ε1), {pi}|On+1({q(ij)
1⊥ , n1, ωi, ni})|0〉

∣∣∣∣∣∣∣Cn+1({q(ij)
1⊥ , ωi}, µ)

[1]

= g2 ε2νε1µ

J
ν
2(q2, q1)J(0)µ(q1) n∑

i=1
∑
j 6=i

C(ij)(q(ij)
1⊥ , ωij) (15)

+ Jν2(q2, q1) n∑
i=1


∑
j<i

C(ij)(q(ij)
2⊥ , q

(ij)
1⊥ )

J(0)µ(q1) + ∑
j 6=i

C(q1i)(q(q1i)
2⊥ , q

(ij)
1⊥ ) dµij(q1)



+ n+1∑
i=1


∑
j<i

C(ij)(m, q(ij)
2⊥ )Jν2(q2, q1) + ∑

j 6=i
C(q2i)(m, q(ij)

2⊥ ) dνij(q2)
J(0)µ(q1)

 .

SCET derivation is thus a lot more compact!

2.2 Derivation using double soft emission amplitude in SCET

The grouping of QCD graphs is already implicit in the SCET graphs!
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Figure 1: Caption

1

Figure 7. Diagrammatic representation of how to group the graphs that give rise to the transverse
momentum-ordered expression in the case of two emissions at one loop. There are 12 more structures
to consider: 8 are obtained by permuting (i $ j) and the other four are obtained by permuting
(1 $ 2) and (i $ j, 1 $ 2) in groups 3 and 7.

In limits 1–3, every row in Fig. 7 either adds up to a subleading expression or to one of the
terms in Eqs. (4.1)–(4.3). This figure contains all of the leading contributions arising from
the 36 different graphs with eikonal cuts.

In order to illustrate how the transverse momentum ordered integrals arise, we will
consider two examples in some detail. We start by taking a closer look at the first row of
six graphs in Fig. 7. All of these graphs have only a single cut, corresponding to production

– 12 –

The AMFS result can also be derived by evaluating two emission diagrams in SCET :

Figure 4: Diagrams needed for extension of AMFS result to two-loops. Additional diagrams not shown include one-loop corrections
to the n-s forward scattering and soft emission diagrams involving 3 Wilson lines.

3 Conclusions

1. Rederived the AMFS result using Glauber SCET operators

2. Considered a sequence of EFTs where each time a new soft emission is resolved to become a collinear
direction.

3. Each SCET diagram contributes to a specific term in AMFS and there are a lot fewer diagrams to consider
even with two emissions.

4. The SCET derivation thus has made it possible for us to envisage a tractable way forward in extending the
AMFS result to higher orders.
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The Chirality-Flow Formalism for SM Amplitudes
Andrew Lifson, Lund University, Amplitudes 2021 poster

In collaboration with Joakim Alnefjord, Christian Reuschle, and Malin Sjödahl (based on hep-ph:2003.05877 (EPJC) and hep-ph:2011.10075 (EPJC))

Aim of Chirality Flow

Explore if spinor-helicity ' su(2) ⊕ su(2) cal-
culations can be done analogously to colour flow
≡ su(3)

Ex: Calculate ee→ γγ in One Line

←−
p2

p1←−

e+
+

e−−

γ−3

γ+4

−→
p3

p4−→

−→
p
1
+
p
4

∼ 1
〈r33〉[4r4]

2

1

r3

r4

p
1
+
p
4

4

3

︸ ︷︷ ︸
〈1r4〉

(
[41]〈13〉+[44]〈43〉

)
[r32]

In above and below examples:
Feynman diagram in black
Coloured flow lines ≡ coloured inner products
Inner products ≡ well known complex numbers

Ex: 10-pt Feynman Diagram in
One Line

1+

6−5+

4−3+2−

7−

8− r+8 r−9 9+

10+

−p1 − p2 − p5

p3 + p4 + p6

p9 + p10

p8 + p9 + p10

= (
√

2ei)8
︸ ︷︷ ︸

vertices

(−i)3

s1 2 s3 4 s8 9 10︸ ︷︷ ︸
photon propagators

(i)4

s1 2 5 s3 4 6 s8 9 10 s9 10︸ ︷︷ ︸
fermion propagators

1
[8r8]〈r99〉︸ ︷︷ ︸

polarization vectors

[15]〈64〉[10 9]

×
(
〈r99〉[9r8] + 〈r910〉[10r8]

)(
[33]︸︷︷︸

0

〈37〉 + [34]〈47〉 + [36]〈67〉
)

×
(
− 〈89〉[91]〈12〉 − 〈89〉[95]〈52〉 − 〈8 10〉[10 1]〈12〉 − 〈8 10〉[10 5]〈52〉

)

Key Conclusion of Chirality Flow

You can (often) go from Feynman diagram
to complex number in one line

Spinor-Helicity Basics

Massless spinors either left and right chiral (use
chiral basis, γ5 = diag(−1, 1)):

u+(p) = v−(p) =

 0
|p〉


 u−(p) = v+(p) =


|p]

0




ū+(p) = v̄−(p) =
(
[p| 0

)
ū−(p) = v̄+(p) =

(
0 〈p|

)

Vectors (r ≡ arbitrary ref spinor, τµ = σµ/
√

2):

εµ+(p, r) = 〈r|τ̄
µ|p]
〈rp〉

, εµ−(p, r) = [r|τµ|p〉
[pr]√

2pµτµ ≡ /p = |p]〈p| ,
√

2pµτ̄µ ≡ /̄p = |p〉[p|
Algebraic identities remove vector indices, e.g.
〈i|τ̄µ|j][k|τµ|l〉 = 〈il〉[kj]︸ ︷︷ ︸

Fierz identity
, 〈i|τ̄µ|j] = [j|τµ|i〉︸ ︷︷ ︸

Charge Conjugation

Amplitude ≡ function of Lorentz-invariant spinor
inner products (numbers)
〈ij〉 = −〈ji〉 ≡ 〈i||j〉 and [ij] = −[ji] ≡ [i||j] ,
〈ij〉 ∼ [ij] ∼

√
2pi · pj

Chirality Flow for 3-pt Amplitudes

You can use flow lines to find 3-pt amplitudes

3-pt Ampiltude Rules

•Begin with minimum number of lines which
satisfies little-group scaling
•Only solid or dotted lines allowed, move lesser
type to denominator and change line type
•Multiply by 1 to add lines until Lorentz-invariant
found
•Cannot connect lines in a way to give 0 or ∞

Chirality-Flow Simplifies
Spinor-Helicity Calculations

Drawing and connecting lines simpler than keep-
ing track of indices

Chirality Flow Building Blocks

Left-chiral spinors ≡ dotted lines
Right-chiral spinors ≡ solid lines
Inner products defined as:
〈i|α|j〉α ≡ 〈ij〉 = −〈ji〉 = i j

[i|β̇|j]
β̇ ≡ [ij] = −[ji] = i j

Vectors replaced by double lines (cf. colour flow)
p−→µ ν = or

Momenta represented by momentum dot
(p = ∑

i pi, p
2
i = 0)

√
2pµτ̄µ =

∑

i
|i〉[i| =

∑
i pi

,

√
2pµτµ =

∑

i
|i]〈i| =

∑
i pi

Important Takeaway

You can use these replacements to create new set
of Feynman rules

3-pt Chirality-Flow Ex:

1+

2+

3−
= A3(1+, 2+, 3−) ∼ c 1

2

3

only [ij]−→ c

1

2

3

1

2

3

×1−→ c

1

2

3

1

2

3

connect lines−→ c [12]3
[23][31] X

Ex: (Massless) QED
Chirality-Flow Rules

Species Feynman Flow

ū−(pi)
i
− i

v−(pj) −
j j

v+(pj)
j
+

j

ū+(pi)
i
+ i

εµ−(pi, r)
i
− 1

[ir] i
r

εµ+(pi, r)
i
+ 1

〈ri〉

i
r

ieσ̄µ

−

+
µ

ie
√

2

ieσµ

+

−
µ ie

√
2

i /
p

p2

p←− i
p2

∑
i pi

−igµνp2

p−→µ ν − i
p2

Application of Chirality-Flow
Rules

•Draw and connect flow lines without arrows
•Choose single arrow direction and follow it
through diagram (vector double lines have arrows
opposing)
•Read off inner products

Conclusions
•Chirality flow offers shortest journey from
Feynman diagram to complex number
•Calculations often performed in a single step,

without algebraic manipulations
•Full standard model at tree level understood

https://arxiv.org/pdf/2003.05877.pdf
https://epjc.epj.org/articles/epjc/abs/2020/11/10052_2020_Article_8260/10052_2020_Article_8260.html
https://arxiv.org/pdf/2011.10075.pdf
https://epjc.epj.org/articles/epjc/abs/2021/04/10052_2021_Article_9055/10052_2021_Article_9055.html




POSITIVITY BOUNDS WITH GRAVITY
ANNA TOKAREVA

(UNIVERSITY OF JYVÄSKYLÄ, FINLAND)

POSITIVITY BOUNDS

The general idea
- to find out which EFT can be UV com-
pleted by a good theory and which - cannot
What do we mean by ’good’?

• Lorenz-invariant ) A = A(s, t, u)

• unitary ) ImA > 0

• satisfying causality ) A(s, t, u) is analytic
everywhere except real axes

• local ) polynomial boundedness (Froissart-
Martin bound)

lim
|s|!1

����
A(s, t)

s2

���� = 0, t < 4m2.

Weakly coupled string theory leads to the similar
properties of amplitudes.
What is positive?

Example: forward limit t = 0

⌃IR =
1

2⇡i

Z

�
ds

A(s)

(s� µ2)3
=

=

Z 1

4m2

ds

⇡

✓
ImA(s)

(s� µ2)3
+

ImA
+(s)

(s� 4m2 + µ2)3

◆

⌃IR =
1

2
A

00(s) > 0

POSITIVITY BOUNDS

Improved positivity bounds
Part of the rhs integrals still can be computed in
the effective theory

⌃IR =
1

2
A

00(s) >

Z ⇤2

4m2

ds

⇡

✓
ImA(s)

(s� µ2)3
+

+
ImA

+(s)

(s� 4m2 + µ2)3

◆

Issues with massless particles

• Branch cuts divide the complex plane )

contours should be chosen in a different
way

• Froissart-Martin bound can be no longer sa-
tisfied

• IR singularities

• the function in the RHS is positive definite
only for µ < 4m2

To resolve the last issue we can use instead:

⌃IR =
1

2⇡i

Z

�

s3A(s, t ! �0)

(s2 + �2)3
=

=

Z 1

4m2

ds

✓
2s3ImA(s, t ! �0)

2⇡(s2 + �2)3

◆

Issues with gravitons
Infrared singularities

A(s, t)|t!0 =
s2

t
+ s2 log(t) +A�(s) +O(t).

CANCELLING INFRARED SINGULARITIES

Twice substracted dispersive relation
2!2 scattering for scalars through the graviton exchange

⌃ =
X

Res
s3A(s)

(s2 + �2)3
=

a

t
+ b log t+ (finite at t ! 0)

From the other side,

⌃ =

Z 1

4m2

dz

✓
z3ImA(z + i✏, t ! �0)

2⇡(z2 + �2)3
+

(z � 4m2)3ImA
⇥(z + i✏, t ! �0)

2⇡((z � 4m2)2 + �2)3

◆

The only source for t ! 0 divergences is an infinite part of the integral. This can be achieved if

ImA(s, t) = r(t) (↵0s)
2+l(t)

✓
1 +

⇣

log(↵0s)

◆

The form of infrared divergences fixes the behaviour of the amplitude in UV at s ! 1, t ! 0.
Positivity bounds after cancellation of IR divergences: example

S =

Z
d4x

p
|g|

✓
�

R

22
+

1

2
@µ�@

µ�

◆

A(s, 0�) = �
2s2

t
�

334s2

24⇡2
(log(s) + log(�s))�

334s2

24⇡2
log(t)

⌃ = �
2

t
�

334

24⇡2

✓
3

2
+ log(t) + log(�2)

◆

Cancelling the divergences determines r(0)↵02
⇠ �l0(0)2 and r(0)↵02⇣ ⇠ 4, which fixes ⇣ > 0

Conclusions

• Low energy theories can be constrained from the requirement to have good UV completion (Lo-
rentz invariance, unitarity, causality, locality)

• In the massless limit, extra assumptions about UV physics are needed to cancel IR divergencies -
Regge form of the amplitude

• This allows to justify the bounds obtained without gravity

• Inclusion of graviton scatterings typically make the positivity bounds weaker, due to terms with
unknown signs left after cancellation of the poles

• Renormalizable theory with gravity can have lower cutoff than expected (Planck mass)
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Soft factors in the presence of small negative Λ

Arpita Mitra
Department of Physics, IISER Bhopal, India
arpitamitra89@gmail.com
(In collaboration with N. Banerjee, A. Bhattacharjee and K. Fernandes; arXiv:2102.06165, arXiv:2008.02828)

Introduction & Motivation

• Soft theorems on asymptotically flat spacetimes relate scattering amplitudes with
soft particles to amplitudes without soft particles by a soft factor.

〈out|af
+(ωx̂)S|in〉 = Sf〈out|S|in〉

where we assumed a single soft particle inserted in the ‘out’ state

• In the soft photon case, for p(a), Qa the hard particle momenta and charges; k, ε
the momentum and polarization of the soft photon, the leading soft factor is

Sf (0)
em =

[∑
a=out

p(a).ε+

p(a).k
Qa −

∑
a=in

p(a).ε+

p(a).k
Qa

]
≡ 1 + zz̄√

2ω

[∑
a=out

1

z − za
Qa −

∑
a=in

1

z − za
Qa

]

•We also have large gauge Ward identities across I±

4

∫
d2w∂w̄ε

f〈out|∂wN fS|in〉 =

[∑
a=in

Qaε
f (za , z̄a)−

∑
a=out

Qaε
f (za , z̄a)

]
〈out|S|in〉

•Equivalent to soft photon theorem with the following gauge parameter εf and
derivable soft photon number mode N f on asymptotically flat spacetimes [1,2]

εf(w , w̄) =
1

ω − z

∂wN f = −
√

2

8π

1

1 + ww̄
lim
ω→0

[
ωaf

+(ωx̂) + ωaf
−(ωx̂)†

]
•Rich IR structure for massless theories (IR triangle) relating large gauge transfor-

mations, soft theorems and memory effects in soft radiative fields across I±.
• Interesting developments in AdS: Extensions of BMS to ΛBMS symmetries on

AdS spacetimes [3]; soft photon Ward identity realized as CFT Ward identity [4]

• First principles derivations are not well understood primarily due to absence of
asymptotic states and the existence of a mass gap.
•Key insights possible from classical scattering:

Classical limits of soft theorems derivable from scattering processes with
A) large impact parameters, B) radiated energy <<< energy of scattering bodies.

Classical Soft theorems [5]:

lim
ω→0

εµνh̃µν(ω, ~x) = −ie
iωR

4πR
Sgr , lim

ω→0
εµãµ (ω , ~x) = −ie

iωR

4πR
Sem

in the ω → 0 limit (long wavelength limit), for ãµ (h̃µν) the Fourier transformed
classical radiative electromagnetic (gravitational) field, with polarization εµ (εµν)
and Sem ( Sgr) the classical limit of the soft factor
• In d = 4 dimensions : derivation of universal subleading lnω−1 contribution from

long range interactions of massless fields.
•Our plan: Scatter a probe particle on a AdS black hole spacetime to determine

(perturbative) Λ corrections of known flat spacetime soft factors.

•Corrections realized across I± of flat patch around the center of AdS spacetime;
hard particles trajectories uncorrected by AdS potential to l−2 order.

Procedure

• Scatter a point particle with charge Q and mass M on a Reissner-Nordström AdS
spacetime (BH charge Q̃ and mass M̃ ). Gives soft photon and graviton corrections.
•Large impact parameter scattering with leading l−2 corrections ⇒ scattering on

linearized spacetime with
√
GQ̃ ≤ GM̃ � r � l (confined to flat patch in AdS).

• Solve perturbed Einstein and Maxwell equations about the linearized spacetime.
•Derived hij(t, ~x) and ai(t, ~x) solutions using Synge’s worldline formalism.
• Fourier transform and take soft limit to derive soft factors in frequency space.

Results

•ω → 0 limit is formally not defined on asymptotically AdS due to mass gap.

•We consider a double scaling limit: Provides ω → 0 contributions from l0 terms
and l−2 contributions that survive ω → 0 and l→∞ with ωl = γ finite.

•We find soft factor results in frequency space

Sem = Sf
em + Slem , with Sf

em = Sf (0)
em + Sf (1)

em & Slem = Sl (0)
em + Sl (1)

em ,where

Sf (0)
em = Q

2∑
a=1

(−1)a−1
εµp

µ
(a)

p(a).k
, Sf (1)

em = iQ
2∑
a=1

(−1)a−1
ενkρj

ρν
(a)

p(a).k

Sl (0)
em =

Q

4l2

2∑
a=1

(−1)a−1
εµp

µ
(a)

p(a).k

~p2
(a)(

p(a).k
)2 , Sl (1)

em = i
Q

4l2

2∑
a=1

(−1)a−1
ενkρj

ρν
(a)

p(a).k

~p2
(a)(

p(a).k
)2

•Sf (0)
em and Sf (1)

em go like ω−1 and lnω−1 respectively,
while Sl (0)

em and Sl (1)
em go like γ−2ω−1 and γ−2 lnω−1

Likewise, the soft graviton soft factor corrections are Slgr = Sl (0)
gr + Sl (1)

gr , with

Sl (0)
gr =

1

2l2

2∑
a=1

εµνp
µ
(a)p

ν
(a)

p(a).k

~p2
(a)(

p(a).k
)2

(
3 +

~p2
(a)

p2
(a)

)
,

Sl (1)
gr = i

1

2l2

2∑
a=1

εµνp
µ
(a)kρj

ρν
(a)

p(a).k

~p2
(a)(

p(a).k
)2

(
3 +

~p2
(a)

p2
(a)

)

•Results can be realized as perturbed asymptotically flat spacetime Ward identities.

•The leading soft factors S(0) are universal. Therefore we can consider corrections
to the well known soft photon Ward identity for a massless scattering process.

• Soft factors involve 1/l2 corrections; hard particles do not⇒ Soft modes and gauge
parameter involve 1/l2 corrections (strongly constraining the Ward identities).

• Soft photon case : Asymptotic boundary of l→∞ for hard particles not corrected
⇒ corrected Ward identity realized at I± of flat patch in the Figure.

4

∫
d2w

[
∂w̄ε

f(w , w̄)〈out|∂wN l(w , w̄)S|in〉 + ∂w̄ε
l(w , w̄)〈out|∂wN f(w , w̄)S|in〉

]
=

[∑
a=in

Qaε
l(za , z̄a)−

∑
a=out

Qaε
l(za , z̄a)

]
〈out|S|in〉 ,

•The gauge parameter and soft photon mode are corrected

ε(w , w̄) = εf(w , w̄) +
1

l2
εl(w , w̄) ; ∂wN = ∂wN f +

1

l2
(
∂wN l

1 + ∂wN l
2

)
with

εl(w , w̄) =
(1 + zz̄)2

(w̄ − z̄)2

(1 + ww̄)2

(w − z)3 , ∂wN l
1 = − 16

√
2

8π(1 + zz̄)
lim
ω→0

[
ω3al+(ωx̂) + ω3al−(ωx̂)†

]
,

∂wN l
2 =

√
2

8π

(1 + zz̄)2

(w̄ − z̄)

w

(w − z)2 lim
ω→0

[
ωaf

+(ωx̂) + ωaf
−(ωx̂)†

]

Outlook & Open questions

•Ward identity from conformal Ward Identity on AAdS at large l [Ongoing]

• Soft limits depend on asymp. flat spacetime embeddings in global spacetimes.

• Status of soft factor corrections to all orders in l [Open]

•Connections of (conformal) Ward identities with celestial amplitudes
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On-Shell Symmetry Breaking and the Higgs Mechanism
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Introduction

We show that ‘on-shell’ techniques are sufficient
to reproduce the physics of spontaneous symmetry
breaking and the Higgs mechanism, without refer-
ence to Lagrangians, quantum fields, and a scalar
field acquiring a vacuum expectation value.
In particular, we use helicity and spin spinors, along
with group factors (required by consistent factoriza-
tion) to specify three-particle amplitudes in the IR
and UV. We then discover familiar constraints by
demanding that high energy (HE) limit of the IR
amplitudes match onto UV amplitudes. This work
generalizes and extends that presented in Refs. [1, 2]

Scattering Amplitudes as Little
Group Tensors

A particle is labeled by its momentum, p, and rep-
resentation under global symmetry groups, σ, and
transforms under some representation of the little
group.

•For massless particles, the little group is
SO(2) = U(1), and its representations are
specified by its helicity, h. ‘Helicity spinors’
transform under the little group as,
|λ〉α→ w−1|λα〉 and |λ̃]α̇→ w|λ̃α̇] . (1)

•For massive particles, the little group is
SO(3) = SU(2), and its representations are
labeled by its spin, S. ‘Spin spinors’ transform
under the little group as,
|λ〉Iα→ (W−1)IJ|λ〉Jα and |λ̃]Iα→ W I

J|λ̃]Jα .
(2)

Scattering amplitudes,M, constructed from helicity
and spin spinors, are Lorentz invariant and under the
little group,
M(pa, ρa)→

∏
a

(Dρaρ′a(W ))M((Λp)a, ρ′a) (3)

where, for massless particles Dρaρ′a(W ) =
δσa,σ′aδha,h′aw

−2ha and ρa = (ha, σa), and for
massive particles Dρaρ′a(W ) = δσa,σ′aW

I1
I ′1
. . .W I2S

I ′2S
and ρa = ({I1, . . . , I2S}, σa).

