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Status of loop amplitudes: Superstring vs Supergravity

I Superstring

4-pt amplitude, massless external states
• tree-level and 1-loop: [Green, Schwarz ’82]

• 2-loops: [D’Hoker, Phong; Berkovits ’05]

• 3-loops: partial work [D’Hoker, Phong; Cacciatori, d.Piazza, v.Greemen]

[Gomez, Mafra ’13]

I Supergravity

4pt amplitude, maximal supersymmetry

State-of-the-art: 5 loops!
[BCJ et.al. ’17-’18]

lag!

Goal: sugra advances −→ superstring

Tools: modern amplitudes techniques
• colour-kinematics duality
• ambitwistor string
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.

four-loop four-point amplitudes of N = 4 SYM [6], but fail at five loops. A procedure which
works for this case is described in Sec. 8.

Because the duality imposes stringent relations between diagrams’ numerators, a remark-
ably small subset of generalized unitarity cuts is then sufficient to completely determine the
integrand. Of course, to confirm that it is correct, it is necessary to verify that it reproduces
correctly a spanning set of unitarity cuts that fully determine the amplitude. Quite gener-
ally, one expects that a problem with a generalized cut can be addressed by relaxing some
of the auxiliary constraints.

Let us return now to the three-loop four-point amplitudes of N = 4 SYM theory and
illustrate these ideas. A straightforward enumeration shows that there are 17 distinct cubic
diagrams with three loops and four external legs, which do not have one-loop triangle, bubble
or tadpole subdiagrams. It turns out that the twelve diagrams shown in Fig. 27 are sufficient
for finding a solution to the duality and unitarity cut constraints, as shown in Ref. [2]. Had
we kept all 17 diagrams, the construction would be slightly more involved, with the result
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4

TABLE I: The numerator factors of the integrals I(x) in fig. 2. The first column labels the integral, the second column the relative
numerator factor for N = 4 super-Yang-Mills theory. The square of this is the relative numerator factor for N = 8 supergravity.
An overall factor of stAtree

4 has been removed, s, t, u are Mandelstam invariants corresponding to (k1+k2)
2, (k2+k3)

2, (k1+k3)
2

and τij = 2ki · lj , where ki and lj are momenta as labeled in fig. 2.

Integral I(x) N = 4 Super-Yang-Mills (
√N = 8 supergravity) numerator

(a)–(d) s2

(e)–(g)
�

s (−τ35 + τ45 + t)− t (τ25 + τ45) + u (τ25 + τ35)− s2
�

/3

(h)
�

s (2τ15 − τ16 + 2τ26 − τ27 + 2τ35 + τ36 + τ37 − u)

+t (τ16 + τ26 − τ37 + 2τ36 − 2τ15 − 2τ27 − 2τ35 − 3τ17) + s2
�

/3

(i)
�

s (−τ25 − τ26 − τ35 + τ36 + τ45 + 2t)

+t (τ26 + τ35 + 2τ36 + 2τ45 + 3τ46) + u τ25 + s2
�

/3

(j)-(l) s(t− u)/3

especially as relevant to four loops and beyond [20].
Perhaps the most surprising feature of our construc-

tion is that, with the duality (3) imposed, the only cut
information actually required to construct the complete
N = 4 sYM amplitude is that under maximal cut condi-
tions the numerator of diagram (e) is s τ45. This suggests
that the constraints of this duality are powerful enough
so that only a relatively small subset of unitarity cuts is
necessary to fully determine higher-loop amplitudes.
The above three-loop example has maximal supersym-

metry. Naturally there is a question of whether our loop-
level conjecture (6) relies on supersymmetry. To see that
it does not we need only look at the two-loop four-point
identical-helicity amplitude in pure Yang-Mills given in
ref. [21]. As noted in ref. [8] the duality is manifest in this
example when cut conditions are imposed. This property
also persists with off-shell loop momenta, and when the
numerators are squared, we obtain the correct identical-
helicity four-graviton amplitude in the theory of gravity
coupled to an antisymmetric tensor and dilaton.
In summary, we propose that the gauge-theory dual-

ity between color and kinematic numerators imposed in
ref. [8] carries over naturally to loop level. This allows
the expression of numerators of gravity diagrams using
two copies of gauge-theory ones. To test this idea, we
discussed two nontrivial examples, one in some detail.
The known connection between scattering amplitudes of
N = 4 super-Yang-Mills theory at weak [5] and strong
coupling [7], suggests that the duality between color
and kinematics will also impose nontrivial constraints at
strong coupling. It also seems likely that an analogous
duality should hold in higher-genus perturbative string
theory. It has not escaped our attention that should the
duality between color and kinematics hold to