The IR

There are dH massless adjoint gluons from the sym-
metry group H ⊂ G, with an associated Lie algebra
spanned by,
h = {X1, X2, . . . , Xα1, Xβ1, Xγ1, . . . , XdH} , (4)

such that
[Xα1, Xβ1] = hα1β1

γ1
Xγ1 . (5)

There are (dG − dH) massive vectors
arising from the ‘broken’ generators
{X (dH+1)0, . . . , Xα0, Xβ0, Xγ0, . . . , X (dG−dH)0}.
A general three massive vector amplitude,

1α0

2β0

3γ0

hα0β0γ0

mα0mβ0mγ0

〈12〉[12]〈3|p1 − p2|3] + cyc. ] . (6)

The UV

There are dG massless adjoint gluons from the sym-
metry group G = G1 × G2 × · · · × Gn. Each sub-
group Gi has an associated coupling gi, which we
use to rescale the generators giT̃ i = T i. The Lie
algebra is then spanned by,

g = {T 1, T 2, . . . , T a, T b, T c, . . . , T dG} , (7)
which follow the commutation relation

[T c, T b] = f cbdT
d . (8)

We have Nφ massless scalars, labeled by {I, J}.
Three particle amplitudes in the UV are,

1+a

2+b

3−c

1I

2J

3−a

fabc
〈12〉3

〈31〉〈23〉
(T a)IJ

〈31〉〈23〉
〈12〉

(9)

Matching the High Energy Limit of the IR onto UV

O ∈ SO(dG) matches a linear combination of adjoint labels in the UV to the IR. U ∈ SO(Nφ) matches a
linear combination of scalars in the UV to the longitudinal component of a massive vector in the IR.
Two massive vectors and one massless gluon:

1+α0

2+β0

3−γj

High Energy Limit−→

1+α0

2+β0

3−γj

Matching≡ Oα0
aO

β0
bOγ1

c

1+a

2+b

3−c

hα1β1γ1
〈12〉3

〈31〉〈23〉
≡ Oα0

aO
β0
bOγ1

cf
abc 〈12〉3

〈31〉〈23〉
(10)

Three massive vectors:

10α0

20β0

3−γ0

HE→

10α0

20β0

3−γ0
≡ Uα0I


Oγ1

a

1I

2J

3−a


Uβ0J

hα0β0γ0

(
(mγ0)2 − (mα0)2 − (mβ0)2)

mα0mβ0

[23][31]
[12]

≡ Uα0I (Oγ0
aT

a)IJ U
β0J

[23][31]
[12]

(11)

Results

From Eq. (10), we learn that, the coupling constants
and generators in the IR are related to those of the
UV via,

hαβγ = Oα
aO

β
bOγ

cf
abc

Xα = Oα
aT

a . (12)
From Eq. (11), we have that

hα0β0γ0

(
(mγ0)2 − (mα0)2 − (mβ0)2)

mα0mβ0

≡ Uα0I (Oγ0
aT

a)IJ U
β0J , (13)

which is solved by the ansatz
mα0Uα0I = (Xα0)IJVJ , (14)

for some dR = Nφ dimensional vector VJ . This is
the on-shell incarnation of the massive vector ‘eat-
ing’ the combination (T a)IJφJVI. Furthermore, for
massless vectors γ1,

mγ1 = 0⇒ (Xγ1)IJVJ = 0 (15)
which tell us massless particles in the IR correspond
to generators of unbroken symmetries. The mass
matrix, for massive vectors and massless gluons in
the IR are collectively given by,

(mα)2δαβ = V XαXβV (16)

Outlook

A similar analysis is executed for massive fermions
in the IR and massless fermions in the UV, which
requires the introduction of Yukawa couplings and
mass mixing matrices.
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Introduction
In appendix B of [1] a duality was proposed between the n-point correlation
functions of large spin single trace twist-two operators in planar N = 4
SYM and the expectation value of null polygonal Wilson loops with 2n
sides. The simplest non-trivial example of such duality would relate three
point functions and the null hexagon Wilson loop

〈OJ1(x1, ε1)OJ2(x2, ε2)OJ3(x3, ε3)〉 ←→W(U1, U2, U3)

GOAL: Find the dictionary relating the variables on both sides of this
equation: the spins Jj and polarization vector εj on the left hand side and
the hexagon cross-ratios Ui on the right hand side.
We find this map between the OPE and Wilson loop variables by composing
two other maps:
•The ε(`) map
•The U(`) map

Combining the two maps, we get the desired ε(U) dictionary as summarized
in the discussion section. Finally, to completely nail down the relation above
with all precise kinematical and normalization factors we analyzed further
the null six point correlator through an analytic bootstrap perspective.

The `(ε) map
The three point function described above can be parametrized as follows

〈OJ1OJ2OJ3〉 =
∑
`i

 CJ1,J2,J3
`1,`2,`3

V J1−`2−`3
1,23 V J1−`2−`3

1,23 V J2−`3−`1
2,31 V J3−`1−`2

3,21

(x2
12)

κ1+κ2−κ3
2 (x2

23)
κ2+κ3−κ1

2 (x2
13)

κ1+κ3−κ2
2 H−`1

23 H−`2
31 H−`3

12


In the large spin limit, the sum over tensor structures in the three point
function is dominated by a saddle point so that given some polarizations εi

there will be effectively a single `i contributing:

H2,3

V2,31V3,1,2
= `2

1
(J3 − `1 − `2)(J2 − `1 − `3)

H3,1

V3,12V1,2,3
= `2

2
(J1 − `2 − `3)(J3 − `2 − `1)

H1,2

V1,23V2,3,1
= `2

3
(J2 − `3 − `1)(J2 − `3 − `2)

The U(`) map
Next we turn to the OPE decomposition of six point functions in the so-
called snowflake channel. The starting point is given by 6 sums (3 are spin
sums and 3 are polarization sums) and the 3 integrals that appear in the
representation of the conformal block). We proceed as follows:
•Take x2

12, x2
34, x2

56→ 0, which projects into leading twist.
•Take x2

23, x2
45, x2

61→ 0, which projects into large spin.
•Replace the six sums by integrals over spins and polarizations,

resulting in nine integrals.
•Perform six of those integrals by saddle point, leaving only the

integration over spins left to be done and obtaining the `(U) map.

The C123↔W relation
We took the limit where all points approach the boundary of a null hexagon.
But because we did it in two steps the final six point correlator is not
manifestly cyclic invariant. By imposing cyclic symmetry of our correlator
under xi→ xi+1 we can further constraint the structure constant to be.

ĈJ1,J2,J3
`1,`2,`3

= N

 3∏
i=1

(
Ji`i

2`i+1`i−1

)γi
2

×W(U1, U2, U3) (1)

Conclusions
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This paper

Future work

To appear: 
This arrow for 

spinning operators

Top arrow: Large spin three-point function/hexagon Wilson loop dual-
ity [1].Left arrow: Three point functions can be decomposed in terms
of two hexagons [3].Right arrow: Wilson loops can be decomposed in
terms of two pentagons [2].Bottom arrow: The top duality hints at a
transmutation of hexagons into pentagons in the large spin limit.
A basis question in the above mentioned duality is how are the variables
related. The answer is our main result, it reads

〈Li+1, Ri+1〉〈Li+2, Ri+2〉
〈Li+1, Ri+2〉〈Li+2, Ri+1〉

=

1−
1 + Ji+2

Ji+1
+ Ji

Ji+1

√
Ui

Ui+1Ui+2

1 + Ji+1
Ji

+ Ji+2
Ji

√
Ui+2

UiUi+1


1−

1 + Ji+1
Ji+2

+ Ji

Ji+2

√
Ui

Ui+1Ui+2

1 + Ji+2
Ji

+ Ji+1
Ji

√
Ui+1

UiUi+2


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Underlying simplicity in two dimensional scattering 
Patrick Dorey and Davide Polvara

The S-matrices for a large class of (1+1)-dimensional 
integrable quantum field theories have been conjectured 
in the past following the bootstrap program. Though this 
approach has been able by itself to generate exact 
expressions for amplitudes that have passed different 
perturbative checks, a full understanding of how 
integrability manifests itself in perturbation theory is still a 
mystery. This poster aims to show, in Lagrangians with 
an arbitrary number of interacting bosons, under what 
conditions on the masses and couplings Feynman 
diagrams contributing to production processes sum to 
zero.

Cancellation of non-elastic processes in 
integrable theories
• Poles in non-al lowed processes of the form 

 cancel through a flipping rule.


• If for a choice of external momenta an internal 
propagator goes on-shell, generating a pole, then there 
must be a propagator in another channel going on-shell 
for the same choice of external momenta. 


• In this way there are always copies (or triplets) of poles 
that cancel each other, so that non-elastic processes do 
not occur.

a + b → c + d

We focus on a class of integrable theories in (1+1) 
dimensions described by a scalar Lagrangian of the form  

L =
1
2

∂μϕa∂μϕa −
1
2

m2
aϕ2

a −
1
3!

Cabcϕaϕbϕc −
1
4!

Cabcdϕaϕbϕcϕd − …

θj = iuj

pj = mj (cosh θj, sinh θj) = mj (cos uj, i sin uj) ≅ mjeiuj
On-shell momentum 


associated to the -particle
j

Rapidity

pa

pb

pb

pa

pc

On-shell bound state

≅ pc

pb

pa

pa

pb On-shell dual description of 
the Feynman diagram

On the pole positions momenta can be represented by complex 
numbers having absolute values equal to the masses of the 
associated particles and arguments given by their rapidities

The bound state region

Additional constraints on the scattering: 
Simply-laced scattering conditions Abstract

A theory respects “simply-laced scattering conditions” if in 2 
to 2 non-diagonal scattering the poles cancel in pairs (flip s/t, 
s/u or t/u)  and in  2 to 2 diagonal processes the poles are 
due to only one on-shell bound state propagator at a time

We impose that the residue at the pole is zero

Cabc = fabcΔabc with fabi ficd − facj fjbd = 0

Provided these “simply-laced scattering conditions”, if we 
additionally impose the cancellation of production processes of 
the from  we discover that all the parameters  need to 
have the same absolute value

2 → 3 fijk

fabc = ± f

Outlook on cancellation of 5-point 
processes

A + B → D + F + G

We parametrise the 
propagators of the first 
diagram

In a 5-point process there exists an entire network of singular 
diagrams connected by flipping internal propagators canceling 
each other

 : free variablex

 and  : fixed parametersa1 a2

Loop simplicity

The S-matrix of some diagonal processes 
( ) present higher order poles. 

They correspond to have more propagators on-
shell simultaneously internally to the loop.

a + b → a + b

Once we find a Feynman diagram generating a 
singularity, by flipping loop propagators, we can find 
an entire network of graphs contributing to the pole. In 
the present case we consider a second order pole.

On the second order pole the loops can be cut into 
particular products of tree level graphs and the result 
can be derived from tree level properties.

Diagrams that differ by one flipped propagator  (the 
coloured ones) cancel in the sum and the final result is 
obtained by summing just the black graphs. 

Summing all the contributions at the pole we obtain a 
universal result for the residue

Sab(θ) =
1

(θ − iθ0)2

f 4
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Results

• We have found necessary and sufficient conditions to 
have absence of particle production at tree level for 
scalar Lagrangians


• We have proven that such conditions are universally 
satisfied by all the affine Toda theories


• In known integrable models, such as affine Toda 
theories, we have shown a similar simplicity also at 
loop level; loops can be decomposed into tree level 
diagrams, many cuts cancel each other in the sum and 
the final result is reproduced by few surviving terms
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Check out https://sagex.paradox-chaos.com/#/exhibition-hub/BeyondFeynmanDiagrams/4 
to generate from yourself a 2-loop network in an interactive game! 

L2 − m2
L = (x + a1)δ

E2 − m2
E = (x + a2)δ

and take the limit  in which a double pole appears.δ → 0
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Correlator/Amplitude duality
The main motivaiton for studing the product of super amplitudes is that these 
objects emerge naturaly from a limit of the correlator of super stress energy ten-

sor multiples

The right hand side corresponds to the square of the super amplitude and it can 
be decomposed into sectores with fixed NMHV degree as

Notation

Hedron geometry
Amplituhedron-like geometries are the generalization of the amplituhedron to 

non-maximal winding number. 

For n minimal, the following alternative definition can be used

The union of all amplituhedron-like geometres for a given k correspond to the 
squared amplituhedron, which can more intrinsecally be defined as the union of 

the following two regions

Product of Amplitudes

The bosonized super twistor allows to express the dependence of the amplitude 
on the Grassmann odd super variables as determinants of k+4 matrices. 

In this formulation is not obvious how the product of amplitudes can be com-
puted. We conjecture that the following formula gives the right equivalent of the 

product in bosonized space

As an example, here is the expression for the 6 point NMHV amplitude squared

Oriented Canonical Form
The canonical form of a geometry is defined to be the unique differential form 
with dlog divergency on the boundary and maximal residues equal to ±1,0. A 

region possessing a canonical form is called a positive geometry. The canonical 
form of the amplituhedron is the bosonized super amplitude. To compute ge-

ometrically the square of the super amplitude we need to modify the definition 
of the canonial form since its maximal residues can take different values. 

An important observation is that the union of positve geometries is not always 
a positive geometry itself.  The key point is that as soon as positive geometries 

touch, there is the  possibility of the maximal residues at intersecting points 
summing to values differing from  1,0.

We define the oriented canonical form of a region triangulated by a set of pos-
itive geometries having all the same orientation as the sum of the canonical 

form of the elements in the triangulation. We conjecture that the oriented caoni-
cal form of the squared amplituhedron gives the square of the super amplitude.

Tree level Loop level 

Amplituhedron Like Geometries 
Gabriele Dian (Durham University, UK)
Based on joint work with Paul Heslop arXiv:2106.09372

Main Result



CONSTRUCTING HIGH-LOOP FORM FACTORS VIA
COLOR-KINEMATICS DUALITY

GUANDA LIN , GANG YANG AND SIYUAN ZHANG ArXiv:2106.05280

MOTIVATION
The motivations are (i) explore high-loop structure of color-

kinematics duality[1, 2] (ii) form factors in N=4 SYM provide
maximally transcendental part in QCD Higgs amplitudes[3]

DUAL

Color

Kinematics

non− planar
double copy

· · ·
Maximally

transcendental

QCD

N = 4
SYM

Form
Factor

Higgs
Amplitude

GENERAL STRATEGY
TARGET:
A representation of form factor integrand manifesting color-

kinematics duality as

F(L)
O = F (0)

O

∑
σ

∑
Γi cubic

∫ L∏
j

dD`j
1

Si

CiNi∏
αi
P 2
αi

,

where the crucial conditions are kinematics numeratorsNi satisfy
dual Jacobi relations parallel to color Jacobi relations for Ci

Cs = Ct + Cu ⇒ Ns = Nt +Nu

ts ua

b

d

c

a

b c

d
a d

b c

STRATEGY:
Our computation strategy can be shown by the flow chart

Remainder

IntegrationConstruct
Ansatz

Solve
Ansatz

Integrand Integral

CKduality Unitarity IR div.&

THREE-POINT THREE-LOOP FORM FACTOR
We consider the three-loop three-point super form factors of

tr(φ2), i.e. F(3)
tr(φ2)(Φ1,Φ2,Φ3) as an example.

� Construct Ansatz
1.Topologies and masters

Master numerators dual Jacobi relation−−−−−−−−−−−−→ All numerators

2.Write down Minimal Ansatz for master numerators
3.Impose all dual Jacobi relations and graphic symmetries
� Solve Ansatz
Physical condition on integrands: Unitarity

l1
l2

l3

l4

p1

p2

p3

A(0)
7F (0)

O,4

l1
l2

l3

l4

p1
p2

p3

F (0)
O,5 A(0)

6

Interestingly, after considering all cut channels, the CK dual
representation is still not completely fixed. Discuss later.

� Integration & Check Solution
1. Numerical Integration
Improve numerical efficiency by considering UT integrals, e.g.

p1

p2p3
ℓc

ℓbℓa

s12s13(`a − p1)2
(
(`a − p1)2 + s12

− `2a − (`a − p2 − p1)2
)

2. IR structure
The full-color IR divergence factor Z takes the form [5, 6]

Z(pi, ε) = exp

{ ∞∑
`=1

g2`

[
γ

(`)
cusp

(`ε)2
D0 −

γ
(`)
cusp

`ε
D− nG

(`)
coll

`ε
1 +

1

`ε
∆(`)

]}

where ∆ refers to non-dipole terms starting from 3 loops. We find
the IR divergence with complete color dependence of our result is
consistent with the above formula.

3.Finite Remainders
Leading color part of our result is consistent with the 3-loop

FFOPE computation[4]. We also obtain the non-planar three-loop
remainder function.

DISCUSSION & OUTLOOK
� Discussion: The solution space and parameters
The solution of the integrand in CK-dual representation is not

unique. The undetermined parameters cancel at the Integrand
level, based on generalized gauge transformation(GGT)[2].

For form factors, the insertion of local operator can induce a
novel type of GGTs. For example, at 2 loops, we allow the follow-
ing deformation (given the condition Ca = Cb)

Na → Na + `2A∆, Nb → Nb − `2B∆

p1

p2p3

lA p1

p2

p3

(a) (c)(b)

p1

p2p3

lB

The large solution space of CK-dual integrand indicates con-
structibility(via CK duality) at four or even higher loops.

� Outlook(i): The double copy
A mathematically consistent double copy requiresNi to satisfy

both dual Jacobi relations and operator induced relations

Ca = Cb ⇒ Na = Nb ,

where we find no local solutions. So the question is what can be
the double copy of a form factor like quantity?

� Outlook(ii): Relation to QCD
Does the maximal transcendental principle (MTP) still hold at

3 loops, especially for Nc subleading parts?
Analytic expressions based on for example complete UT basis

and canonical differential equations are interesting projects.
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Introduction

The subject of interest of the following work are scattering amplitudes, in particular the pure gluonic amplitudes. Despite
the fact that gluon fields are regarded fundamental, they are not the most effective degrees of freedom when calculating
amplitudes. Interestingly, in [1], the Maximally Helicity Violating (MHV) vertices used in the Cachazo-Svrcek-Witten (CSW)
method [2] were shown to be connected with straight infinite Wilson lines on certain complex plane (self-dual plane). These
Wilson lines emerge as the transformation of the positive helicity field appearing in the light cone Yang-Mills action, to a new
action (often called as the ’MHV action’) where the MHV vertices are explicit [3, 4, 5, 6]. Following that, in [7], we showed
that the minus helicity field is given by a similar Wilson line, but with an insertion of the minus helicty gluon field somewhere
on the line. Additionally, we postulated, that it should be a part of a bigger structure, extending beyond the self-dual plane.
Indeed, in [8], we derived a new classical action for gluodynamics in which the fields are directly related to Wilson line
functionals extending over both the self-dual and the anti-self-dual planes. The action is most easily derived through a
canonical transformation of the anti-self-dual part of the MHV action, but we also discuss a direct link between the new
action and the Yang-Mills action. The key property of the new action is that it does not have the triple-gluon vertices at all.
This is because the triple-gluon vertices have been effectively resummed inside the Wilson lines. Thus, the lowest multiplicity
vertex is the four-point MHV vertex. Higher-point vertices include not only the MHV vertices, but also other helicity
configurations. The number of diagrams needed to obtain amplitudes beyond the MHV level is thus greatly reduced. We
performed explicit calculations within the new formulation of several higher multiplicity amplitudes, to verify the consistency
of the results.

MHV Lagrangian

The starting point is the full Yang-Mills action on the constant light-cone time x+ in the light-cone gauge Â+ = 0. We denote
Â = Aat

a, here ta are color generators in the fundamental representation satisfying
[
ta, tb

]
= i
√

2fabctc and Tr(tatb) = δab.

Integrating out the Â− fields (appearing quadratically) from the partition function [9], leaves only two complex fields Â•,
Â? that correspond to plus-helicity and minus-helicity gluon fields. We use the so-called ’double-null’ coordinates defined as
v+ = v·η, v− = v·η̃, v• = v·ε+

⊥, v? = v·ε−⊥ with the two light-like basis four-vectors η = (1, 0, 0,−1) /
√

2, η̃ = (1, 0, 0, 1) /
√

2,
and two space like complex four-vectors spanning the transverse plane ε±⊥ = 1√

2
(0, 1,±i, 0). The action reads

S
(LC)
Y−M [A•, A?] =

ˆ
dx+

ˆ
d3x

{
− Tr Â•�Â? − 2ig Tr ∂−1

− ∂•Â
•
[
∂−Â

?, Â•
]

− 2ig Tr ∂−1
− ∂?Â

?
[
∂−Â

•, Â?
]
− 2g2 Tr

[
∂−Â

•, Â?
]
∂−2
−

[
∂−Â

?, Â•
]}

, (1)

x

ǫ+⊥-η plane
(self-dual plane)

ε+α

P exp

{
ig

∫ ∞

−∞
ds ε+α ·Â

(
x + sε+α

)}

Fig. 1: B•a(x) is given by the straight infinite Wilson line lying on the plane

spanned by ε+α = ε+⊥ − αη (with ε+⊥ = (0, 1, i, 0)/
√

2, η = (1, 0, 0,−1)/
√

2)

and integrated over all α (the dashed lines represent tilted Wilson lines due

to the change of α).

where � = 2(∂+∂−−∂•∂?). Thus we see, there are (++−), (−−+)
and (++−−) vertices in the action. Above, the bold position vector
is defined as x ≡ (x−, x•, x?).

The MHV action [3], implementing the CSW rules [2] is obtained
from the Yang-Mills action Eq. (1) by canonically transforming both
the fields to a new pair of fields (B̂•, B̂?) with a requirement that
the kinetic term and the (+ + −) triple-gluon vertex in Eq. (1) is
mapped to the kinetic term in the new action:

Tr Â•�Â? + 2ig Tr ∂−1
− ∂•Â

•
[
∂−Â

?, Â•
]
−→ Tr B̂•�B̂? . (2)

Solving the above transformation for Â•, Â? and substituting it in
Eq. (1) results in the MHV action consisting of an infinite set of
MHV vertices

S
(LC)
Y−M [B•, B?] =

ˆ
dx+

(
−
ˆ
d3xTr B̂•�B̂? + L(LC)

−−+ + . . .

+L(LC)
−−+···+ + . . .

)
, (3)

where L(LC)
−−+···+ represents a generic n-point MHV vertex in the ac-

tion, which in our conventions has the following form in the momen-
tum space

L(LC)
−−+···+ =

ˆ
d3p1 . . . d

3pnδ
3 (p1 + · · · + pn) Ṽb1...bn−−+···+ (p1, . . . ,pn)

B̃?
b1

(
x+;p1

)
B̃?
b2

(
x+;p2

)
B̃•b3
(
x+;p3

)
. . . B̃•bn

(
x+;pn

)
, (4)

x

ǫ+⊥-η plane
(self-dual plane)

ε+α

A•
A•

A⋆

B̂∗

Fig. 2: The B? field can be represented as the straight infinite Wilson line

similar to the one from Fig. 1, but where one A• field has been replaced by

the A? field.

with the MHV vertices

Ṽb1...bn−−+···+ (p1, . . . ,pn) =
∑

noncyclic
permutations

Tr
(
tb1 . . . tbn

) (−g)n−2

(n− 2)!

(
p+

1

p+
2

)2
ṽ∗421

ṽ∗1nṽ
∗
n(n−1)ṽ

∗
(n−1)(n−2) . . . ṽ

∗
21

, (5)

where we introduced spinor-like variables

ṽij = p+
i

(
p?j
p+
j

− p?i
p+
i

)
, ṽ∗ij = p+

i

(
p•j
p+
j

− p•i
p+
i

)
. (6)

The ṽij, ṽ
∗
ij symbols are directly proportional to the spinor products

〈ij〉 and [ij].

It is very interesting how the solution of the Mansfield’s transforma-
tions Eq. (2) are related to straight infinite Wilson line spanning over
the transverse complex plane [1, 7]. However, in the original work [3]
the MHV action was constructed using only analytic properties of
the transformations and equivalence theorem for the S-matrix. The
explicit solution for Â• and Â? fields was found in [4] in momentum
space.

Straight infinte Wilson Lines

The Wilson line interpretation of the new fields in the MHV action was first discussed in [1] where the plus helicity field,
B•a[Â

•](x), was shown to be the straight infinite Wilson line B•a[A
•](x) = Wa

(+)[A](x). For a generic vector field Kµ, the

straight infinite Wilson line functional W(±)[K] reads:

Wa
(±)[K](x) =

ˆ ∞
−∞

dαTr

{
1

2πg
ta∂− P exp

[
ig

ˆ ∞
−∞
ds ε±α · K̂

(
x + sε±α

)]}
, (7)

with ε±µα = ε±µ⊥ − αηµ . This four vector has the form of a gluon polarization vector. Indeed for α = p · ε±⊥/p+, it is the
transverse polarization vector for a gluon with momentum p.
For a given α, the Wilson line B•a[Â

•](x), is along the plus helicity polarization vector ε+
α . This implies, the line is on the

so-called self-dual plane (the plane on which the tensors are self dual) spanned by ε+
⊥ and η (see Fig. 1). However, on this

plane, the Wilson line is not along a fixed direction. It is, rather, integrated over all possible directions α.
On the other hand, the minus helicity field, B?

a[Â
•, Â?](x) in the MHV action Eq. (3) was shown in [7] to be a similar Wilson

line, but with an insertion of the minus helicty gluon field at certain point on the line (see Fig. 2).

B?
a[A

•, A?](x) =

ˆ
d3y

[
∂2
−(y)

∂2
−(x)

δWa
(+)[A](x+;x)

δA•c(x+;y)

]
A?
c(x

+;y) , (8)

where ∂−(x) = ∂/∂x−. It is natural to think about the A? fields as belonging to Wilson lines living within the anti-self-dual
plane spanned by ε−α (recall that the B• lives on the plane spanned by ε+

α ). Therefore, in [7], we conjectured that the solution
(8) should just be a cut through a bigger structure, spanning over both planes.

A new Wilson Line based action

The canonical transformation, Eq. (2), maps the self-dual part of the Yang-Mills action to the kinetic term in the MHV
action. This mapping eliminates one of the triple gloun vertex (+ + −). The other triple gloun vertex (+ − −) still exists

in the MHV action (L(LC)
−−+ term in Eq. (3)). The triple point vertex is not a very effective building block for calculating

amplitudes. Moreover, in the on-shell limit they are zero (for real momenta). The smallest amplitude which is finite in the
on-shell limit is the four-point MHV. In [8], motivated by the above arguments, we found a more general canonical trans-
formation based on path ordered exponentials of the gauge fields, extending over both the self-dual and anti-self-dual planes

Y-M

MHV

Z

Action

ActionAction

C
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sf
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m
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ation

C
anonical
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Fig. 3: Two ways to derive the new action. First

is the direct method which involves the generating

functional (10). Second involves two consecutive

canonical field transformation.

{
Â•, Â?

}
→
{
Ẑ•
[
A•, A?

]
, Ẑ?
[
A•, A?

]}
, (9)

It maps the kinetic term and both the triple-gluon vertices of the Yang-Mills action
Eq. (1) into a free term in the new action. The requirement that the transformation
is canonical is necessary in order to preserve the functional measure in the partition
function, up to a field independent factor. Although the transformation (9) is rather
complicated, we found that, quite amazingly, the generating functional G[A•, Z?] for
the transformation can be written in the following simple form:

G[A•, Z?](x+) = −
ˆ
d3x Ŵ −1

(−)[Z](x) ∂−Ŵ(+)[A](x) , (10)

However, we showed [8] that the transformation from the Yang-Mills action to the new
action generated by the functional (10) is equivalent to two canonical transformations:
first transforming the self-dual part of the Yang-Mills action to the kinetic term in
MHV action, and then transforming the anti-self-dual part in the latter to kinetic term in the new action (see Fig. 3).
The transformation can be solved to obtain the explicit solutions for Ẑ•

[
A•, A?

]
and Ẑ?

[
A•, A?

]
fields [8]. We schemat-

ically depict the structure of the Z? field in Fig. 4. Substituting the inverse of these fields in the Yang-Mills ac-
tion Eq. (1) results in the new action. For convenience, we shall call the new action as Z-field action hereafter.

y A•
A⋆
A•

A•
x

z

ǫ+⊥-η plane

(self-dual plane)

ǫ−⊥-η plane

(anti-self-dual plane)

B⋆(z)

Z⋆(y)

Fig. 4: Schematic presentation of the geometric structure of the Z? field (the

structure of Z• is quite similar). Z? field is a Wilson line (with exactly the same

analytic form as B•) of only B? fields on anti-self-dual plane. Notice, each vertical

plane is self-dual plane with B? embedded in it as was showin in Fig. 2 .

It has the following generic structure:

S
(LC)
Y−M [Z•, Z?] =

ˆ
dx+

{
−
ˆ
d3xTr Ẑ•�Ẑ?

+ L(LC)
−−++ + L(LC)

−−+++ + L(LC)
−−++++ + . . .

+ L(LC)
−−−++ + L(LC)

−−−+++ + L(LC)
−−−++++ + . . .

...

+ L(LC)
−−−···−++ + L(LC)

−−−···−+++ + L(LC)
−−−···−++++ + . . .

}
,

where the n-point interaction vertex, n ≥ 4, that couples m
minus helicity fields, m ≥ 2, and n−m plus helicity fields, has
the following general form:

L(LC)

− · · · −︸ ︷︷ ︸
m

+ · · · +︸ ︷︷ ︸
n−m

=

ˆ
d3y1 . . . d

3yn U b1...bn−···−+···+ (y1, · · ·yn)

m∏

i=1

Z?
bi

(x+;yi)
n−m∏

j=1

Z•bj(x
+;yj) . (11)

The above action has the following properties:

i ) There are no three point interaction vertices. The reason is that the triple-gluon vertices have been effectively resummed
inside the Wilson lines. Thus, the lowest multiplicity vertex is the four-point MHV vertex.

ii ) At the classical level there are no all-plus, all-minus, as well as (− + · · ·+), (− · · · − +) vertices.

iii ) There are MHV vertices, (−− + · · ·+), corresponding to MHV amplitudes in the on-shell limit.

iv ) There are MHV vertices, (− · · · − ++), corresponding to MHV amplitudes in the on-shell limit.

v ) All vertices have the form which can be easily calculated. In the foloowing section we discuss the general form for any
vertex (described by Eq. (11)) in the Z-field action.

Generic vertex in the action

As mentioned earlier, the transformation from the Yang-Mills action to the new action generated by the functional (10) is
equivalent to two canonical transformations. Using the latter, we can readily write the relations between the Z fields and B fields
in momentum space [8]. For the B? field we have

B̃?
a(x

+;P) =

∞∑

n=1

ˆ
d3p1 . . . d

3pn Ψ̃ a{b1...bn}
n (P; {p1, . . . ,pn})

n∏

i=1

Z̃?
bi

(x+;pi) , (12)

with
Ψ̃ a{b1···bn}

n (P; {p1, . . . ,pn}) = −(−g)n−1 ṽ(1···n)1

ṽ1(1···n)

δ3(p1 + · · · + pn −P) Tr(tatb1 · · · tbn)
ṽ21ṽ32 · · · ṽn(n−1)

. (13)

The expansion for the B• field reads

B̃•a(x
+;P) =

∞∑

n=1

ˆ
d3p1 . . . d

3pn Ω̃ ab1{b2···bn}
n (P;p1, {p2, . . . ,pn})Z̃•b1(x

+;p1)

n∏

i=2

Z̃?
bi

(x+;pi) , (14)
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Fig. 5: A general contribution to the Z-theory

vertex U (1−, . . . ,m−, (m+ 1)+, . . . , n+). The

central blob is the MHV vertex.

where

Ω̃ ab1{b2···bn}
n (P;p1, {p2, . . . ,pn}) = n

(
p+

1

p+
1···n

)2

Ψ̃ ab1···bn
n (P;p1, . . . ,pn) . (15)

In order to derive the content of the Z-field action, we insert the expansions of B fields
in terms of Z fields in the MHV action Eq. (3). Consider, in momentum space, the
vertex in Eq. (11) which has n external legs with the momenta p1 . . .pn, where p1 . . .pm
correspond to the minus helicity legs (the negative helicity fields are considered adjacent
for convenience). The color ordered vertex can be written as:

U b1...bn−···−+···+ (p1, . . . ,pn) =
∑

noncyclic
permutations

Tr
(
tb1 . . . tbn

)
U
(
1−, . . . ,m−, (m + 1)+, . . . , n+

)
, (16)

We introduce a collective index [i, i+ 1, . . . , j] labeling the momentum, pi(i+1)...j = pi +
pi+1 + · · · + pj. Using this notation, the general form of the color ordered vertex can be
written as [8] (see Fig. 5):

U
(
1−, . . . ,m−, (m+1)+, . . . , n+

)
=

m−2∑

p=0

m−1∑

q=p+1

m∑

r=q+1

V
(

[p+1, . . . , q]−, [q+1, . . . , r]−, [r+1, . . . ,m+1]+, (m+2)+, . . . , (n−1)+, [n, 1, . . . , p]+
)

Ω
(
n+, 1−, . . . , p−

)
Ψ
(
(p+1)−, . . . , q−

)
Ψ
(
(q+1)−, . . . , r−

)
Ω
(
(r+1)−, . . . ,m−, (m+1)+

)
(17)

Although the analytic formula do not seem to collapse, in general, to any simple form, the above expression is operational and
can be readily applied in the actual amplitude calculation. We discuss this in the following section.

Pure gluonic amplitudes
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Fig. 6: The contributions to the color-ordered MHV vertex, with helicity (−−−+ +).

Using this new action we computed several tree-level ampli-
tudes. The MHV and MHV vertices alone give the correspond-
ing on-shell amplitudes. Consider the 5-point MHV. It is easily
obtained from (17). In Fig. 6 we show the contributing terms.
In the on-shell limit, the sum of these diagrams reduces to the
known formula for the MHV amplitude:

A(1−, 2−, 3−, 4+, 5+) = g3

(
p+

4

p+
5

)2
ṽ4

54

ṽ15ṽ54ṽ43ṽ32ṽ21
. (18)

For the 6-point Next-To-MHV (NMHV) amplitude with helicity configuration (− − − + ++) we have just three contributing
diagrams depicted in Fig. 7. The sum of these diagrams reproduce in the on-shell limit the known result [10].
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Fig. 7: Diagrams contributing to 6-point NMHV

amplitude (−−−+ ++).
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Fig. 8: Diagrams contributing to 7-point NNMHV

amplitude (−−−−+ + +).

For 7-point NNMHV amplitude
(−−−−+ + +) we had just five
contributing diagrams depicted in
Fig. 8. Furthermore, the higher
multiplicity amplitudes, up to 8-
point NNMHV (−−−−++++),
were calculated and shown to be
in agreement with the standard
methods. The maximum num-
ber of diagrams we encountered in
that case was 13. The absence of triple-gluon vertices resulted in fewer diagrams required to compute amplitudes, when compared
to the CSW method and, obviously, considerably fewer than in the standard Yang-Mills action.
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Tree bcj implies loop bcj
for almost any field theory
(s)ym(–matter) ⋅ nlsm ⋅ blg ⋅ strings
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Hyungrok Kim
with L. Borsten, B. Jurčo, T. Macrelli, C. Saemann, M. Wolf

−−−−−−−→

Yang–Mills Batalin–Vilkovisky action

1
4 𝐹

2 +
antifield

↓
𝐴∗𝑎 ⋅ D𝐴𝑐↑

ghost

𝑎 + ̄𝑐∗
↑

antighost antifield

Nakanishi–Lautrup
↓
𝑏 + 1

2 𝑓
𝑎
𝑏𝑐𝑐

∗
𝑎𝑐
𝑏𝑐𝑐

YM =

𝐿∞-algebra

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞colour
↑

Lie alg.

⊗ colour-stripped YM
↑

𝐶∞-algebra

𝑑2 = 0, 𝑑[𝑥, 𝑦] = [𝑑𝑥, 𝑦] ± [𝑥, 𝑑𝑦], [𝑥, 𝑦] = ±[𝑥, 𝑦]
[𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦], 𝑧] ± [𝑦, [𝑥, 𝑧] ± 𝑑𝜇3(𝑥, 𝑦, 𝑧) ± 𝜇3(𝑑𝑥, 𝑦, 𝑧) ± 𝜇3(𝑥, 𝑑𝑦, 𝑧) ± 𝜇3(𝑥, 𝑦, 𝑑𝑧)⋅⋅⋅

−−−−−−−→
redefine fields
add terms summing
to 0 (Tolotti–Weinzierl)

nonlinear gauge

Gauge-fixed action manifests bcj

∞

∑
𝑛=2

∑
𝑖∈Γ
↑

𝑛-leg cubic trees
𝑛

colour factor built using 𝑖’s topology
↓

𝑓𝑛−2(𝜕𝑛−2𝜙𝑛 +

𝑛-linear pseudodifferential operator
↓

𝜕𝑛−3𝜙∗𝜙𝑛−1)
∏𝑒∈Edges(𝑖)

↑
at 𝑛 = 2, ‘−1 edges’ yields 𝜙𝑎𝐴�𝜙𝑎𝐴 + 𝑄𝐴𝐵𝜙

∗
𝑎𝐴𝜙

𝑎𝐵

�𝑒

where 𝜙𝑎𝐴 = (𝐴𝑎𝜇, 𝑐
𝑎, ̄𝑐𝑎, 𝑏𝑎)

YM = colour ⊗ colour-stripped YM
↑

BV�∞-algebra

−−−−−−−→
introduce
aux. fields

Cubic action manifests perfect bcj

1
2𝜙𝑎𝐴 �𝜙

𝑎𝐴+𝜙
↑

antifield

∗
𝑎𝐴

linear part of brst
↓

𝑄𝐴𝐵𝜙
𝑎𝐵+
colour structure constant

↓

𝑓𝑎𝑏𝑐(
1
6 𝐹

𝐴
𝐵𝐶
↑

kinematic structure constant

𝜙𝑎𝐴+
1
2

cubic part of brst
↓

𝑄𝐴𝐵𝐶𝜙
∗
𝑎𝐴)𝜙

𝑏𝐵𝜙𝑐𝐶

where 𝜙𝑎𝐴 = (𝐴𝑎𝜇, 𝑐𝑎, ̄𝑐𝑎⏟
(anti)ghost

,

Nakanishi–Lautrup
↓
𝑏𝑎, 𝐺𝑎𝜇𝜈𝜌, …⏟

auxiliaries

)

YM =

gametic alg.
↓

colour ⊗

gametic alg.
↓

kinematic ⊗ cubic scalar theory⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
BV�-algebra

−−−−
−→double copy

Cubic gravity action with auxiliaries
1
2𝜙𝐴𝐴′ �𝜙

𝐴𝐴′ + 1
6 𝐹

𝐴
𝐵𝐶𝐹

𝐴′
𝐵′𝐶′𝜙𝐴𝐴′𝜙

𝐵𝐵′𝜙𝐶𝐶′

+ 1
2 (𝐹

𝐴
𝐵𝐶𝑄

𝐴′
𝐵′𝐶′ + 𝑄

𝐴
𝐵𝐶𝐹

𝐴′
𝐵′𝐶′)𝜙

∗
𝐴𝐴′𝜙

𝐵𝐵′𝜙𝐶𝐶′

where 𝜙𝐴𝐴′ = (ℎ𝜇𝜈, 𝐵𝜇𝜈, 𝜑,
(anti)ghosts

⏞𝑋𝜇, 𝑋̄𝜇, …, 𝜛𝜇, …⏟
Nakanishi–Lautrup

,
auxiliaries
⏞𝐺𝜇𝜈𝜌𝜎, …)

GR = kinematic ⊗ kinematic ⊗ cubic scalar theory

Gravity Batalin–Vilkovisky action

1
2𝑅↑

Ricci scalar

+ 1
12

Kalb–Ramond field strength
↓
𝐻2 + 1

2𝜑↑
dilaton

�𝜑 + 𝐵∗∇Λ
↑

KR ghost

+
graviton antifield

↓
𝑔∗∇𝑋

↑
diffeo. ghost

+ ⋯

−−−−−−−→

integrate out auxiliaries
redefine (anti)fields
introduce Schwartz part
of dilaton

Twisted Hopf algebras

Hopf algebra: coproduct is homom.
𝐻 → 𝐻 ⊗ 𝐻

Twisted Hopf: coproduct is homom.
𝐻 → 𝐻 ⊗𝜏 𝐻

where 𝜏 is a twist defining
alternative assoc. alg. structure on 𝐻 ⊗ 𝐻

Unrelated to quasitriangular Hopf algebras!

−−−−−−−→
needed to define

Hodge complexes

Like chain complexes (𝑉, 𝑑), but with (𝑉, 𝑑, ℎ) where
𝑑ℎ + ℎ𝑑 = �, 𝑑2 = ℎ2 = 0

Chain complex: mod. over Hopf alg. ℝ[𝑑]/(𝑑2)
Hodge complex: mod. over twisted Hopf alg.
ℝ[𝜕0, … , 𝜕𝑑−1]⟨𝑑, ℎ⟩/(𝑑

2, ℎ2, 𝑑ℎ + ℎ𝑑 −�)
Hopf means well defined ⊗ (←coproduct),

1⊗ (←counit), dual (←antipode)

−−−−−−−−−−−−→
needed to define

−−−−
→Koszul duality

BV�-algebra
Algebra of perfect bcj

[, ] given by 𝐹𝐴𝐵𝐶; (⋅) by 𝐹
𝐴
𝐵𝐶 + 𝑄

𝐴
𝐵𝐶

𝑑2 = ℎ2 = 0, 𝑑ℎ + ℎ𝑑 =�, 𝑥𝑦 = ±𝑦𝑥, (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧)
𝑑(𝑥𝑦) = 𝑑𝑥 ⋅ 𝑦 ± 𝑥 ⋅ 𝑑𝑦, 𝑑[𝑥, 𝑦] = [𝑑𝑥, 𝑦] ± [𝑥, 𝑑𝑦] +�(𝑥𝑦) −�𝑥 ⋅ 𝑦 − 𝑥 ⋅�𝑦

ℎ(𝑥𝑦) − ℎ𝑥 ⋅ 𝑦 ± 𝑥 ⋅ ℎ𝑦 = [𝑥, 𝑦], ℎ[𝑥, 𝑦] = −[ℎ𝑥, 𝑦] ± [𝑥, ℎ𝑦]
[𝑥, 𝑦] = ±[𝑦, 𝑥], [𝑥, [𝑦, 𝑧]] = ±[[𝑥, 𝑦], 𝑧] ± [𝑦, [𝑥, 𝑧]], [𝑥, 𝑦𝑧] = [𝑥, 𝑦]𝑧 ± 𝑦[𝑥, 𝑧]

−−−−
−−−
−−−
−−−
−−−
−−−
−−−
−−−
−−−
−−−
−−−
−−−
−→

underlies

BV�∞-algebra
Algebra of on-shell bcj

BV� axioms hold up to homotopy

−−−−
−−−→underlies

Gametic algebra

Common structure of colour and kinematic algebras
Lie algebra equipped with info about brst
([, ], 𝑑, {, }) encodes (𝑓𝑎𝑏𝑐, 0, 0) or (𝐹

𝐴
𝐵𝐶, 𝑄

𝐴
𝐵, 𝑄

𝐴
𝐵𝐶)

𝑑2 = 0, 𝑑[𝑥, 𝑦] − [𝑑𝑥, 𝑦] ± [𝑥, 𝑑𝑦] = {𝑥, 𝑦}, 𝑑{𝑥, 𝑦} + {𝑑𝑥, 𝑦} ± {𝑥, 𝑑𝑦} = 0
[𝑥, 𝑦] = ±[𝑦, 𝑥], [𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦], 𝑧] ± [𝑦, [𝑥, 𝑧]]
{𝑥, 𝑦} = ±{𝑦, 𝑥}, 2{𝑥, {𝑦, 𝑧}} = {{𝑥, 𝑦}, 𝑧} ± {𝑦, {𝑥, 𝑧}}

−2{𝑥, [𝑦, 𝑧]} = [{𝑥, 𝑦}, 𝑧] ± [𝑦, {𝑥, 𝑧}], −2[𝑥, {𝑦, 𝑧}] = {[𝑥, 𝑦], 𝑧} ± {𝑦, [𝑥, 𝑧]}

−−−−
−−−→needed to define
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Abstract
A review of recent results on two-loop five-point Feynman Integrals with up to one off-shell external leg is pre-

sented. The three planar families have been fully expressed in terms of Goncharov poly-logarithms. From the three
hexa-box families, the first one has also been fully expressed as above, whereas the current effort is to complete the
same task for the other two families, studying new methods to cope with algebraic letters. In the near future we hope
that the two double-pentagon families will also be fully resolved. The achievements so far, based on the Simplified
Differential Equations (SDE) approach, include also multi-scale Feynman Integrals with internal masses.

Introduction
When considering multiloop Feynman integrals involving many external particles, the current fron-
tier lies at two-loop five-point integrals with up to one off-shell leg and massless internal lines. For
the fully massless case, all Master integrals are by now known up to transcendental weight four
[1, 2, 3, 4, 5, 6, 7] and their solutions have been implemented in a fast C++ library known as pentagon
functions [8]. When one of the external particles is considered off-shell, the planar topologies have
been recently solved using two different computational approaches for the solution of canonical dif-
ferential equations, numerically [9] and analytically [10]. The numerical calculation was performed
using a generalised power-series method [11, 12], while the analytical solution was achieved through
the use of the Simplified Differential Equations approach (SDE) [13], with the results given in terms
of Goncharov polylogarithms of up to transcendental weight four. These results are relevant to many
2 → 3 scattering processes studied experimentally at the LHC, e.g. W + 2 jets production. For the
computation of the relevant scattering amplitudes, one-loop five-point Feynman integrals with one
off-shell leg also have to be known up to transcendental weight four [14]. These results were recently
used for the calculation of two-loop QCD corrections to Wbb̄ production [15]. First results for one of
the non-planar topologies have also appeared using a numerical approach [16]. Recently, numerical
results for the non-planar hexabox topologies were presented in [17]. On the multi-scale frontier,
analytic results for several one-loop five-point families involving up to three external masses and up
to one internal mass were recently presented in [18] based on the SDE approach.

Computational framework
The standard approach for the calculation of Feynman integrals involves obtaining a complete set of
Master integrals through the use of Integration-By-Part identities [19], constructing a pure basis of
Master integrals [20] and then deriving and solving differential equations [21, 22, 23, 24] in canonical
form [25]. This approach has yielded numerous results [26], in part due to the fact that we have a
solid understanding of the special class of functions, known as multiple or Goncharov polylogarithms
[27, 28, 29, 30], in terms of which many Feynman integrals can be expressed. In more complicated
cases however, this class of functions is not enough and important steps have been made in getting a
better understanding of a more general class of functions, Elliptic integrals [31, 32, 33, 34, 35, 36, 37],
which appear in solutions of multiloop Feynman integrals with many scales, especially when several
internal masses are introduced.

More specifically, assuming that we have a pure basis of Master integrals g, the SDE in canonical
form satisfied by this basis is

∂xg = ε

lmax∑
i=1

Mi

x− li

 g (1)

where Mi are the residue matrices corresponding to each letter li and lmax is the length of the al-
phabet. In order to solve (1) we need to provide boundary terms. We start with the residue matrix
corresponding to the letter {0}, M1 and through its Jordan Decomposition we rewrite it as follows,

M1 = SDS−1 (2)

Then we define the resummation matrix R as follows

R = SeεD log(x)S−1 (3)

The next step is to use IBP identities to write the pure basis g in the following form

g = TG (4)

Using the expansion-by-regions method [38] implemented in the asy code which is shipped along
with FIESTA4 [39], we can obtain information for the asymptotic behaviour of the Feynman inte-
grals in terms of which we express the pure basis of Master integrals (4) in the limit x→ 0,

Gi =
x→0

∑
j

xbj+ajεG
(bj+ajε)
i (5)

where aj and bj are integers and Gi are the individual members of the basis G of Feynman integrals
in (4). As explained in [10], we can construct the relation

Rb = lim
x→0

TG

∣∣∣∣
O(x0+ajε)

(6)

where b =
∑n
i=0 ε

ib(i)
0 are the boundary terms that we need to compute. The right-hand-side of (6)

implies that, apart from the terms xaiε coming from (5), we expand around x = 0, keeping only terms
of order x0.

After obtaining the relevant boundary terms we can write the solution of (1) in the following com-
pact form,

g = ε0b(0)
0 + ε

(∑
GaMab(0)

0 + b(1)
0

)
+ ε2

(∑
GabMaMbb

(0)
0 +

∑
GaMab(1)

0 + b(2)
0

)
+ ε3

(∑
GabcMaMbMcb

(0)
0 +

∑
GabMaMbb

(1)
0 +

∑
GaMab(2)

0 + b(3)
0

)
+ ε4

(∑
GabcdMaMbMcMdb

(0)
0 +

∑
GabcMaMbMcb

(1)
0

+
∑
GabMaMbb

(2)
0 +

∑
GaMab(3)

0 + b(4)
0

)
(7)

were Gab... := G(la, lb, . . . ;x) represent the Goncharov polylogarithms.

Planar Pentaboxes

Figure 1: The two-loop diagrams representing the top-sector of the planar pentabox family P1(74 MI), P2(75 MI) and
P3(86 MI). All external momenta are incoming.

Hexaboxes

Figure 2: The two-loop diagrams representing the top-sector of the non-planar hexabox family N1(86 MI), N2(86 MI)
and N3(135 MI). All external momenta are incoming.

Multi-scale pentagons
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Figure 3: The one-loop diagrams representing the top-sector of the multiscale pentagon families. All external momenta
are incoming. Bold external lines represent particles with p2 6= 0. Bold internal lines represent particles with m 6= 0.

Results

P3 g84

ε0: 1/2
ε1: 3.2780415861887284967738281876762
ε2: 0.11455863130537720411162743574627
ε3: -16.979642659429606120982671925458
ε4: -48.101985355625914648042310964575

Table 1: Numerical results for the non-zero top sector ele-
ment of each family with 32 significant digits.

The computation of GPs is performed
using their implementation in GiNaC.
This implementation is capable to evalu-
ate the GPs at an arbitrary precision. The
computational cost to numerically eval-
uate a GP function, depends of course on
the number of significant digits required
as well as on their weight and finally on
their structure, namely how many of its
letters, Eq. (7), satisfy la ∈ [0, x]. We re-
fer to reference [40] for more details.For

the following Euclidean point S12 → −2, S23 → −3, S34 → −5, S45 → −7, S51 → −11, x → 1
4,

all GP functions with real letters are real, namely no letter is in [0, x], and moreover the boundary
terms are by construction all real. The result is given in Table 1, with timings, running the GiNaC
Interactive Shell ginsh, given by 1.9, 3.3, and 2 seconds for P1, P2 and P3 respectively and for a
precision of 32 significant digits. More results including physical phase-space points can be found
in [10, 14, 18].

Conclusions
The SDE approach has been proven very successful in expressing many multi-scale two-loop inte-
grals in terms of GPLs. We are currently working on the two last hexa-box families. In the near
future, when the canonical basis for the two double-pentagon families becomes available, we plan
to complete the analytic representation of all two-loop five-point Feynman Integrals with up to one
off-shell external leg.
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Surprisingly simple relation9,10,11:

In the probe-particle limit:

NLO
can become relevant for supermassive 

black holes

Scattering Angle from Amplitudes

❑ The gravitational waves observed by the LIGO and Virgo collaborations1,2 provide a unique
opportunity to test General Relativity (GR).

❑ Models beyond GR generically involve new graviton polarizations that in some cases can give
rise to the accelerated expansion observed today3.

❑ Extra degrees of freedom lead to fifth forces that can be highly constrained from solar system
tests4,5. Screening mechanism help avoid these bounds3.

Why Go beyond GR?

Amplitude techniques have recently been used to compute the Post-Minkowskian Hamiltonians in
GR that describe the inspiral phase and are used to build waveforms.
As a first step towards using these techniques beyond GR, we consider a theory involving an extra
d.o.f. given by a helicity-0 mode. We focus on the decoupling limit where the helicity-0 and
helicity-2 modes do not interact6,7 and consider a conformal coupling to the matter sector. As an
example, we consider the cubic Galileon:

The theory is screened 
inside the radius:

We consider gravitational scattering of massive matter (scalar ). Then, we extract the
classical limit of the scattering amplitudes by taking and considering small
transferred momenta (large impact parameter, b):

(p, external momenta)
To obtain the potential we can use two equivalent methods:
• Matching to scalars EFT 8: We match the full theory amplitudes to the EFT.

Then, we identify the Wilson coefficients of the 
EFT with the potential.            

• Born Approximation:  The relation between the potential and the amplitudes
is constructed from the Lippmann-Schwinger equation.

From Amplitudes to Potentials

Decoupling Limit and the Helicity-0 Mode

Figure 2. Feynman graph that can contain
classical contributions.

Consider correct scattering states when 
matching EFTs:

Delicate Matching for 
Conformal Coupling

Final Remarks
❑Amplitude methods can be applied beyond GR.
❑The perturbative expansions for      and      depend non-trivially on the 

momentum of the scattered objects away from the probe-particle limit.
❑Non-minimal couplings require a careful matching where the correct scattering 

states should be identified.
❑Calculations outside the screened region are relevant in backgrounds where  

,                          , e.g. 3 body problem with one heavier object and a binary 
system12.

Valid outside Vainshtein radius      .

Probe particle limit:
Is the limit where one object is much 

heavier than the other. Can be described 
by a point-particle living in a scalar field 

background.

EFT for compact objects
Is constructed in the CM frame, describes 
self-interaction of compact objects which 

are described by scalar fields.

Full theory describing 
gravitational scattering:

Massive objects (scalars) coupled to a 
gravitational helicity-0 mode (Galileon).

Figure 1. Sketch of the matching procedure.

Can reproduce known 
field profile          .  
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Parameterization CPn�3 ,! G(2; n)=(C�)n

Consider the map Cn�2 ,! Mat(2; n),

x 7! g =

(
1 0 x1 x1 + x2 x1 + x2 + x3
0 1 1 1 1

� � �

)
:

� Fact: this induces a generic embedding CPn�3 ,! G(2; n)=(C�)n.

�Now we can de�ne dihedral cross ratios ui j in terms of 2� 2 minors:

ui ;j =
pi ;j+1pi+1;j

pi ;jpi+1;j+1
!

See e.g. [Bardakci-Ruegg, Koba-Nielsen, Brown, Arkani-Bai-He-Yan].

�We generalize both constructions for an embedding of (CPn�k�1)�(k�1) into G(k; n)=(C�)n

and de�ne a new worldsheet associahedron W
(+)
3;n (k � 4 as well, but more detailed).

Worldsheet Associahedron: planar/positive part ofM0;n

Now let fui ;j : i < j; i + 1 6= j cyclicallyg be real variables on R(
n

2)�n.

�De�nition. The worldsheet associahedron W+
2;n is

W+
2;n =

(ui ;j) 2 [0; 1](
n

2)�n : ui ;j +
∏
(k;`)

uk` = 1 : (i + 1 < j)


where each product is over all pairs (k; `) that cross (i ; j), such that either i < k < j < ` or
k < i < ` < j .

�Corollary. If ui j = 0 then uk` = 1 for all k; ` that cross (i ; j). Example. W2;6

u13 + u24u25u26 = 1; u14 + u25u26u35u36 = 1

�Well-known: can parameterize the ui ;j with the dihedrally invariant cross-ratios on CP1!

Planar Basis of linear functions on the kinematic space
De�ne linear functions L1; : : : ; Ln on an auxiliary space Rn by

Lj(y) = yj+1 + 2yj+2 + � � �+ (n � 1)yj�1:

De�nition. For any J = fj1; : : : ; jkg denote by �j1���jk the linear function on the kinematic space
K(k; n),

�J = �
1

n

∑
I2([n]k )

�

∑
i2I

ei �
∑
j2J

ej

 sI:

Proposition[E2019]. The functions
(n
k

)
� n linear functions �J (for J not a cyclic interval

fj; j + 1; : : : ; j + k � 1g) are linearly independent. In particular, they de�ne a planar basis of
linear functions on K(k; n). One has �j;j+1;:::;j+k�1 = 0.
Example. (k; n) = (2; 4): here f�13; �24g is a basis. The other four �i j 's are identically zero
when the linear relations (\momentum conservation") on the si j 's are taken into account:

�24 =
1

4

(
3s1;2 + 2s1;3 + s1;4 + s2;3 + 3s3;4

)
= s12;

�12 =
1

4

(
3s1;3 + 2s1;4 + 2s2;3 + s2;4 + 4s3;4

)
= 0

Biadjoint scalar partial amplitudes
Fix a planar orders �1; �2. Now sum over all planar cubic scalar Feynman diagrams for �3

compatible with both �1; �2; this is the biadjoint partial amplitude m(�1; �2), studied by Cachazo-
He-Yuan. Now put �1 = �2 = (12 � � � n).

Fact. The biadjoint scalar partial amplitude m
(2)
n := m

(2)
n (12 � � � n; 12 � � � n) can be written in

terms of the planar basis as follows:

m
(2)
n =

∑
f(i1j1);:::;(in�3;jn�3)g

n�3∏
t=1

1

�i1j1 � � � �in�3jn�3
;

where the sum is over all pairwise noncrossing collections of n�3 pairs f(i1; j1); : : : ; (in�3; jn�3)g.

�The Catalan-many Cn�2 = 2; 5; 14; 42; 132; : : : terms are in bijection with the set of tree-level
Feynman diagrams for the cubic scalar theory, given a �xed planar order (12 � � � n).

� Equivalently, in bijection with triangulations of a polygon with cyclically labeled vertices.

Associahedron in the Root Lattice via Root Kinematics
In this kinematics, linear relations among the poles reduce m

(2)
6 to the reduced form

m
(2)
6 =

1

(�1 + 1) (�4 + 1) (�34 + 1)
+

1

(�2 + 1) (�4 + 1) (�34 + 1)
+

1

(�1 + 1) (�2 + 1) (�4 + 1)

+
1

(�1 + 1) (�34 + 1) (�123 + 1)
+

1

(�2 + 1) (�34 + 1) (�123 + 1)
+

1

(�1 + 1) (�2 + 1) (�123 + 1)
:

Here �1; : : : ; �n�2 are roots.

Dual picture: m
(k)
n from subdivisions of Root Polytopes

R̂
(2)
3 = convex hullf0; 
13; 
14; 
24; 
25; 
35; 
15g

R
(2)
3 = convex hullf
13; 
14; 
24; 
25; 
35g:

� Root Kinematics: Planar Feynman Diagrams , simplices in a triangulation of the root poly-
tope.

Noncrossing property: k � 3 (but here, k = 3)
De�nition. Subsets fi1; i2g; fj1; j2g � f1; : : : ; ng with i1 < i2 and j1 < j2, say, are said to be
crossing if

i1 < j1 < i2 < j2 or j1 < i1 < j2 < i2:

Two triples I = fi1; i2; i3g and J = fj1; j2; j3g are noncrossing provided that none of the following
situations holds:

(i1; i2); (j1; j2) is crossing, or

(i2; i3); (j2; j3) is crossing, or

(i1; i3); (j1; j3) is crossing and i2 = j2:

Denote by NC3;n the (po)set of all collections of pairwise noncrossing triples fi ; j; kg, where
i ; j; k is not a cyclic interval, ordered by inclusion.

Note: \Purity" (c.f. [Petersen, Pylyavskyy, Speyer]) All maximal (by inclusion) collections have
exactly (3� 1)(n � 3� 1) triples.

Binary noncrossing relations for k = 3

For any J 2
([n]
3

)nf
, we have the binary equation

uJ = 1�
∏

fI: (I;J) 62NC3;ng

û
cI;J
I

; (1)

where for any crossing pair (I; J) = (i1i2i3; j1j2j3) 62 NC3;n, exponents are

c(i1i2i3);(j1j2j3) =

{
2 if i1 < j1 < i2 < j2 < i3 < j3 or j1 < i1 < j2 < i2 < j3 < i3

1 otherwise:
(2)

De�nition. [E2021] The type (3,n) generalized worldsheet associahedron W+
3;n is the solution

in the u-space to Equations (1).

Parameterizing W+
3;n: (Planar) Face polynomials: case k = 3

De�ne �1;2;j = 1 for all j = 3; : : : ; n. For f1; j; kg such that 3 � j < k � n, then let

�1;j;k :=
∑

a2[j�1;k�2]

x2;a:

Whenever fi ; j; kg satis�es 2 � i � j < k � n, then put

�i ;j;k :=
∑

f(a;b)2[i�1;j�1]�[j�2;k�3]; a�bg

x1;ax2;b

Example. We have

�136 = x2;1 + x2;2 + x2;3; �356 =
(
x1;2 + x1;3

)
x2;3

�468 = x1;3x2;4 + x1;4x2;4 + x1;3x2;5 + x1;4x2;5 + x1;5x2;5

�338 = x1;2
(
x2;2 + x2;3 + x2;4 + x2;5

)
x1,1

x1,11

A planar face variable.

τ2,6,11,12,14 = x1,1x2,4x3,8x4,8 + x1,2x2,4x3,8x4,8 + · · ·

+x1,4x2,9x3,9x4,9 + x1,5x2,9x3,9x4,9

x4,1

Preview, The Staircase: successive levels from the top should be right-moving and should overlap
by exactly one square.

Planar Face ratios: case k = 3
For any fi ; j; kg � f1; : : : ; ng that is not one of the n cyclic intervals fj; j + 1; j + 2g, de�ne a
face ratio ui jk : CPn�4 � CPn�4 ! CP

1, by

ui jk =


�i ;n�1;n

�i�1;n�1;n
; (i ; j; k) = (i ; n � 1; n)

�i+1;j;k�i ;j+1;j+2

�i ;j;k�i+1;j+1;j+2
; j + 1 < k; k = n;

�i+1;j;k�i ;j;k+1

�i ;j;k�i+1;j;k+1
; k < n:

Note. When xi ;j are real and positive, then the planar face ratios ui jk take values in the open
interval (0; 1).

Note. We've de�ned analogous planar face ratios uJ in (CPn�k�1)�(k�1) for all k and have
evidence that our de�nition is correct: we've checked (some) binary relations for (k; n) including
(3; 15); (4; 12); (5; 10). Remains to determine exponents to get the full ideal of relations, de�ning
the worldsheet associahedra Wk;n!
Claim. With the ui jk variables de�ned as above, they solve the noncrossing binary equations. (Combinatorial proof?)

14 noncrossing binary equations for (3; 6)

u124 = 1� u135u136u235u236
u125 = 1� u136u146u236u246u346
u134 = 1� u235u236u245u246u256
u135 = 1� u124u146u236u245u256u346u

2
246

u136 = 1� u124u125u245u246u256
u145 = 1� u246u256u346u356
u146 = 1� u125u135u235u256u356
u235 = 1� u124u134u146u246u346
u236 = 1� u124u125u134u135
u245 = 1� u134u135u136u346u356
u246 = 1� u125u134u136u145u235u356u

2
135

u256 = 1� u134u135u136u145u146
u346 = 1� u125u135u145u235u245
u356 = 1� u145u146u245u246:

Generalized positive roots
De�nition. [CE2020; E2021] Put �i ;[a;b] =

∑b

j=a �i ;j . Let J = fj1; : : : ; jkg, with order 1 � j1 < � � � < jk � n.
The generalized positive root 
J is the following sum of simple roots �i ;j :


J(�) =

k�1∑
i=1

�i ;[ji�(i�1);ji+1�i�1]:

Main Example. For simplicity we'll stick to k = 3: 
i jk = �1;[i ;j�2] + �2;[j�1;k�3]:


134 = �1;1; 
124 = �2;1; 
356 = �1;3; 
135 = �1;1+�2;2; 
269 = �1;[2;4]+�2;[5;7] = (�1;2+�1;3+�1;4)+(�2;5+�2;6):

Generalized positive roots: on the grid

γ2,3,6,7,11,13,14 = α2,[2,3] + α4,[4,6] + α5,7

α1,1
α1,8

α6,1
α6,8

= α2,2 + α2,3 + α4,4 + α4,5 + α4,6 + α5,7

Each dot is a simple root. Each row is a simple root system of type An�k .

Generalized Root Polytopes
Let 
J be the restriction of 
J to Hk;n, where

∑n�k
j=1 �i ;j = 0 for all i = 1; : : : k � 1.

De�ne a ((k-1)(n-k)-dimensional) polytope R̂
(k)
n�k

in the space of linear functions on

R(k�1)�(n�k):

R̂
(k)
n�k

= convex hull

(
f0g [

{

J : J 2

(
[n]

k

)})
and a dimension (k � 1)(n � k � 1) polytope

R
(k)
n�k

= convex hull

{

J : J 2

(
[n]

k

)nf
}
:

Fact. R
(k)
n�k

has
(n
k

)
�n vertices. 
J = 0 exactly when J is a cyclic interval fi ; i+1; : : : ; i+k�1g.

Planar Kinematics potential Function and PK polytope
Let pj1;:::;jk be Plucker variable on G(k; n) with column set fj1; : : : ; jkg

De�nition [CE2020] The Planar Kinematics potential function S
(PK)
k;n

on the Grassmannian

G(k; n) is given by

S
(PK)
k;n

=

n∑
j=1

log

(
pj;j+1;:::;j+k�2;j+k�1

pj;j+1;:::;j+k�2;j+k

)
Let's evaluate this on the standard planar (BCFW) parameterization (of G(k; n)=(C�)n). For
instance for k = 4 this is:1 0 0 0 x1;1x2;1x3;1 x1;1 (x2;1 (x3;1 + x3;2) + x2;2x3;2) + x1;2x2;2x3;2

0 1 0 0 x2;1x3;1 x2;1 (x3;1 + x3;2) + x2;2x3;2
0 0 1 0 x3;1 x3;1 + x3;2 � � �
0 0 0 1 1 1


Evaluating S

(PK)
k;n

on the positive parameterization gives

S
(PK)
k;n

= log

(∏
(i ;j)2[1;k�1]�[1;n�k ] xi ;j

P1 � � �Pk�1Q1 � � �Qn�k�1

)

where

Pi =

n�k∑
j=1

xi ;j ; Qj =
∑

f(ti)2f0;1gk�1: t1�����tk�1g

x1;j+t1x2;j+t2 � � � xk�1;j+tk�1:

Example (3,6).
P1 = x1;1 + x1;2 + x1;3; P2 = x2;1 + x2;2 + x2;3

Q1 = x1;1x2;1 + x1;1x2;2 + x1;2x2;2; Q2 = x1;2x2;2 + x1;2x2;3 + x1;3x2;3

is a Minkowski sum of four triangles.

General fact: �
(k)
n�k

is a Minkowski sum of n�2 simplices. There are k�1 simplices of dimension

n � k � 1 and n � k � 1 simplices of dimension k � 1. It is not a simple1 polytope in general!

PK polytope and Noncrossing Generalized Amplitude (specialized

to k = 3)
Theorem[E2021] We have the following miracle:

Newt
(
exp
(
�S

(PK)
k;n

))
=

(�i ;j) 2 R
(k�1)�(n�k) :

n�k∑
j=1

�i ;j = 0; 
J(�) + 1 � 0

 :

Why useful for amplitudes???
,! compatibility rules for poles can be extracted from the facet inequalities; possible to reconstruct
amplitude from the volume of the dual polytope.

Defn. The noncrossing amplitude m
(3;NC)
n is

m
(3;NC)
n =

∑
fJ1;:::;J(k�1)(n�k�1)gis noncrossing

1∏(k�1)(n�k�1)
j=1 �Jj

Open Problems. Given that there is a noncrossing analog of the CHY scattering equations...

1. Is there a nice formula for the critical point enumeration?

2. Prove that this combinatorial formula matches the scattering equations formulation of the
noncrossing amplitude?

3. Note well: the noncrossing generalized amplitude lacks cyclic symmetry... not clear what this
could mean physically!

4. Explore relations to CEGM generalized biadjoint amplitudes?

Stay tuned...

[CEGM2019] Scattering Equations: From Projective Spaces to Tropical Grassmannians
(1903.08904).
[CE2020] Planar Kinematics: Cyclic Fixed Points, Mirror Superpotential, k-Dimensional Catalan
Numbers, and Root Polytopes (2010.09708)
[E2021] Planarity in Generalized Scattering Amplitudes: PK Polytope, Generalized Root Systems
and Worldsheet Associahedra (2106.07142)



ComptonScatteringofKerrBlackHoles
Marco Chiodaroli, Henrik Johansson, Paolo Pichini
Based on arXiv:2107.14779 paolo.pichini@physics.uu.se

Kerr Observables

Kerr Energy-Momentum Tensor: [Vines,. . . ]

εµν(k)TµνKerr(−k) ∼ (ε · p)2 exp

(
k · S
m

)
Two-Body Scattering:

∆p , ∆S ∼ + + O(G3)

Covariant Amplitudes
Gauge theory bosons:

∞∑
s=0

A3(1φs, 2φs, 3A) =

AφφA +
AWWA − (ε1 · ε2)2AφφA

(1 + ε1 · ε2)2 + 2
m2 ε1 · p2ε2 · p1

Fermions and gravity: similar expressions.

Spin-1 Example
Gauge Theory Lagrangian:

2D[µW ν]D
µW ν −m2W

µ
Wµ + ieFµνW

µ
W ν

Propagator:

∆(1) =
1

p2 −m2

(
ηµν −

pµpν
m2

)
Tree-level unitarity: p · J = O(m) fixes the non-
minimal term and cures the mass pole in ∆(1).

Spin-5/2 Compton
Diagrams:

= + +

+ + + +

Ingredients:

1. Field content: physical ψµν , auxiliary λ,
graviton h.

2. Free equations of motion:
(i/∂ −m)ψµν = γµψµν = ∂µψµν = λ = 0.

3. L(ψ, λ) ⊃ m(ψ̄µµλ+ λ̄ψµµ) non-diagonal ki-
netic term.

4. Need propagators of both fields.

5. L ⊃ λ̄(i/∂+3m)λ. Spurious poles from the
λ propagator cancel out in the amplitude.

Summary
High-energy properties of higher spin theory are used to derive three-point and Compton amplitudes
relevant to spinning black hole scattering, up to spin-5/2.

1. Massive Spinor-Helicity [Arkani-Hamed, Huang,. . . ; Guevara, Ochirov, Vines; . . . , O’Connell]

The classical limit of scattering amplitudes is used to compute Kerr observables.

1. Leading order: match Kerr energy-momentum tensor from three-point amplitudes:

M3(1φs, 2φs, 3h−) =
m2−2s

x2
[12]2s

~→0−−−→ (ε · p)2 exp

(
k · S
m

)
2. Next-to-leading order: Compton amplitudes from BCFW recursion:

M4(1φs, 2φs, 3h−, 4h+) =
[4|p1|3〉4−2s([41]〈32〉+ [42]〈31〉)2s

s12t13t14

M4(1φs, 2φs, 3h+, 4h+) =
〈12〉2s[34]4

m2s−4s12t13t14

Remark: Spurious pole appearing for s ≥ 5/2, leading to contact term ambiguity.

2. Higher-Spin Theory [Ferrara, Porrati, Telegdi; Cucchieri, Deser, . . . ]

Coupling to gauge/gravity:
Minimal coupling ∂ → ∇ is not the right choice for elementary particles (see spin-1 example).
High-energy (tree-level) unitarity:

• Define the three-point current J~µ ≡ Jµ1...µs appearing in amplitudes (propagator: ∆~ν~µ):

~ν ∆~ν~µ
~µ

p
J~µ

• Current constraint: interaction terms are constrained to restore tree-level unitarity.

p · J |traceless = O(m)

Outcome:
Non-minimal terms linear in Rµνρσ fixed, including a subset of four-point contact terms.
Non-minimal terms quadratic in Rµνρσ excluded by derivative counting up to s ≤ 5/2.

3. Higher-Spin Amplitudes
Unique results via current constraint and derivative counting.
Shorthand: N2 ≡ [41]〈32〉+ [42]〈31〉 , N4 ≡ [41]〈32〉[42]〈31〉 , tij ≡ sij −m2

Spin-3/2 gauge theory: a unique non-minimal interaction term is needed:

L3/2 = L3/2,min +
ie

m
ψ̄µ

(
Fµν − i

2
γ5εµνρσFρσ

)
ψν

A4(1φ3/2, 2φ3/2, 3A−, 4A+) =
N2

[4|p1|3〉

(
N2

2

t13t14
− N4

m4

)
Spin-5/2 gravity: a unique non-minimal term similar to the above is needed:

L5/2 = L5/2,min −
1

m

√
−g ψ̄µρ

(
Rµνρσ − i

2
γ5ερσαβRµναβ

)
ψνσ

M4(1φ5/2, 2φ5/2, 3h−, 4h+) =
N2

[4|p1|3〉

(
N4

2

s12t13t14
− N2

4

m6

)
Remark: The same-helicity Compton amplitudes match the known BCFW results.

Conclusion
Summary:

1. Current constraint: fixes three-point and
O(Rµνρσ) four-point terms up to spin-5/2.

2. Derivative counting: O(R2
µνρσ) terms ex-

cluded up to spin-5/2.
3. Kerr and higher-spin: high-energy proper-

ties of QFT seem related to black-holes.

Outlook:

1. Classical limit: Use the spin-5/2 amplitude
to compute Kerr observables.

2. Higher spins: Extend the methods to s ≥ 3.

3. Compare: other well-behaved theories (e.g.
strings) should obey the current constraint.



Soft gauge symmetry
implies the soft theorem.

Martin Beneke, Patrick Hager, Robert Szafron

Isolating the Soft
• Split fields into soft and energetic modes.
• Modes are described using soft-collinear effective

theory (SCET).
• Construct SCET Gravity to subleading orders.
• Soft field realised as special background field with

soft gauge symmetry:
→ organises interactions,
→ constrains operators.

• New insight in Gravity: Translations and Rota-
tions form the soft gauge symmetry.

• Momentum pµ and angular momentum Jµν

correspond to color-generator ta.

Observations
• Extremely similar structure of soft-collinear inter-

actions in gauge theory and gravity.
• Leading soft emission completely determined by

universal Lagrangian interactions.
• Process-dependence: soft building blocks F µν

s ,
Rs are absent for the leading two (three) terms.

• Only these leading terms are universal.

Technical Details
• Energetic fields are expressed in terms of gauge-invariant physical variables.

• Soft fields are multipole-expanded around the large x− = n+x
n−
2 .

• Structure of Lagrangians for gauge and gravity (need up to L(4)
grav for the computation):

L(0)
QCD = 1

2n+DcΦn−DΦ + 1
2Dc⊥ΦDc⊥Φ L(0)

grav = 1
2n+∂Φn−DΦ + 1

2∂⊥Φ∂⊥Φ

L(1)
QCD = +1

2x
µ
⊥n

ν
−gF

s
µνn+Jc L(2)

grav =
∧ −1

4x
α
⊥x

β
⊥κRα−β−T++

n−D = n−∂ − igtan−As n−D = n−∂ −
κ

2
(
s−α∂

α − [∂αsβ−]Jαβ
)

+ . . .

• Soft-covariant derivative in gravity related to Vierbein (translations) and Spin-Connection (rotations).

• The soft theorem is realised as an operatorial statement in SCET visible in the Lagrangian.

• The soft-covariant derivative generates the eikonal terms in the soft theorem.

• The subleading Lagrangian generates the subleading term.

AQCD
rad =

∑
i

ta
(
εµp

µ
i

pi · k
+ kνεµJ

µν
i

pi · k

)
A0

Agrav
rad = −κ2

∑
i

pµi εµνpνipi · k
+ Jµνi

kνεµρp
ρ
i

pi · k
+ Jµρi

1
2
kρkσεµνJ

νσ
i

pi · k

A0

• Beyond this, non-universal process-dependent soft building blocks are available.

More details: →
https://t1p.de/Amplitudes



TRUNCATED CLUSTER ALGEBRAS&FEYNMAN
INTEGRALS WITH ALGEBRAIC LETTERS

QINGLIN YANG, WITH SONG HE AND ZHENJIE LI

1.INTRODUCTION
As observed in [1], alphabets of ladder integrals are related to

finite-type cluster algebras. Moreover, surprisingly their alphabets
are purely determined by the external kinematics. One natural ques-
tion is whether we can find any relations between external kinematics
of certain integrals and cluster algebras, such that having an algo-
rithm to predict their alphabets.

2.GENERAL ALGORITHM
Our algorithm consists of four steps as

1. We relate external kinematics for certain integral to positroid
cell Γ of G+(4, n) by imposing proper conditions on Plücker
coordinates. Corresponding plabic graph gives a positive
parametrization ZΓ for momentum twistors (after modding out
torus action). We only consider the case when Γ/T is still a
boundary of G+(4, n)/T

2. Applying mutations on the dual graph of its plabic graph with
the internal facet variables fi being the principal coefficients,
we get a cluster algebra together with its F -polynomials, which
either form a finite alphabet for finite-type algebra or need a
truncation for infinite-type.

3. Evaluating all Plücker coordinates by matrix ZΓ and taking the
Minkowski sum [4] of Newton polytopes of these polynomials,
we get the polytopal realization for this G+(4, n)/T boundary.

4. Select all the g-vectors coinciding with the normal vectors
of the polytope. Rational alphabet is then the associated F-
polynomials. Those normal vectors that are not g-vectors cor-
respond to limit vectors, which after algorithm in [3] give alge-
braic letters.

3.WARM UP: Dn CLUSTER ALGEBRAS
Consider the one-mass hexagon kinematics:

1
2 3

4

5
6

7

For the massive corner (23), we impose two conditions
〈7123〉=〈2345〉=0 [5], leading to a 4(7−4)−6−2=4 dimensional
boundary of G+(4, n)/T . Corresponding plabic graph and its dual
graph read

and the resulting ZΓ matrix which positively parametrizes the kine-
matics is f3f4 (1 + f3) f4 1 + f4 + f3f4 1 0 0 0

0 f1f2f4 f2 (1 + f1 + f1f4) 1 + f2 + f1f2 1 0 0
0 0 f2 1 + f2 1 0 −1
0 0 0 1 1 1 0

 .

Beginning with the quiver, we get a D4 cluster algebra with 16 F-
polynomials in variables fi. As checked in [1], at least up to 4 loops,
alphabet produced by these F-polynomials applies to the double-
pentagon ladder integrals for n = 7, even with various different nu-
merators. Same for two- and three-mass-easy hexagon kinematics for
n = 8 and 9, and they correspond to D5 and D6 cluster algebras.

Geometrically, by taking the Minkowski sum of the Newton poly-
topes of the Plücker coordinates, we get “truncated Dn polytopes"
, whose normal vectors are exactly those g-vectors of Dn but co-
dimensional k-boundaries for k ≥ 3 are slightly different from Dn

cluster polytopes. For instance, truncated D4 polytope has the f -
vector as f = (1, 49, 99, 66, 16, 1), differing from the D4 cluster poly-
tope with f = (1, 50, 100, 66, 16, 1).

4.AFFINE D4 AND BOOTSTRAPPING ΩL(1458)
Our main example is the double-pentagon ladder ΩL(1458) in-

volving algebraic letters, whose kinematics is drawn as the two-mass-
opposite hexagon:

8 1

2
3

45

6
7

4

3

2

18

6

7

5

corresponding to plabic graph and the dual graph as

which is related to affine D4 cluster algebra (infinite-type). On the
other hand, Minkowski sum gives us a 5-dimensional polytope with
f = (1, 280, 739, 694, 272, 39, 1), 38 normal vectors of whose facets are
g-vector of the algebra, determining all 38 rational letters W1 · · ·W38;
while the rest one is the limit ray, leading to 5 algebraic letters
L1 · · ·L5, according to the algorithm in [3]. Note that square root from
the computation is exactly the one for four-mass-box F (2, 4, 6, 8).

Following the prediction of alphabet and bootstrapping strategies,
we can localize ΩL(1458) for L = 2, 3, 4 in the integrable symbol space
generated by {Wi, Lj}i=1···38,j=1···5 Conditions we impose to deter-
mine the results are

1. First-entry condition: First entries of the result can only be the
physical discontinuities 〈i i+1 j j+1〉

2. Last-entry condition: Last entries, which can be proved by sym-
bol integration algorithm, can only be five combinations of Wi,
denoted as {zi}i=1···5.

3. Two axial symmetries.
4. Boundary condition from Wilson-loop d log picture: Following

[2], ΩL satisfies the recursive relation (with the initial Ω1(1458)
being the two-mass-opposite chiral hexagon):

ΩL(1458)=

∫
R2
≥0

d log 〈148Y 〉 d log
〈1X4Y 〉

t
ΩL−1(1458)

∣∣
Z2→X=Z8+tZ2
Z3→Y =Z2+sZ4

requiring ΩL(Z2→Z8)=0 to make sure the convergence at t = 0

5. Differential equation: Derived from the recursion that
ΩL = (z4−1)(z1∂z1+z4∂z4+z5∂z5)(z2∂z2+z4∂z4+z5∂z5)ΩL+1

We obtained S(ΩL(1458)) up to L = 4 and find out that their alphabet
is {Wi, Lj}i=1···25,j=1···5. Moreover, algebraic letters for these results
always read: WL =

∑5
i=1 S(F (2, 4, 6, 8)) ⊗ Li ⊗ S(hi), where hi are

weight-(2L−3) polylogrithmic functions with only rational letters.

OUTLOOK
• Consider integrals with kinematics that cannot be labelled by

positroids of G+(4, n), e.g. kinematics with two adjacent mas-
sive corners.

• Extend these discussions to non-DCI situations, e.g. L-loop box
ladders with one-,two- and three-massive corners.
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Thermalization Phenomena in Quenched Quantum Brownian Motion in De Sitter Space
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ABSTRACT
In this work, we study the QFT version of the Caldeira-Leggett model to describe the Brownian Motion in De Sitter space considering interactions between two scalar fields. The thermalization phenomena using

quantum quench from one scalar field model obtained from effective action. We consider a sudden quench mass protocol of the field of our interest. We find that the dynamics of the field post-quench is described in

terms of the state of the generalized Calabrese-Cardy (gCC). We found the conserved charges of W∞ algebra for the gCC state and it is different from flat space. We found that irrespective of the pre-quench state, the

post quench state can be written in terms of the gCC state showing that the subsystem of our interest thermalizes. Furthermore, we study thermalization from a thermal Generalized Gibbs ensemble (GGE).

INTRODUCTION

• The study of Brownian motion of a particle coupled to a ther-
mal bath has assumed great significance owing to its rele-
vance as a robust model for open quantum systems in the
context of macroscopic properties of a particle in a general
environment. This has been used to study quantum dissipa-
tion and quantum decoherence due to the system’s interac-
tion with the environment.

• This model of QBM has proven to be useful not only in studies
of open quantum systems but also in the field of quantum
cosmology, quantum correlation problems, among others. It
has also been extensively used in the context of AdS/CFT.

• The usual approach of tackling this problem involves use
of the influence functional technique developed by Feynman
and Vernon. The contribution of the environment degrees of
freedom is quantified by the influence functional and one ob-
tains the reduced subsystem of interest whose dynamics is of
particular interest. A very well-known model in this direction
was given by Caldeira and Leggett.

• Quantum quench is one such technique where the process
of thermalization can be realized in the system in the post-
quench phase. In a quantum quench, some parameter of the
Hamiltonian change over a finite duration of time, and the
initial wave function in the pre-quench function evolves to a
state after the quench that is not stationary.

• Due to the growing interest in studying thermalization for in-
tegrable systems, there has been huge progress in the under-
standing of thermalization in scalar fields and extensive stud-
ies in the direction.

• This quench protocol has also found its applications in the
cosmology of the early universe. It has been used to study the
characteristics of fast phase transitions, under the settings of
early cosmology where temperature promptly decreases.

CALDEIRA-LEGGETT MODEL IN QM

• In the Caldeira-Leggett (CL) model the phenomenon of quan-
tum dissipation was discussed and closed equations for such
a quantum system were obtained. For the purpose of study-
ing such phenomenon, a particular model describing such
system-bath interaction was chosen and the parameters of the
model were fitted in such a way that the classical equations of
Brownian motion were reproduced.

• One must note that the construction of the density matrix
does not provide any evidence that the chosen system of inter-
est will behave like a Brownian particle in the classical regime.
However, in the continuum limit with a suitable distribution
of the bath oscillators, it is possible to realize the brownian
motion of the system particle.

QFT OF BROWNIAN MOTION IN DS

QUANTUM QUENCH IN DS

SUBSYSTEM THERMALIZATION

NUMERICAL RESULTS

TWO-POINT FUNCTIONS



Next-to-leading power two-loop soft functions
for the Drell-Yan process at threshold
Alessandro Broggio,a,b Sebastian Jaskiewicz,c and Leonardo Vernazzab,d,e
a Università degli Studi di Milano-Bicocca, b INFN, c Durham University and IPPP,
d Università di Torino, e CERN.
sebastian.jaskiewicz@durham.ac.uk based on arXiv: 2107.07353

Introduction
We calculate the generalized soft functions at O(α2

s) at next-to-leading power accuracy for the Drell-Yan process at threshold. The operator definitions
of these objects contain explicit insertions of soft gauge and matter fields, giving rise to a dependence on additional convolution variables with respect
to the leading power result. These soft functions constitute the last missing ingredient for the validation of the bare factorization theorem to NNLO
accuracy. We carry out the calculations by reducing the soft squared amplitudes into a set of canonical master integrals and we employ the method
of differential equations to evaluate them. We retain the exact d-dimensional dependence of the convolution variables at the integration boundaries in
order to regulate the fixed-order convolution integrals. After combining the soft functions with the relevant collinear functions, we perform checks of the
results at the cross-section level against the literature and expansion-by-regions calculations, at NNLO and partly at N3LO, finding agreement.

Factorization
We consider the diagonal channel of the DY process, qq̄ → γ∗[→ `¯̀] +X,
in the kinematic region z = Q2/ŝ → 1. The NLP partonic cross-section
has the following structure [M. Beneke, A.Broggio, SJ, L. Vernazza, 1912.01585]

A A

B B

γ∗ γ∗A0 A0

c− threshold

J

c− PDF

ω

∆dyn
NLP(z) = − 2

(1− ε) Q
[(

/n−
4

)
γ⊥ρ

(
/n+

4

)
γρ⊥

]
βγ

×
∫
d(n+p)C A0,A0 (n+p, xbn−pB)C∗A0A0 (xan+pA, xbn−pB)

×
5∑
i=1

∫
{dωj} Ji,γβ (n+p, xan+pA; {ωj})Si(Ω; {ωj}) + h.c.

Here we focus on O(α2
s) calculation of the soft functions

Si(Ω; {ωj}) =
∫
dx0

4π eiΩ x
0/2 ∫ {dzj−

2π

}
e−iωjzj−Si(x0; {zj−})

Soft functions

Example operator definitions, using building block Bµ± = Y †± [iDµ
s Y±]:

S1(x0; z−) = 1
Nc

Tr〈0|T̄
[
Y †+(x0)Y−(x0)

]
T
([
Y †−Y+

]
(0) i∂ν⊥

in−∂
B+
ν⊥

(z−)
)
|0〉

S3(x0; z−) = 1
Nc

Tr 〈0|T̄
[
Y †+(x0)Y−(x0)

]
×T

([
Y †−(0)Y+(0)

]
1

(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]])
|0〉

n−

n+

n−

n+

z−
n−

n+

n−

n+

z−
n−

n+

n−

n+

z−

n−

n+

n−

n+

z−
n−

n+

n−

n+

z−
n−

n+

n−

n+

z−

n−

n+

n−

n+

z−
n−

n+

n−

n+

z−
n−

n+

n−

n+

z−

n−

n+

n−

n+

z−
n−

n+

n−

n+

z−
n−

n+

n−

n+

z−

Reduction
The integrals are written as

ÎT (α1, α2, α3, α4, α5, α6, α7) = (4π)4
(
eγEµ2

4π

)2ε ∫
ddk1

(2π)d−1
ddk2

(2π)d−1

7∏
i=1

1
Pαii

We find the 9 relevant topologies for the reduction. For example:

P1 = (k1 + k2)2, P2 = n+k2, P3 = n−(k1 + k2), P4 = k2
1,

P5 = k2
2, P6 =

(
Ω− n−k1 − n−k2 − n+k1 − n+k2

)
, P7 =

(
ω − n−k1

)
The four propagators in blue boxes are cut propagators. S1 is given by

S
(2)2r0v
1 (Ω, ω) = α2

s

(4π)2C
2
F

8
(
2− 9ε+ 9ε2)
ε2 ω (Ω− ω)2 Î1

+ α2
s

(4π)2CFCA

[
(2− 3ε)

(
−4Ω + ε (ω + 19Ω) + 4ε2 (ω − 7Ω)− 16ε3(ω − Ω)

)
ε2(1− 2ε)ωΩ (Ω− ω)2 Î1

− (1− 4ε2)
ε ωΩ Î2 + (3Ω− 10εΩ + 16ε2(ω + Ω))

2(1− 2ε)ωΩ Î3 + (Ω− 3ω)
2ω Î4

+ Ω Î5 + (9− 20ε+ 12ε2 − 2ε3)
ε2 (3− 2ε)ω2(Ω− ω) Î6 + (Ω− ω)Î7

]

− α2
s

(4π)2CF nf
4(1− ε)2

ε (3− 2ε)ω2(Ω− ω) Î6

Master Integrals
Four master integrals we calculate directly. The rest of master integrals
form a system of DEs, which can be put into canonical form [J. Henn,
1304.1806]

d~I(r)
dr

= εA(r) · ~I(r) with A(r) =


− 1
r + 3

1−r 0 0 0
2
r − 2

r 0 0
2
r

2
r

4
1−r 0

1
r

1
r

1
r − 2

r


I ′1(r) = 2(1−r)2

2−9ε+9ε2 I1(r), I ′3(r) = 1
ε2
I3(r),

I ′4(r) = − 1
ε2(1−r)I4(r), I ′5(r) = − 1 + r

2ε2(1− r)r I4(r) + 1
ε2r

I5(r)

We solve iteratively, keeping d-dimensional information at boundaries.
For example:

I4(r) = −(1− r)−4ε e2εγEΓ(1− ε)
[

2 Γ(1− 2ε)Γ(1 + ε)
Γ(1− 4ε)

+ ε r−1−ε(1− r)1+ε

(1 + ε)Γ(1− 3ε) 3F2

(
1, 1− ε, 1 + ε; 1− 3ε, 2 + ε; r − 1

r

)]
θ(r)θ(1− r)

Combining with tree-level collinear functions and integrating over ω gives
cross-section results. Summing with NNLO results in [M. Beneke, A. Brog-
gio, SJ, L. Vernazza, 1912.01585] we reproduce the full NNLO cross section in
[R. Hamberg, W. L. van Neerven, T. Matsuura, Nucl. Phys. B359(1991) 343–405].

https://arxiv.org/abs/2107.07353
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Abstract

Correlators of Wilson-line operators in non-abelian gauge theories are known to exponen-
tiate, and their logarithms can be organised in terms of collections of Feynman diagrams
called webs. We introduce the concept of Cweb, or correlator web, which is a set of skele-
ton diagrams built with connected gluon correlators, and we computed the mixing matrices
for all Cwebs at four loops. Our results complete the required colour building blocks for the
calculation of the soft anomalous dimension matrix at four-loop order. We also demonstrate
that low-dimensional mixing matrices can be uniquely determined to all orders in perturbation
theory from their known properties.

Introduction

= × H

n

JE

J

×

S

HM

J

JE

• Soft function obeys diagrammatic exponentiation in terms of websW, S = exp[W ]

• A web in the multiparton case is a set of diagrams which differ only by the order of the
gluon attachment on each Wilson line.

1

2 3

4

A B C D

• For a diagram D = F (D)C(D) a WebW is:

W =
∑
D

F (D)C̃(D) =
∑
D,D′

F (D)RDD′C(D)

Web mixing matrices

• A well known replica trick algorithm determines the mixing matrix R.

• R has following properties

– Idempotence: R2 = R, eigenvalues 1 or 0.
– Zero-sum rows.
– Conjecture:

∑
D c(D)s(D) = 0.

• All three loop mixing matrices and exponentiated colour factors are known

Cwebs

A Cweb is a set of skeleton diagrams, built out of connected gluon correlators attached to
Wilson lines, closed under shuffles of gluon attachments to each Wilson line.

• Recursive algorithm to generate higher order Cwebs from lower orders

O(g2n)

Cwebs

O(g2n+2)

Cwebs

Add a propagator

Turn a m point correlator into
a m+ 1 point correlator

Connect two correlators

Challenges at 4 loops

• Calculation of number of Cwebs.

• At 4-loop we have 60 Cwebs .

• The largest dimension of the mixing matrix for the Cweb is 36 × 36.

• Results available for 3-loop has largest dimension of mixing matrix as 16 × 16.

Sample Results

W(1,0,1)
4 (1, 1, 2, 2)
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A Appendix

In this appendix we give results for all the webs that appear at 4 loops in the scattering amplitude,

that can connect 4 or 5 Wilson lines. Throughout the list, R, Y and D denote respectively the

mixing matrix, the diagonalizing matrix and the diagonal matrix respectively. D is represented as

D = (1r, 0), where r is the rank of the mixing matrix R. We display only one diagram per web,

and we explicitly give the order of the shuffles that generate the other diagrams, which is tied to

the order the columns of the mixing matrix in the chosen basis. Finally, we give the expressions for

the exponentiated colour factors, which, in all cases, correspond to fully connected gluon diagrams,

as expected. We omit from the list the Cwebs that are composed of a single skeleton diagram, such

as W
(0,0,0,1)
5 (1, 1, 1, 1, 1), whose mixing matrix is just a number, R = 1.

A.1 Cwebs connecting four Wilson lines

1. W
(1,0,1)
4, I (1, 1, 2, 2)

This Cweb has four diagrams, one of which is displayed below. The table gives the cho-

sen order of the four shuffles of the gluon attachments, and the corresponding S factors.

Diagrams Sequences S-factors

C1 {{BA}, {CD}} 1

C2 {{BA}, {DC}} 0

C3 {{AB}, {CD}} 0

C4 {{AB}, {DC}} 1

The R, Y and D matrices are given by

R =




1
2 0 0 − 1

2

− 1
2 1 0 − 1

2

− 1
2 0 1 − 1

2

− 1
2 0 0 1

2


 , Y =




−1 0 0 1

−1 0 1 0

−1 1 0 0

1 0 0 1


 , D = (13, 0) . (A.1)

Finally, the exponentiated colour factors are

(Y C)1 = ifabgf cdgfedhTa
1T

b
2T

e
3T

c
3T

h
4 − ifabgf cdgf cejTa

1T
b
2T

j
3T

d
4T

e
4 ,

(Y C)2 = −ifabgf cdgf cejTa
1T

b
2T

j
3T

d
4T

e
4 ,

(Y C)3 = ifabgf cdgfedhTa
1T

b
2T

e
3T

c
3T

h
4 − fabgf cdgf cejfedhTa

1T
b
2T

j
3T

h
4 . (A.2)
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, giv y

R =




1
2 0 0 − 1

2

− 1
2 1 0 − 1

2

− 1
2 0 1 − 1

2

− 1
2 0 0 1

2


 , Y =




−1 0 0 1

−1 0 1 0

−1 1 0 0

1 0 0 1


 ,

ly, exp

(Y C)1 = ifabgf cdgfedhTa
1T

b
2T

e
3T

c
3T

h
4 − ifabgf cdgf cejTa

1T
b
2T

j
3T

d
4T

e
4 ,

(Y C)2 = −ifabgf cdgf cejTa
1T

b
2T

j
3T

d
4T

e
4 ,

(Y C)3 = ifabgf cdgfedhTa
1T

b
2T

e
3T

c
3T

h
4 − fabgf cdgf cejfedhTa

1T
b
2T

j
3T

h
4 .
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• General colour structure at four loops

Direct Construction

• Construction of mixing matrices using known properties, without applying the replica trick.
• Consider generic matrix
• Apply row-sum, column-sum rule and idempotent property to fix all the elements.

( a ) s=1 ( b ) s=1

Diagrams for mixing matrix R1

All order 2× 2 mixing matrix:

August 11, 2021 49 / 65

All order 3× 3 mixing matrix:

All order p× p mixing matrix (p is a prime number)

Conclusions

• We have introduced Cwebs or correlator webs.
• We have developed a recursive algorithm to generate Cwebs at higher orders starting from
lower orders.

• 60 Mixing matrices at four-loop were computed.
• Direct construction of all 2× 2, 3× 3 and p× p matrices are complete, p is prime.
• All the mixing matrices are idempotent and obey row sum rule and the column sum con-
jecture.

• In future determination of kinematics will complete the calculation of soft anomalous di-
mension at four loops.
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Introduction
• CHY formalism maps kinematics of n scattering particles to the moduli space of n punctured CP1. CEGM

formalism generalises this to scalar amplitudes defined as integrals on the moduli space of n punctured
CPk−1. These are called amplitudes for generalised bi-adjoint scalars.

•Genralised scattering potential:

S(k) =
∑

a1<a2<···<ak
sa1a2···ak log |a1a2 · · · ak|, (1)

where |a1a2 · · · ak| is the determinant of the k×k matrix with the inhomogeneous coordinates of punctures
a1, a2, · · · , ak as entries.

• Scattering equations:

Eia :=
∂S(k)

∂xai
= 0. (2)

• The amplitude is given by,

m
(k)
n (α|β) = 1

vol(SL(k,C))

∫ n∏
a=1

k−1∏
i=1

dxai

n∏
a=1

k−1∏
i=1

δ(Eia)PT
(k)(α)PT (k)(β), (3)

where for canonical ordering,

PT (k)(I) =
1

|12 · · · k||2 · · · k + 1| · · · |n− k + 1 n− k + 2 · · ·n|
. (4)

• Bi-adjoint scalar amplitudes for n particle scattering are related toAn−3 polytopes which are in turn related
toGr(2, n) cluster algebra. In general, CEGM amplitudes for a given k and n, are related toGr(k, n) cluster
algebra. These k > 2 amplitudes do not have a physical intepretation, as of yet.

•We provide the interpretation for k = 3, n = 6 amplitudes as polytope for the four point one-loop amplitude
for the bi-adjoint scalar theory. We use the equivalence of Gr(3, 6) to D4 cluster algebra and the recent
description of one-loop polytopes in terms of the Dn cluster algebras.

Cluster algebra and cluster fans
•An example: Gr(2, 6). Initial cluster is,

•Mutation rules define further clusters.

•Adjacency matrix: bij = (No. of arrows from i to j)− (No. of arrows from j to i).

• Cluster A-coordinates: Determinants of the CPk−1 coordinates. Eg. 〈12〉 = εabσ
(1)
a σ

(2)
b . This is a highly

redundant coordinatisation of Gr(k, n).

• Cluster χ-coordinates: Eg. x1 =
〈12〉〈34〉
〈23〉〈14〉. Their number equals the number of unfrozen nodes.

• Rays and fan: Associate the rays gi = ei to the unfrozen nodes of initial cluster where ei are the basis of
Rm, m being the number of unfrozen nodes. There is a specific rule for the mutation of the rays. Collection
of rays is called the cluster fan.

Tropicalisation and basis kinematic variables
• Tropicalisation: Multiplication becomes addition and addition becomes minimum.

• In this tropicalised description, rays of the fan separate different regions of linearity of the tropicalised
cluster A-coordinates in the tropicalised χ-coordinate space

• For eg: ray associated with 〈13〉 unfrozen node in Gr(2, 6) is e1 = (1, 0, 0) where the components are
along the tropicalised χ-coordinates. The same ray can be given in tropicalised A coordinates as ev(e1) =
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1). We can obtain the associated Mandelstam variable by taking the dot
product of the above vector with y = (s12, s13, s14, s15, s16, s23, s24, s25, s26, s34, s35, s36, s45, s46, s56). Us-
ing momentum conservation we get for the above ray,

y · ev(e1) = s12. (5)

•All the Mandelstam variables that appear as poles in the amplitude can be obtained this way by using the
rays associated with the unfrozen cluster coordinates.

• Further one can write, ∑
1≤i<j≤6

sij log〈ij〉 =
∑
α

vα log uα, (6)

where vα are the basis Mandelstam variables and uα are diherdral coordinates which are useful to study the
boundaries of the Moduli space.

• Rays of the fan can also be used to give the constraints for the kinematic associahedron.

Gr(3, 6) amplitude
• For Gr(3, 6) the association of rays of the fan with basis variables and A coordinates is no longer true as

the numbers do not match.

• Remedy to this was proposed in [3] by generalising the scattering potential as,

F =
∑

1≤i<j<k≤6
sijk log〈ijk〉 + sq1 log q1 + sq2 log q2, (7)

where,

q1 = 〈12[34]56〉 = 〈124〉〈356〉 − 〈123〉〈456〉,
q1 = 〈23[45]61〉 = 〈235〉〈461〉 − 〈234〉〈561〉. (8)

.

• Basis variables were found to be

va = {s123, s234, s345,s456, s156, s126,
t1234 + sq1, t2345 + sq2, t3456 + sq1, t4561 + sq2, t5612 + sq1, t6123 + sq2,

r123456 + sq1, r234561 + sq2, r341256 + sq1, r452361 + sq2}, (9)

• The u-coordinates are,

ua =

{
〈123〉〈246〉
〈124〉〈236〉

,
〈234〉〈135〉
〈134〉〈235〉

,
〈345〉〈246〉
〈245〉〈346〉

,
〈456〉〈135〉
〈145〉〈356〉

,
〈156〉〈246〉
〈146〉〈256〉

,
〈126〉〈135〉
〈125〉〈136〉

,

〈12[34]56〉
〈125〉〈346〉

,
〈23[45]61〉
〈145〉〈236〉

,
〈12[34]56〉
〈134〉〈256〉

,
〈23[45]61〉
〈136〉〈245〉

,
〈12[34]56〉
〈124〉〈356〉

,
〈23[45]61〉
〈146〉〈235〉

,

〈124〉〈256〉〈346〉
〈246〉〈12[34]56〉

,
〈136〉〈145〉〈235〉
〈135〉〈23[45]61〉

,
〈125〉〈134〉〈356〉
〈135〉〈12[34]56〉

,
〈146〉〈236〉〈245〉
〈246〉〈23[45]61〉

}
. (10)

•Using the above u-coordinates, we associate the kinematic basis variables for CEGM amplitudes with the
kinematic variables for the one-loop D4 polytope according to [2] as,

X1↔ s456 X2↔ t6123 + sq2 X3↔ s123 X4↔ t3456 + sq1
X̃1↔ s234 X̃2↔ t2345 + sq2 X̃3↔ s561 X̃4↔ t5612 + sq1
X12↔ r234561 + sq2 X13↔ t4561 + sq2 X23↔ r452361 + sq2 X24↔ s345
X34↔ r123456 + sq1 X31↔ t1234 + sq1 X41↔ r341256 + sq1 X42↔ s612. (11)

.

•We also obtain the constraints that define the polytope in the kinematic space, they differ from that of [2]
due to the choice of a different initial cluster. We have found the appropriate choice of initial clusters to
relate the two descriptions.

Factorisations of the Gr(3, 6) amplitude
•We have used the CEGM classification of boundaries of the moduli space and mapped them to the factori-

sations of the D4 polytope.

• Eg. Let us consider the facet X1 = 0 which corresponds to the propagator s456. In the worldsheet the
boundary is u1 = 0. In terms of the punctures, there are two possibilities: 1. σ1, σ2 and σ3 collide together
simultaneously. In this case we have,

〈123〉 ∼ O
(
ε2
)
, 〈12a〉 ≈ 〈13a〉 ≈ 〈23a〉 ∼ O (ε) , 〈abc〉 ∼ O

(
ε0
)
, a, b, c ∈ {4, 5, 6}

(12)
2. σ4, σ5 and σ6 are collinear to each other at a rate ε. In this case we have 〈456〉 ∼ O (ε) and all other
determinants are of O

(
ε0
)
. It immediately follows that u1 =

〈456〉〈135〉
〈145〉〈356〉 ∼ O (ε) and goes to 0. It can also

be checked that the incompatible variables,
{
ũ2, ũ3, ũ4, u23, u24, u34

}
→ 1.

•At the boundaries Xi = 0 or X̃i = 0, i = 1, 2, 3, 4, the amplitude can be expressed as a forward limit of
tree-level amplitudes leading to one-loop four-point amplitudes in the bi-adjoint scalar theory.

•We use the CEGM classification of boundaries of the moduli space to reduce the k = 3, n = 6 CEGM
integral into an integral over 6 punctured CP1.

Conclusions and future directions
•We have made explicit the relation between the Gr(3, 6) CEGM amplitude with the polytope for four point

one loop bi-adjoint scalar amplitude.

• Factorisations of the amplitude can be given in the moduli space using the CEGM classification of bound-
aries of the moduli space.

•We have presented the constraints in the kinematic space for the one-loop polytope and the appropiate
choice of the initial cluster using the Gr(3, 6) description.

• For the case of k = 3, n = 7, the Gr(3, 7) cluster algebra is equivalent to E6 cluster algebra. Therefore in
this case D5 is only a sub algebra.

• Study of subalgebras of cluster algebra from CEGM moduli space maybe interesting for applications to
Gr(4, n) amplitudes relevant for the study of SYM amplitudes.
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Introduction

• Integrability offers a novel way to prove non-renormalization theorems

• In the planar limit, integrable AdS5 × S5 and AdS4 × CP3 backgrounds have only
one protected multiplet for each value of global charges. The corresponding string state,
which maps to a half-BPS operator in the dual field theory, is often written as

|ZL〉 .
• The protected-spectrum of integrable AdS3/CFT2 backgrounds is much richer, with sev-

eral multiplets for a given set of charges. In the integrable formulation, these extra mul-
tiplets appear because the worldsheet theory has fermionic massless excitations [6].

• Results hold across entire 20, respectively 2 dimensional moduli space for AdS3× S3×
M4 backgrounds withM4 = T4 andM4 = S3 × S1.

• The AdS3 backgrounds considered in this paper have small (4, 4) superconformal sym-
metry. Protected states satisfy shortening conditions on both the left- and right-moving
parts of the algebra

DL = JL , DR = JR .

Such half-BPS multiplets are often written in the following notation

(2DL + 1, 2DR + 1)
S

• In the case of AdS3×S3×T4, the protected multiplets organise themselves into a family
of Hodge diamonds labelled by L, which we write following [1] as

|ZL〉
|ZLχȧ〉 |ZLχ̃ȧ〉

εȧḃ |Z
Lχȧχḃ〉 |ZLχȧχ̃ḃ〉 εȧḃ |Z

Lχ̃ȧχ̃ḃ〉
εȧḃ |Z

Lχȧχḃχ̃ċ〉 εȧḃ |Z
Lχȧχ̃ḃχ̃ċ〉

εȧḃεċḋ |Z
Lχȧχḃχ̃ċχ̃ḋ〉

• The protected spectrum of the AdS3 × S3 × K3 theory(where K3 = T4/Zn, n =
2, 3, 4, 6) is a family of Hodge diamonds labelled by integer L, with h0,0 = h2,2 =
h2,0 = h0,2 = 1 and h1,1 = 20.

Protected states from Bethe ansatz wave functions

• Protected states do not receive corrections to their energies and since the dispersion rela-
tion depends on the magnon momentum pk, protected states come from zero-momentum
magnons only

• We can label protected states by the number of momentum-carrying and auxiliary roots

|N0, N1, N3〉 ≡ |~p = ~0; ~y1 = ~s±; ~y3 = ~s±〉 .
• Auxiliary roots yI,j also take special values for protected states yI,j = s± with s±

defined below

s+ ≡ lim
p→0+

x±p =
−k+

√
−k2 + h2

h
, s− ≡ lim

p→0−
x±p =

−k−
√
−k2 + h2

h
= −

1

s+

,

which become±1 for −k = 0.

• We can equivalently write the above states in the following notation(c.f. SUGRA calcu-
lations of Boer et al)

|N0, N1, N3〉 ≡ (L+N1 +N3 −N0 + 1, L+ 1)
S
.

• The protected states can be summarised as follows, where superscripts indicate the
su(2)◦ representations

|0, 0, 0〉1

|1, 0, 0〉2 |1, 1, 1〉2

|2, 0, 0〉1 |2, 1, 1〉1⊕3 |2, 2, 2〉1

|3, 1, 1〉2 |3, 2, 2〉2

|4, 2, 2〉1

which leads to Hodge numbers h0,0 = h2,2 = h2,0 = h0,2 = 1 , h1,0 = h0,1 =
h2,1 = h1,2 = 2 , h1,1 = 4

• These states match the Hodge diamond of the seed T4 theory and, since they depend
additionally on L through the BMN vacuum |0, 0, 0〉, we match the expected protected
spectrum.

Algebraic Bethe ansatz for AdS3× S3× T4

• Relevant symmetry algebras: psu(1|1)2
c.e. and psu(1|1)4

c.e.. Generators satisfy the com-
mutation relations

{QL, SL} = HL, {QR, SR} = HR, {QL,QR} = C, {SL, SR} = C̄ .

• Exact psu(1|1)2
c.e.-invariant R matrices

RLL(p, q) =


Apq 0 0 0
0 Bpq Epq 0
0 Cpq Dpq 0
0 0 0 −Fpq

 , RL̃L̃(p, q) =


Apq 0 0 0
0 Bpq −Epq 0
0 −Cpq Dpq 0
0 0 0 −Fpq

 ,
where the entries are functions of Zhukovski variables x±p , x

±
q . For e.g. in the normali-

sation whereApq = 1, we haveBpq =
(
x−p
x+
p

)1/2 x+
p−x+

q

x−p−x+
q
.

• The Zhukovski variables x±p are related to the momentum p through the relations

x+
p

x−p
= eip, x+

p +
1

x+
p

− x−p −
1

x−p
=

2i(|m|+ −kp)

h
.

which are solved in the physical region by

x±p =
(|m|+ −kp) +

√
(|m|+ −kp)2 + 4h2 sin2 p

2

2h sin p
2

e±
ip
2 , −k =

k

2π
.

• The psu(1|1)4 R-matrix is the graded tensor product of the psu(1|1)2 R-matrices

Rpsu(1|1)4 = RLL

psu(1|1)2 ⊗RL̃L̃

psu(1|1)2.

• The psu(1|1)2
c.e. algebra, the psu(1|1)4

c.e. monodromy matrix can be written as a prod-
uct of two 2× 2 psu(1|1)2

c.e. monodromy matrices. We denote the components of this
smaller matrix, and the associated transfer matrix by

MI(p0) =

(
AI(p0) BI(p0)
CI(p0) DI(p0)

)
, T I(p0) = str0MI(p0) .

where the index I = 1, 3 labels the two copies of psu(1|1)2
c.e.

• Eigenstates built from

|~p; ~y1; ~y3〉 ≡ B1(y1,1) · · · B1(y1,N1
)B3(y3,1) · · · B3(y3,N3

) |χp1
· · ·χpN0

〉 .
where ~p = {p1, . . . , pN0

} and ~yI = {yI,1, . . . , yI,NI
}

• Bethe equations

1 =

N0∏
j=1

√√√√x+
j

x−j

yI,k − x−j
yI,k − x+

j

, k = 1, . . . , NI, I = 1, 3 .

(
x+
k

x−k

)L
=

N0∏
j=1
j 6=k

√√√√x−k
x+
k

x+
j

x−j

x+
k − x

−
j

x−k − x
+
j

(σ◦◦kj)
2
N1∏
j=1

√
x+
k

x−k

x−k − y1,j

x+
k − y1,j

N3∏
j=1

√
x+
k

x−k

x−k − y3,j

x+
k − y3,j

.

Protected states in AdS3× S3× K3 orbifolds

• The n = 2 untwisted sector protected spectrum is
|0, 0, 0〉

Ø Ø
|2, 0, 0〉 |2, 1, 1〉⊕4 |2, 2, 2〉

Ø Ø
|4, 2, 2〉

• The n > 2 untwisted sector protected spectrum is
|0, 0, 0〉

Ø Ø
|2, 0, 0〉 |2, 1, 1〉⊕2 |2, 2, 2〉

Ø Ø
|4, 2, 2〉

• We have dropped the superscript denoting the su(2)◦ representations, since su(2)◦ is
broken by the orbifold and each multiplet above has multiplicity one.

• Twisted sectors: only the massless momentum-carrying Bethe equations change. The
twisted-sector boundary conditions are implemented in the Bethe equations by an addi-
tional phase e−iφ0 where φ0 is

φ0 = ±
2π

n
.

• Counting of protected multiplets in the twisted sectors matches the Hodge number count-
ing: there are 16, respectively 18, twisted sector multiplets in the Z2, respectively Zn>2,
orbifolds.
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Problem statement
Due to the strong interaction, the processes of proton collision are described by phenomenological theories Our aim is to describe such processes by the dynamic theory.

We suggest the multiparticle fields theory for this purpose. Here we wish to describe the elastic proton collision. Namely, the differential cross section of proton scattering,
because it has a characteristic non-monotonic form.

In order to describe the differential cross section of scattering, we need to describe
loop diagrams. The purpose of this work is to calculate the model of the differential
cross section of elastic scattering within the method of multiparticle fields, based on
the non-loop diagrams as well as diagrams of Fig. 2, Fig. 3, and the diagrams obtained
from Fig.  2,  Fig.  3  by permutation  of  particle  lines  in  the  final  state.  We aim to
compare the results of the calculation with the known experimental data and to find
out  whether  it  is  possible  to  describe  the  experimentally  observed effects  of  non-
monotonicity  in the  differential  cross  section  dependence  on  the  square  of  the
transmitted four-momentum within the considered model.

Here we calculate only single-loop diagrams, but later we plan to apply this method
for more loops.

The analytical expression for the diagram of Fig. 2 has the form:

A= lim
ε→+0

(ig)4

(2π )6 (ν̄ +
ν 3

(P4))
s4

γ s4 s2

a (ν̄ -
ν 2

(P2))
s2

(ν̄ +
ν 4

(P3))
s3

γ s3 s1

b (ν̄ -
ν 1

(P1))
s1

×δ ((P3+P4)−(P1+P2))×

×∫d4 k (ka+2P2 a)(2P1b−kb)
1

M p
2−(P1−k )

2−iε
1

M p
2−(P1+k )

2−iε
×

× 1

MG
2 −k2−iε

1

MG
2 −(P1−P3−k)

2−iε

Here g is the effective coupling constant, Mp and MG – masses of proton and glueball, respectively, (ν̄ +
ν 3

(P4))
s4

, (ν̄ -
ν 2

(P2))
s2

, (ν̄ +
ν 4

(P3))
s3

, (ν̄ -
ν 1

(P1))
s1

 are the solutions of

Dirac's equations, γ s4 s2

a  - elements of Dirac matrices. All quantities are normalized by the mass of proton. MG and g are considered as adjustable parameters. We need to

calculate the limits of four-dimensional integrals over virtual four momenta k, which determine the tensor components at ε → +0. We will denote it further as a tensor tab:

tab= lim
ε →+0

∫d4 k (k a+2P2a)(2P1b−k b)
1

M p
2−(P1−k)

2−iε
1

M p
2−(P1+k )

2−iε
× 1

MG
2 −k 2−iε

× 1

MG
2 −(P1−P3−k)

2−iε
.

Each of the indices a and b takes four values from 0 to 3.

The problem is not in the large dimensionality of the integrals, but in the fact that it is actually necessary to calculate the limit from the multidimensional integral
when approaching zero parameters that bypass the poles of the integrand. In this case, the passage to the limit cannot be performed before the calculation of the integral,
because the poles are falling inside the integration domain and the integral loses its meaning. The need to calculate the integral before the boundary transition limits the

possibility of applying numerical methods to calculate the integral. This is because the passage to the limit will require calculation at small parameter values at which the poles become close to the integration domain. It complicates the numerical calculation.
Consider an arbitrary Feynman diagram. Let us denote the number of integration variables as n, and the integration variables as x1, x2, ..., xn. Their whole set will be denoted as {x}. Then we write the tensor of dimension k for this diagram:

ta1a2...ak
= lim

ε→+0
∫dx1dx2 ...dxn

f a1 a2 ...ak
(x)

(z1(x)−iε )(z2(x )−iε ) ...(z l(x)−iε )
Here l is the number of Feynman denominators corresponding to the diagram (according to the number of internal lines of the diagram), f a1a2 ...ak

(x) -

the tensor which is determined by the numerators of Feynman propagation functions (chronological pairings),  za(x ), a=1,2 , ... , l - functions from

integration variables that determine Feynman denominators. 
We represent the denominators as an exponent in the power of the logarithm and get the epsilon parameter in the denominator. Further, integration

substituting the integration variable, according to the relation x1 = x1(x1, x2,…,xn) + εy1 , we get the epsilon in the numerator. Thus, we can reduce the
epsilon in the numerator and denominator and direct the remaining parameters of the epsilon to zero.

But then there is the problem that maybe several denominators equal to zero on a subset on which the first denominator is zero.
To avoid this problem, instead of the equation z1(x)=0 , one could similarly consider a system of equations of the form:

{za1
(x )=0 ,

za2
(x )=0 ,

............... ,
zar(x )=0

.

Here a1, a2, …, ar is some subset of the set of indices 1,2,..., l of expressions za(x ) . The number of these expressions r and the values of the indices a1,

a2, …, ar are chosen so that the system of equations was consistent. However, adding another equation of the form zar+1(x)=0  yields an incompatible

system, i.e. the system without solutions. The system of equations defines such a subset of the integration domain on which the maximum number of
denominators at ε→+0 would take zero values.

Calculation of analytical expressions of a Feynman diagram with one loop using the Laplace method

Now let us apply the Laplace's method to pass to the limit. To do this, we introduce the notation f ab(k
0 , k⃗ ) for the tensor numerator, choose the

center-of-mass system, and write the tensor:

tab=∫
−∞

∞

dk0∫d k⃗ f ab(k0 , k⃗ ) 1

M p
2−(√s

2
+k0)

2

+( k⃗− P⃗1)
2−iε

1

M p
2−(√s

2
−k0)

2

+(k⃗−P⃗1)
2−iε

1

MG
2 −(k0)2+ k⃗2−iε

1

MG
2 −(k0)2+ P⃗1−P⃗3−k⃗

2−iε

In [4] it was shown that either the first pair of denominators, which correspond to the horizontal lines in the diagram Fig. 2, or the second
pair of denominators, corresponding to two vertical lines, can become zero at the same time. Consider the system of equations of the first
two denominators. Put the real parts equal to zero, then 1/ε2 remains, which gives the maximum contribution to the integrand.

Next, we apply the Laplace method to calculate the denominators of the horizontal and vertical lines of the Feynman diagram
separately.

The model has two adjustable parameters: MG - the mass of the glueball and G - the strong interaction constant. We also plotted the
diagrams for energies of 22,4 and 30.5 GeV and compared these plots with the same adjustable parameters.

Conclusions
 We show that the method of multiparticle fields leads to dynamic models that can be used to describe experiments on the scattering of
multiquark systems and to achieve agreement with experimental data at least at the level of qualitative coincidence.
 The application of the Laplace method to calculate loop diagrams allows their approximate calculation, but is still quite tedious and
needs further improvement.
 The  experimentally  observed  effects  of  non-monotonicity  of  the  dependence  of  the  differential  cross  section  of  elastic  proton
scattering on the square of the transmitted four-momentum in our model are the consequences of spin effects. Taking these effects into
account in the non-loop and simplest loop diagrams led to the qualitative coincidence with the experiment. The obtained results suggest
that further consideration of more complex loop diagrams with more than one loop will allow to achieve a quantitative coincidence with
the experimental results.
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Fig. 1: Graph of the dependence of the differential cross section
dσ el

dt
(x ) on

the square of the transmitted four-momentum t, taken from [1]

Fig. 2: The simplest loop diagram of elastic proton scattering. P1, P2  - four-
momenta of input protons, P3, P4 - four-momenta of output protons, k, P1 – k,  P2  +
k, P1 -P3 -k  - four-momenta of virtual particles. The double lines correspond to the

bound state of gluons - glueballs.

Fig. 3: The simplest loop diagram of elastic proton scattering. P1, P2  - four-
momenta of input protons, P3, P4 - four-momenta of output protons, k, P1 – k, P4 –
k, P1 -P3 -k  - four-momenta of virtual particles. The double lines correspond to the

bound state of gluons - glueballs.

Fig. 4: Comparison of the dependence of the differential cross section dϭ/dt on the square of the
transmitted four-momentum t at energy √s = 44.6 GeV calculated according to the model described

in this work (green dots) with the experiment (black dots) [1]

Fig. 5: Comparison of the dependence of the differential cross section dϭ/dt on the square of the transmitted
four-momentum t at energy √s = 44.6 GeV calculated according to the model described in this work (t is non-

dimensioned by the square of the proton mass and dϭ/dt  - on the inverse square of the proton mass)
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Abstract
Celestial and momentum space amplitudes for massless particles are related to
each other by a change of basis provided by the Mellin transform. Therefore prop-
erties of celestial amplitudes have counterparts in momentum space amplitudes
and vice versa. In this work, we study the celestial avatar of dual superconformal
symmetry of N = 4 Yang-Mills theory. We also analyze various differential equa-
tions known to be satisfied by celestial n-point tree-level MHV amplitudes and
identify their momentum space origins.

Motivations
The quest for flat space holography has recently received a boost owing to the real-
ization that scattering amplitudes in 4D flat spacetime can be recast as correlation
functions of a 2D conformal field theory living on the celestial sphere [1]–[3]. Then the
celestial CFT (CCFT) becomes a potential candidate for a holographic description of
the flat space S-matrix. A path towards a better understanding of CCFTs involves
translating well understood aspects of momentum space amplitudes into statements
about celestial correlators, as well as mapping momentum space amplitudes onto the
celestial sphere.

In this work, we look at this problem from the both sides: we study the celestial
avatar of the dual superconformal symmetry of N = 4 Yang-Mills; we also identify
the momentum space origins of various differential equations satisfied by celestial
n-point tree level MHV amplitudes.

Celestial Dual Superconformal
Symmetry
Let us first rewrite the expression for the generators Kαα̇ and SAα given in [4] in a
more compact form

Kαα̇ = −
∑
i<j

(
λ̃α̇i λ

α
jDj,i + λαi λ̃

α̇
i

)
,

SAα = −
∑
i<j

(
λj,αη

A
i Dj,i + λi,αη

A
i

)
.

where we have made use of momentum conservation and also introduced the operator

Di,j = λαj
∂

∂λαi
− λ̃i,β̇

∂

∂λ̃j,β̇
−
∑
A

ηAi
∂

∂ηAj
,

Let O be an operator acting on the amplitude. The corresponding operator Õ,

which acts on the celestial amplitude is defined by

ÕÃn :=

∫ ( n∏
i=1

dωi
ωi

ω∆i
i

)
OAn.

Then the operator K̃αα̇ and S̃Aα act on the celestial amplitude as

K̃αα̇ =
∑
i<j

{(
1 z̄i
zj z̄izj

)[
2εie

∂
∂∆i

(
∆j + Jj − zij

∂

∂zj

)
+ 2εje

∂
2∂∆i

+ ∂
2∂∆j

∑
A

ηAj
∂

∂ηAi

−2εje
∂

∂∆j

(
∆i − Ji + z̄ij

∂

∂z̄i

)]
− 2εie

∂
∂∆i

(
1 z̄i
zi ziz̄i

)}
S̃Aα =

√
2
∑
i<j

{(
−zj

1

)[
εiη

A
i e

∂
2∂∆i

(
∆j + Jj − zij

∂

∂zj

)
+ εje

∂
2∂∆jηAi

∑
B

ηBj
∂

∂ηBi

−εjηAi e
∂

∂∆j
− ∂

2∂∆i

(
∆i − Ji + z̄ij

∂

∂z̄i

)]
− εiηAi e

∂
2∂∆i

(
−zi

1

)}
.

Differential Equations
• The celestial tree-level MHV n-point amplitude is given by the Mellin

transform of the amplitude w.r.t. to ωi [3], [5]

M̃n(Ji,∆i, zi, z̄i) =

∫ [
n∏
i=1

dωi
ωi

ω∆i
i

]
Mn(hi, ωi, zi, z̄i)

:= N (zi, z̄i) δ

(∑
i

(∆i − 1)

)
F (xa, b,∆i) ,

where F (xa, b,∆i) is the Aomoto-Gelfand hypergeometric function. We find that
momentum conservation and GL(n− 4) transformations reduce to the well-known
first-order defining PDEs of AG function.

• Momentum conservation: the total momentum celestial operator is

P̃µ =
∑n

i=1 εi q
µ
i e

∂
∂∆i and we define 4 vectors vµb s.t. vµb εa qaµ = −Uxa,b,

b = {n− 3, n− 2, n− 1, n}.

P̃µM̃n = 0 ⇒
n∑
i=1

εi vbµ q
µ
i e

∂
∂∆iM̃n = 0 ⇒

n−4∑
a=1

xa,b
∂ F

∂xa,b
= αbF

•GL(n − 4) transformations: using the momentum conserving delta function
we can solve for arbitrary 4 ω’s and these are equivalent representations up to
GL(n− 4) transformations. This property of M̃n gives rises to

αaF +

n∑
b=n−3

xa,b
∂ F

∂xa,b
= − F , 1 ≤ a ≤ n− 4

• Generalized Banerjee-Ghosh (BG) equation
We derive momentum space generalizations of the differential equations found in
[6] by connecting them to the behaviour of amplitudes under BCFW shifts:

λi → λ̂i = λi + z λj λ̃j → ˆ̃λj = λ̃j − z λ̃i.

For infinitesimal z, this shift is implemented onMn by the Di,j operator we intro-
duced before.

Di,jMn = Mn

(
− 〈i− 1, j〉
〈i− 1, i〉

− 〈i + 1, j〉
〈i + 1, i〉

+ 4
〈j, t〉
〈i, t〉

δi,s + 4
〈j, s〉
〈i, s〉

δi,t

)
Mapping this to the celestial sphere and taking Ji = +, we get[

−
(

∆i + zij
∂

∂zi

)
+

zi−1,j

zi−1,i
+

zi+1,j

zi+1,i
− 1

]
M̃n

+ εiεj

(
∆j − Jj − 1 + z̄ji

∂

∂z̄j

)
e

∂
∂∆i
− ∂
∂∆jM̃n = 0

which generalizes the color-stripped BG equation.

• Connect to BG equation: without loss of generality, we choose i = 1. After
some manipulation, the color-stripped BG equation can be brought to the formα1 + 1 +

n∑
b=n−3

x1,b
∂

∂x1,b

−∑
b

ε2

ε1

(
x2,b + z̄1,2

∂x2,b

∂z̄2

)(
∂

∂x1,b
− ∂

∂x2,b
e

∂
∂∆1
− ∂
∂∆2

)

−ε2

ε1
e

∂
∂∆1
− ∂
∂∆2

(
α2 + 1 +

∑
b

x2,b
∂

∂x2,b

)]
F = 0

which shows that it reduces to combinations of the hypergeometric equations. The
orange term is identically zero based on the integral representation of F .
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TheWilson-loop dlog Representation
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Introduction
The duality between scattering amplitudes and (super-)Wilson-

loops (WL) [1] in planar N = 4 super-Yang-Mills theory (SYM)
prompts the study of individual Feynman integrals from this point
of view. Our attempts in this direction reveal that:

• Put in d log forms, integrals become easily computable;
• Integrals such as the “ladders” have rich analytic structures.

Example: Pentagon
To illustrate our method, consider the chiral pentagon integral Ω1.

Ω1 =

∫
d4`
〈`̄i ∩ j̄〉〈Iij〉
〈〈`i〉〉〈〈`j〉〉〈`I〉

(iX)

(jY )
i j

(I)

=

∫
d4`

∫ ∞
0

d2τ
〈`̄i ∩ j̄〉〈Iij〉

〈`iX〉2〈`jY 〉2〈`I〉

=

∫ ∞
0

d2τ
〈Iī ∩ j̄〉〈Iij〉

〈iXjY 〉〈iXI〉〈jY I〉
.

(∗)

Here, we have performed a partial Feynman parametrization on
1
〈〈`i〉〉 := 1

〈`i−1i〉〈`ii+1〉 =
∫∞
0

dτX
〈`iX〉2 , where X := Zi−1 − τXZi+1, and

similarly for 1
〈〈`j〉〉 . These have the interpretation of fermion insertions

along WL edges i and j. The remaining propagator 1
〈`I〉 acts as a

scalar interacting with the fermions through Yukawa coupling in the
dual spacetime. In the last step, we have used the famous star-triangle
identity to perform the loop integral.

The above integral is easily put in d log form by partial fractioning:

Ω1 =

∫
d log

〈jY I〉
〈jY iI ∩ ī〉

d log
〈iXjY 〉
〈iXI〉

.

Moreover, since the Feynman parameters τX,Y are projective, we may
rescale τ 7→ ατ arbitrarily. Choosing α wisely, we espress the d log
form using dual-conformally-invariant (DCI) variables only:

Ω1 =

∫
d log

τY + 1

v(1− uw)τY + (1− u)
d log

τX + 1

u(τY + vw)τX + (τY + v)
.

From this expression, it is straightforward to get a manifestly DCI
result—the symbol and function can be obtained from linearly-
reducible d log integrals purely algebraically.

Application: Double Pentagon
The most general double pentagon and its degenerations consiti-

tute the entire 2-loop MHV amplitudes in planar N = 4 SYM. They
also give many components of NMHV amplitudes [2]. By applying
(∗) to one of the loops, we can reduce the most general double pen-
tagon to a two-fold integral of a hexagon:

Idp =

j k

li

=

∫ ∞
0

d2τ
〈ijkl〉
〈iXjY 〉

×

j
k−1

i
l+1

Y
X

k

l

.

To put it in d log form, expand the remaining hexagon to a linear
combination of weight-2 scalar box integrals. Miraculously, the coef-
ficients combine with the prefactor 〈ijkl〉

〈iXjY 〉 into nice d log forms:

Idp =

∫
[x, xk]Ix,xk

− (k−1↔ k+1)− (k̄ ↔ l̄) + [x, y]Ix,y,

where Ia,b are scalar box integrals with propagators a and b shrinked,
and [a, b] denote the corresponding d log∧d log prefactors [3]. The
symbol is easily computed, once proper rationalization is done to
make d log arguments linearly-reducible. The result contains 164 ra-
tional letters and 96 algebraic letters, and the algebraic part cancels
out between Idp(i, j, k, l) and Idp(j, k, l, i) in the NMHV amplitudes.

Penta-Ladder-Type Integrals
An interesting class of Feynman integrals is the penta-ladder-type,

whose defining feature is a chiral pentagon subgraph at the end of a
ladder. We consider only the IR-finite integrals for simplicity.

Penta-ladder-type integrals satisfy a recursion relation [4]:

IL =

i

j

i−1

j+1

i+1
j−1

=

∫
i

j

i−1

j+1

X
Y
× d log(τY +1)d log

τX+1

τX

=

∫
IL−1

∣∣∣∣i+1→X
j−1→Y

× d log(τY +1)d log
τX+1

τX
.

The deform-then-integrate can be performed for X and Y separately:

I1 =

i

j

i−1

j+1

i+1
j−1 .

IL =

∫
d log(τY +1)× IL− 1

2
|j−1→Y ,

IL− 1
2

=

∫
d log

τX+1

τX
× IL−1 |i+1→X ,

The thus-defined “(L − 1
2 )-loop” integrals have odd transcendental

weight, and their physical meaning is generally unclear.
It is always possible to expand I1 to scalar boxes. Thus, a penta-

ladder-type integral can be written as 2(L − 1)-fold d log integrals of
weight-2 functions. In the special case of penta-ladder, the 1-loop in-
tegral Ω1 has its own d log form, so the integral becomes a 2L-fold
recursive d log integral.

In the cases of penta-ladder and double-penta-ladder, the d log
representation allows us to recursively prove that their symbol alpha-
bets form certain cluster algebras [5]:

8pt penta- 7pt double-penta- 8pt double-penta-

IL

I1

4

1

2
3

5
6

7
8 7 1

2
3

45

6

8 1

2
3

45

6
7

cluster
algebra D3 D4 affine D4 (trunc.)

Outlook
• Study the IR-divergent integrals with proper regularization;
• Find applications to the study of amplitudes (e.g., in 2d);
• Search for a geometric interpretation of the d log form;
• Explore the origin of cluster structures.
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Abstract
We revisit the scattering of waves of helicity h < 2 in the Schwarzschild and Kerr backgrounds in the long-wave regime. The classical wave scattering is
computed in terms of 2→ 2 QFT amplitudes in flat spacetime, which are shown to correspond to Newmann-Penrose amplitudes obtained from solving
the Regge-Wheeler/Teukolsky equation in the spinless/spinning scenario. Finally, in the small scattering angle limit, we argue that the wave scattering
admits a universal point particle description, determined by the eikonal approximation. The scattering phase at 2PM (G2) for a spinning and 3PM (G3)
for a spinless BH is provided and shown to agree with known results in the literature.

1.Schwarzschild scattering
The radiative content for wave perturbations of
the Schwarzschild BH (SBH) is encoded by the
asymptotic form of the Neumann-Penrose (NP)
scalars

Ψh(t, r, θ, φ) ∝ 1

r
e−iEt

∞∑
l=0

Dh
rR`(r) hY`0(θ, φ) ,

where hY`m are spherical harmonics of spin-
weight/helicity h, R`(r) are solutions to the
Regge-Wheeler equation and Dh

r is a differential
operator trivial for h = 0. A vacuum solution to
the wave equation consist of an incoming plane
wave ΨPW and an outgoing scattered wave ΨS:
Ψ = ΨPW + ΨS.
The key observable is the differential cross
section, which measures the angular profile
of the flux from the scattered wave dσ

dΩ =
limr→∞ r2|ΨS |2 = |f(θ, φ)|2. For instance, for
scalar waves the amplitude function is

f(θ) =
2π

iω

∞∑
l=0

Yl0(0, 0)Yl0(θ, 0)
(
e2iδl−1

)
, (1)

where the phase shift e2iδl is directly related to
Rl, once the boundary condition for the total
wave of being purely ‘ingoing’ at the horizon is
imposed.
Long wavelength scattering
The solution (1) is formally exact. In order to
find closed expressions, we restrict to the long
wave regime, where ε = 2GMω � 1. To leading
order in ε, the scalar solution is

f(θ) = GM
Γ(1− iε)
Γ(1 + iε)

sin

(
θ

2

)−2+i2ε

, (2)

where Γ(1−iε)
Γ(1+iε) , is the ‘Newtonian phase’. Cru-

cially, it is not a phase for ω ∈ C. Its poles
located at ε := 2GMω = in , n ∈ N provide
the spectrum of bounded states of the Newto-
nian problem [1]. (It can be recovered from an
eikonal amplitude, see (5.13) in [2])
For waves of helicity h ≤ 2, the differential cross
section can be obtained with the compact ex-
pression

dσh

dΩ
=

G2M2

sin4 (θ/2)

[
cos4h (θ/2) +η sin 4h (θ/2)

]
,

(3)
where η = 1 for h = 2, and zero otherwise. For
θ → 0, the differential cross section has a uni-
versal divergence, due to the long-range nature
of the gravitational potential.

2.Kerr Scattering
Wave scattering off the Kerr BH (KBH) is analogous to the scattering off the SBH, with some
complications arising from the BH’s spin. The NP scalar is

Ψh(t, r, θ, φ) = e−iωt
∞∑
l=0

l∑
m=−l

−hS`m(θ, φ; aω)Rlm(r) , (4)

where now the angular dependence is captured by the spin weighted spheroidal harmonics, and the
radial functions satisfy the s = h, radial Teukolsky equation. Analogous expression for the amplitude
functions f(θ, φ) in (1). and the phase shift e2iδ`m , can be found.
Expansion parameters
The long wave (perturbative ) parameter ε, the spheroidicity parameter z = 2aω and the rotation
rate parameter a? = z

ε = a
GM .

The perturbative expansion is controlled by ε� 1, and a? � 1. In practice, black hole perturbation
theory (BHPT) assumes a? ≤ 1, and then the results are analytically continued to a? →∞. However,
unlike for the SBH, finding closed expressions analogous to (2) is very difficult in almost every spin
configuration.

3. Amplitudes ↔ BHPT dictionary
QFT scattering amplitudes with massless particles naturally encode the radiative content of a scat-
tering process. For wave scattering off BHs, it is reasonable to propose that the a 4-pt amplitude
Aa,h4 , with two massive spin a = S/M legs, and two massless legs of helicity h, encode the radiative
content of the NP-scalar, provided a prescription to take the classical limit is given

• For a given order in GM/r, Quantum corrections in Aa,h4 appear through E
M ∼ 1

rM . Can
disregard them using E → ~ω, r → r/~ and taking ~→ 0.

• Scaling r → ~−1r, is equivalent to a large angular moment expansion L → ~−1L. Therefore,
for the KBH, the infinite spin limit is needed a→ ~−1a.

With this prescription at hand one can check that:

• To leading order in G, |Aa=0,h
4 |2 easily recovers the results in (3).

• For KBH, Aa,h4 provides a closed form for the partial wave expansion (see (3.8 -3.13) in [2]).

4. A classical Wave-Particle duality and the eikonal in Kerr
The universality for θ → 0 in (3) also appears for wave scattering off the KBH. In this regime, the
same scattering function χ(b,m = ωb), can be obtained from, the eikonal approximation, the phase
shift e2iδ`m in the large `-limit, and from the propagation of massless geodesic in Kerr. We obtain

• At 1PM, χ(b,m = ωb) = −2GMω log
[
b2ω2 + a2ω2 sin2 γ + 2aωm

]
= 2 δeiklm (γ), (γ is the angle

between a and the direction of the incoming wave).

• At 2PM χ1-loop(b,m = bω) = −π(GM)2ω
2a2

(
b− 4a− (b−a)4

(b2−a2)3/2

)
, for equatorial scattering γ =

π/2, which agrees with the two body result of [3] in the massless limit for one of the BHs.

• At 3PM for wave scattering off the SBH

χ2-loop(b,m = bω) = −4GMω
(

log b− 15πGM
16b − 16G2M2

3b2 + . . .
)

+O(a) , which agrees with the
probe limit result (6.29) of [4], in the massless limit.

5. Remarks & Conclusions
• There is a dictionary between QFT amplitudes and BHPT which allows to get new information

in both sides. BHPT gives higher-spin data for amplitudes, and amplitudes resume BHPT.

• There is a 3-equality relation between the eikonal approximation, the phase shift from BHPT,
and null geodesics motion in the Kerr background, in the θ → 0 limit.
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Motivation
It’s well-known that the tree-level open string integrand can be expanded onto (n−3)! bases
on the support of integration-by-parts (IBP). This expansion simplifies the study of string
amplitudes in many aspects. In our paper to appear, we achieve this goal at one-loop level.
We find a systematic way to reduce genus-one correlaters of bosonic, heterotic and super
symmetric string theories to a universal bases of worldsheet functions.

A Brief Review: universal bases at tree level
Any n-point massless open string tree-level amplitude takes the form

Atree =

∫
z1<···<zn

dnz

SL(2)

:=KN︷ ︸︸ ︷∏
i<j

z
−sij
ij In ({ki, εi, zi}) , (1)

where sij := −2α′ki·kj, zij = zi−zj; one can fix three punctures, e.g. (z1, zn−1, zn) = (0, 1,∞),
using SL(2,R) redundancy. After stripping the Koba-Nielsen factor off, the (reduced) string
correlator In is a rational function of z’s which depends on details of vertex operators. There
may be terms in In that are proportional to a single PT factor

PT(1, 2, · · · , n) :=
1

z12z23 · · · zn1
. (2)

But in general, there would be a product of shorter PT factors in the string integrand, e.g.

PT(1, 2, · · · ,m)PT(m + 1,m + 2, · · · , n) . (3)

As shown in [1], one can break a shorter PT factor this way

PT(12 · · ·m)(· · · ) IBP
=

1

1 + s12···m

 m∑
`=2

n−1∑
j=m+1

∑
ρ∈XttY T

(−1)|Y |+1 s`j

z1ρ1zρ1ρ2 · · · z`ρ|ρ|z`j

 (· · · ) ,

(4)
where X and Y are obtained by matching (1, 2 · · ·m) = (1, X, `, Y ). The ellipsis part is free of
z2, z3, · · · , zm. Then eq.(3) is reduced as a linear combination of PT factors, which is easy to
be further expanded onto the (n-3)! BCJ bases, for example PT(1, ρ(2, 3, · · · , n− 2), n− 1, n).
As discussed in [2], for a product of more shorter PT factors, one just needs to use the above
identity recursively. Our essential task is to find the analog of eq.(4) at one-loop level.

Open-string integrals at genus one
At one-loop, we integrate (S)CFT correlators over a torus, which is equivalent to a parallel-
ogram with identified edges. By suitable involutions of the torus, one obtains the surfaces
describing the scattering of open-string states, the cylinder and the Möbius strip. Functions
defined on this modular space should be doubly-periodic,

F (z + 1) = F (z + τ ) = F (z) , (5)

where τ is the modular parameter. Doubly-periodic Kronecker-Eisenstein series can gener-
ate such doubly-periodic functions

Ω(z, η, τ ) ≡ exp

(
2πiη

Im z

Im τ

)
θ′(0, τ )θ(z + η, τ )

θ(z, τ )θ(η, τ )

=

∞∑
w=0

ηw−1f (w)(z, τ ) , (6)

with lower point examples given by f (0) = 1 and f (1)(z, τ ) = ∂z log θ(z, τ ) + 2πiIm z
Im τ . These

f (k) functions appear in the string integrand. For example, the OPE of two Kac-Moody
currents on torus reads 〈Ja1(z1)Ja2(z2)〉 ∼ 2f

(2)
12 −

(
f

(1)
12

)2
+ (free of z), where f (k)

ij is the ab-

breviation of f (k)(zij, τ ). Remind that at tree level, this OPE gives ∼ PT(12). The massless
n-point one-loop amplitudes of the open string give rise to integrals of the form (z1 = 0) [3]

∫
C(∗)

 n∏
j=2

dzj

 f
(k1)
i1j1

f
(k2)
i2j2
· · ·

:=KNτ︷ ︸︸ ︷
exp

 n∑
i<j

sijG(zij, τ )

 , (7)

with different integration domains C(∗) for the cylinder and the Möbius strips. The bosonic
Green function in the one-loop Koba-Nielsen factor KNτ satisfies ∂ziG(zij, τ ) = −f (1)

ij and
therefore

∂ziKNτ = −KNτ
n∑
j 6=i

sijf
(1)
ij . (8)

This can help us to reduce the string integrand at one-loop level.
Studying relations of generating functions is more efficient since it contains an infinite
number of relations of f (k)

ij . It’s argued that any open string one-loop integrand can be
reduced as a linear combination of functions generated by the following expression (with
η23...n = η2 + η3 + . . . + ηn)

Ω12···n := Ω (z12, η23...n, τ ) Ω (z23, η3...n, τ ) . . .Ω
(
zn−1,n, ηn, τ

)
, (9)

and its relabelling over 2, 3, · · ·n. However a practical way to realize this idea in general
case was absent for a long time until we worked it out.

Identities of the Kronecker-Eisenstein series
There are three important identities of the Kronecker-Eisenstein series: Fay identity

Ω (z1, α1, τ ) Ω (z2, α2, τ ) = Ω (z1, α1 + α2, τ ) Ω (z2 − z1, α2, τ ) + (1↔ 2) , (10)

its variant

Ω (z12, η, τ ) Ω (z21, ξ, τ ) = Ω (z12, η − ξ, τ )
(
ĝ(1)(ξ, τ )− ĝ(1)(η, τ )

)
+ ∂zΩ (z12, η − ξ, τ ) , (11)

where ĝ(1)(η, τ ) = ∂η log θ(η, τ ) + πη
Im τ , and the last one about their derivatives

∂zΩ(z, η, τ )− ∂ηΩ(z, η, τ ) =
(
ĝ(1)(η, τ )− f (1)(z, τ )

)
Ω(z, η, τ ) . (12)

Together with eq.(8), the above equations are enough to derive a formula to break a cycle

C(12···m) = Ω1,2(η2···m,m+1)Ω2,3(η3···m,m+1) · · ·Ωm−1,m(ηm,m+1)Ωm,1(ηm+1) with m ≤ n ,

(13)
as an analog of eq.(4). Here Ωij(ηab...c) := Ω(zij, ηab...c, τ ). For simplicity, we only show the
cases n = m in the remaining content of this poster.

Length-2 cycle
According to (11), we have

C(12) = Ω1,2(η2,3)Ω2,1(η3) = Ω1,2(η2)
(
ĝ(1)(η2, τ )− ĝ(1)(η23, τ )

)
+ ∂z1Ω12 (η2) . (14)

Note that (
∂z1Ω12 (η2)

)
KNτ

IBP
= −Ω12 (η2)

(
∂z1KNτ

)
= Ω12 (η2) KNτs12f

(1)
12 . (15)

Together with eq. (12), it can be used to solve ∂z1Ω12 (η2) and f
(1)
12 Ω12 (η2). Hence we get

C(12)
IBP
=

1

1 + s12

(
s12∂η2 − ĝ1(η2) + (1 + s12) Ṽ1 (η2, η3)

)
Ω1,2(η2) , (16)

where Ṽ1(ηI , ηJ) := ĝ1(ηI) + ĝ1(ηJ)− ĝ1(ηI,J).

Length-3 cycle
The first non-trivial example is to break C(123) = Ω1,2(η2,3,4)Ω2,3(η3,4)Ω3,1(η4). We found

(1 + s123)C(123) (17)
IBP
=
(
(s13 + s23)∂η3 − s23∂η2 − ĝ1 (η3)− s12Ṽ1 (η3, η2) +

(
1 + s1,2,3

)
Ṽ1 (η3, η4)

)
Ω1,2,3

−
(
(s12 + s23)∂η2 − s23∂η3 − ĝ1 (η2)− s13Ṽ1 (η2, η3) +

(
1 + s1,2,3

)
Ṽ1
(
η2, η3,4

))
Ω1,3,2 .

Note that Ω1,2,3 = Ω1,2(η23)Ω2,3(η3).

Arbitrary cycle
We even found a formula to break a cycle of arbitrary multiplicity,

(1 + s12···n)C(12···n)

IBP
=

n∑
`=2

∑
ρ∈{2,3,··· ,`−1}tt{n,n−1,··· ,`+1}

(−1)n−`−1

[
n∑
i=1

si,` ∂η` −
n∑
i=2

si,` ∂ηi − ĝ1(η`)

+ (1 + s12···n)Ṽ1(η`, η`+1,··· ,n+1)−
`−1∑
i=2

Si,ρṼ1(η`, ηi,i+1,··· ,`−1)

−
n∑

i=`+1

Si,ρṼ1(η`, η`+1,`+2,··· ,i)

]
Ω1,ρ,`

+
∑

1≤p<u<v<w<q≤n+1

∑
ρ∈{2,3,··· ,p}tt{n,n−1,··· ,q}

γ∈{p+1,··· ,u−1}tt{v−1,··· ,u+1}
π∈{v+1,··· ,w−1}tt{q−1,··· ,w+1}

∑
σ∈{γ,u}tt{π,w}

(−1)n+u+v+w
( n∑
i=q

svi +

p∑
i=1

svi

)
×
(
ĝ1(ηu+1,··· ,w−1)− ĝ1(ηu+1,··· ,w)− ĝ1(ηu,··· ,w−1) + ĝ1(ηu,··· ,w)

)
Ω1,ρ,v,σ , (18)

where Si,ρ is a sum of Mandelstam variables

Si,ρ := si,1 +
∑
2≤j≤n

j precedes i in ρ

si,j . (19)

When q = n + 1, {n, n − 1, · · · , q} is understood as the empty set {} and
∑n
i=q svi = 0. The

condition 1 ≤ p < u < v < w < q ≤ n + 1 implies p + 4 ≤ q and p + 2 ≤ v ≤ q − 2.
Similar to the tree-level case, for a product of cycles, e.g. C(12···m)C(m+1,m+2···n), one can use
the above identity recursively to reduce them onto bases.

Conclusions
We found a closed-form formula to break a cycle of Kronecker-Eisenstein series, which can
be recursively used to reduce one-loop open string integrands onto bases. It also applies to
closed strings by considering the anti-holomorphic version as well. Our work can simplify
the study of one-loop string amplitudes, for example, the integration over punctures zi’s
using modular graph forms [4] and the all-order α′-expansion of arbitrary one-loop open-
string integrals [5].
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• We consider a 2-loop 4-point form factor in planar 

𝒩=4 SYM, which may be understood as a 

supersymmetric version of the Higgs-plus-four-

parton scattering, namely, 2-loop 5-point 

amplitudes with one color-singlet massive 

external leg:

ℱtr 𝜙12
3 1𝜙, 2𝜙, 3𝜙, 4+; 𝑞

= 𝜙 𝑝1 𝜙 𝑝2 𝜙 𝑝3 𝑔+ 𝑝4 tr 𝜙12
3 Ω .

• We develop a new bootstrap strategy: starting 

with an ansatz expanded in terms of master 

integrals, then solving the master coefficients via 

various physical constraints:

ℱ 𝑙 ,ansatz =෍

𝑖

𝐶𝑖𝐼𝑖
𝑙 ,master

.

• Maximum topologies:

• Master integrals are known in Symbol and 

Goncharov polylogarithms [1,2].

INTRODUCTION

The 2-loop 4-point form factor ansatz:

ℱ4
2 ,ansatz

= ℱ4
0
෍

𝑘

𝑎𝑘𝐵1 + 𝑏𝑘𝐵2 𝐼𝑘
UTmaster ,

𝐵1, 𝐵2 are spinor factor:

𝐵1 =
12 34

13 24
, 𝐵2 =

14 23

13 24
,

𝑎𝑘 , 𝑏𝑘 are parameters belong to rational number 

field.

ANSATZ

1. Symmetry: ℱ4
2
= ቚℱ4

2

𝑝1↔𝑝3
;

2. Infrared divergences(IR): which are captured by 

BDS ansatz [3], the infrared divergences and 

collinear factorization structure are uniform as 

follow by introducing ℐ𝑛
𝐿
= ൗℱ𝑛

𝐿
ℱ𝑛

0
, the 

remainder ℛ𝑛
2

is infrared finite, and 1-loop 4-

point form factor is known [4],

ℐ𝑛
2
=
1

2
ℐ𝑛
1

2

+ 𝑓 𝜖 ℐ𝑛
1

2𝜖 + ℛ𝑛
2
+ 𝒪 𝜖 .

3. Collinear limit: the remainder ℛ4
2 𝑝3∥𝑝4

ℛ3
2

, 2-

loop 3-point remainder is known [5], take the 

limit by introducing momentum twistor;

4. Spurious pole cancellation: ℱ4
2 24 →0

finite;

5. A convenient: the above steps can be done firstly 

at Symbol level, then repeating them at function 

level with numeric evaluation;

6. Unitarity cuts(see e.g. [6]): remaining 

parameters can be solved by one simple cut.

Finally, full analytic results in terms of both Symbol 

and Goncharov polylogarithms are provided.

PHYSICS CONSTRAINTS

SYMBOL LETTERS

DISCUSS AND OUTLOOK

• Letters in each entry: (1) the first-entry contains 8 

letters, corresponding to physical poles 𝑢𝑖,𝑖+1 and 

𝑢𝑖,𝑖+1,𝑖+2; (2) the second entry is free from 

𝑋1, 𝑌1, 𝑌2, 𝑍, 𝑢13, 𝑢24 , and there are 28 letters; (3) 

third entry contains all letters except 𝑢123; (4) the 

last-entry is free from ൛

ൟ

𝑋1, 𝑋2, 𝑍, 𝑢𝑖𝑗𝑘 , 1 − 𝑢𝑖𝑗𝑘 , 𝑢12 −

𝑢123, 𝑢23 − 𝑢123 , and there are 22 letters. 

• Comparing to symbol bootstrap [7], we take the 

advantage of known master integrals: although 

containing more input comparing to the former, 

constraints from IR and unitarity cuts can be used. 

And it can be used to explain the observed 

universal maximally transcendental parts for 

form factors.

• Other physics constraints may fix more 

parameters of ansatz, such as form factor OPE, 

Regge limits and ത𝑄-like equation.
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Amplitudes of planar N = 4
super-Yang-Mills from Q̄-equations
Song He, Zhenjie Li and Chi Zhang

Introduction

We compute the symbol of three-loop MHV octagon [1] and some
two-loop NMHV amplitudes [2, 3] in planar N = 4 super-Yang-Mills
(sYM) from the Q̄ equations [4] (the following figure also from [4]):

n

1

2

3

4. . .

NkMHV

n

1

2

3

4. . .

NkMHV

n

1

2

3

4. . .

Nk+1MHV

n+1

n

NMHV

n+1

Q̄ = a
∫ − × ) .d2|3Zn+1(

. . .

tree

Q̄A
a Rn,k =

1

4
Γcusp Res

ε=0

∫ τ=∞

τ=0

(
d2|3Zn+1

)A
a

[Rn+1,k+1−Rn,kR
tree
n+1,1] + cyc. . (1)

It’s an efficient first principle calculation from anomaly of dual
superconformal symmetry. The results reveal new and rich structures
beyond amplitudes of lower multiplicities, especially the appearance of
algebraic letters.

Review of Q̄ equations

The infrared divergences of planar N = 4 sYM can be captured by the
so-called BDS anstaz, and we are interested in the infrared-finite object,
the BDS-subtracted amplitude, Rn,k = An,k/A

BDS
n , for n-point, NkMHV

amplitude An,k. As shown in [4], Rn,k is a dual conformal invariant (DCI)
but not invariant under the action of dual superconformal generators

Q̄A
a =

n∑

i=1

χA
i

∂

∂Z a
i

, (2)

where Zi are momentum twistors and χi denote their Grassmann parts.
Nevertheless, this anomaly can be restored by an integral over collinear

limits of higher-point amplitudes eq.(1), where Γcusp is the cusp anomalous
dimension, and the particle n+1 is added in collinear limit with n whose
(super-) momentum twistor Zn+1 = (Zn+1, χn+1) is parametrized by τ and
small ε:

Zn+1 = Zn − εZn−1 + C ετZ1 + C ′ε2Z2 , (3)

where two constants C and C ′ fix the particle weight, and the integral
measure is (d2|3Zn+1)Aa := εabcdZ

b
n+1dZ

c
n+1dZ

d
n+1(d3χn+1)A. In this collinear

limit, the bosonic integral reads

C (n̄)a Resε=0

∫
εdε

∫ ∞

0

dτ (4)

with (n̄)a := (n−1 n 1)a. The notation Resε=0 means to extract the
coefficient of dε/ε under the collinear limit of ε→ 0.The perturbative

expansion of (1) relates R
(L)
n,k to R

(L−1)
n+1,k+1. After working out the integration,

Q̄R
(L)
n,k =

∑
αY

α
n,k Q̄ log(aα) I(2L−1)

α , (5)

where Y α
n,k are Yangian (superconformal & dual superconformal) invariants

and I(2L−1)
α are DCI functions of weight 2L− 1.

There’s no non-trivial DCI function living in the kernel of Q̄ for k = 0, 1.
Thus once aα are DCI, taking the trace of Q̄ in eq.(5), we get

dR
(L)
n,k =

∑
αY

α
n,k d log(aα) I(2L−1)

α , (6)

then the symbol of R
(L)
n,k is S[R

(L)
n,k ] =

∑
α Y

α
n,k S[I(2L−1)

α ]⊗ (aα). Finally we

want to calculate the functions I(2L−1)
α given by integrals of the form∫ ∞

0

d log f (τ ) In+1(τ, ε→ 0). (7)

Square root & four-mass box

However, there’re Gram-determinant square roots in the integrand of

eq.(7) when we calculate the two-loop 9-pt NMHV amplitude R
(2)
9,1 from

1-loop 10-pt N2MHV amplitude R
(1)
10,2, and then three loop MHV octagon

R
(3)
8,0 from R

(2)
9,1 . These square roots come from the four-mass boxes in the

box expansion of R
(1)
10,2:

a

b−1
b

c−1c

d−1
d

a−1
···

···

···

···





x2
ab :=

〈a−1 a b−1 b〉
〈a−1 a〉〈b−1 b〉, uabcd =

x2
adx

2
bc

x2
acx

2
bd

, vabcd =
x2
abx

2
cd

x2
acx

2
bd

,

∆abcd =
√

(1− uabcd − vabcd)2 − 4uabcdvabcd ,

zabcd z̄abcd = uabcd , (1− zabcd)(1− z̄abcd) = vabcd ,

F := Li2(1− zabcd)− Li2(1− z̄abcd) + 1
2 log(vabcd) log(zabcdz̄abcd

).

Rationalization of τ -integrals

The nontrivial τ -integrals involving square roots are in the form of∫
d log(τ − b) F (z(τ ), z̄(τ ))⊗ z(τ )− a

z̄(τ )− a
,

where F is a (normalized) four-mass box function of pure transcendental
weight 2. We need to rationalize it to perform the τ -integration.

The main observation here is that there’re two rational constants p and
q such that pu(τ ) + qv(τ ) = 1, which leads a Möbius transformation
Λ(z) = qz−q+1

(p+q)z−q such that Λ(z) = z̄ and Λ2 = id. Thus, the transformation

τ → τ (z) indeed rationalizes the above integral.
On the support z̄ = Λ(z), it’s also interesting to notice that the symbol

of the function

Fx(z , z̄) :=

∫
d log

z − x

z̄ − x
F (z , z̄)

is an integrable symbol with the minimal algebraic word S[F (z , z̄)]⊗ z−x
z̄−x :

S[Fx(z , z̄)] = S[F (z , z̄)]⊗ z − x

z̄ − x
+ rational terms. (8)

In our cases, the d log measure can always be written as∫
d log

(
f (τ ) = c0

(z − c)(z − c̄)

(z − 1)(z − 1̄)

)
F (z , z̄)⊗ z − a

z̄ − a
,

where we introduce the shorthand x̄ := Λ(x). By calculating its total
derivative by IBP, we get its symbol

(∫
d log

z − c

z − c̄
F

)
⊗ a − c

a − c̄
− S[F1]⊗ a − 1

a − 1̄
− S[Fa]⊗ f (τa)

+
1

2
S[F∞]⊗ f (τa)(a − 1)

c0(a − 1̄)
+ S[F ]⊗ z − a

z̄ − a
⊗ f (τ ), (9)

where τa is defined by z(τ = τa) = a.

Results & Comments

The symbol of three-loop MHV octagon can be written as

R
(3)
8,0 =

∑5
i=2 Pi ⊗ 〈781i〉 + cyc., each coefficient has around 108 terms.

The symbol alphabet of R
(3)
8,0 consists of 204 multiplicative-independent

rational letters and 18 independent DCI algebraic letters. The 204 rational
letters are organized as follows

• (8
2

)
− 2 = 68 : all 〈abcd〉 except 〈1357〉 and 〈2468〉;

• 1 cyclic class of 〈12(345) ∩ (678)〉;
• 7 cyclic class of 〈1(ij)(kl)(mn)〉 with 2 ≤ i < j < k < l < m < n ≤ 8;

5 cyclic class of 〈1(28)(kl)(mn)〉 with 2 < k < l < m < n < 8;

• 5 cyclic class of 〈2̄ ∩ 4̄ ∩ (568) ∩ 8̄〉, 〈2̄ ∩ 4̄ ∩ 6̄ ∩ (681)〉, 〈(127) ∩ (235) ∩
5̄ ∩ 7̄〉, 〈(127) ∩ 3̄ ∩ (356) ∩ 7̄〉, 〈2̄ ∩ (278) ∩ (346) ∩ 6̄〉.
The symbol alphabet of R

(2)
8,1 only consists of 180 rational letters, cyclic

images of 〈1(23)(46)(78)〉, 〈2̄ ∩ 4̄ ∩ (568) ∩ 8̄〉 and 〈2̄ ∩ 4̄ ∩ 6̄ ∩ (681)〉 do
not appear.

Algebraic letters can only appear at the second and third entry of R
(2)
n,1

and R
(3)
n,0 for n ≥ 8, and the algebraic part with a given square root ∆abcd

of the symbol can be written as
∑

α

S[F (zabcd , z̄abcd)]⊗ zabcd − α
z̄abcd − α

⊗ Rα,

where Rα is a weight 2L− 3 integrable symbol. For octagon (n = 8),
algebraic letters can be choosen as cyclic images of (z2468− α)/(z̄2468− α)

for α = 0, 〈1236〉〈5678〉
〈1256〉〈3678〉,

〈1246〉〈5678〉
〈1256〉〈4678〉.

Outlook

(1) Amplitudes beyond MHV and NMHV from anomaly (Q (1) equations),
especially the two-loop N2MHV octagon.

(2) Understand the structure of amplitudes involving square roots: Steinmann
relations, extend Steinmann relations, limiting ray of infinite cluster
algebra, cluster adjacency of irrational letters? & ...
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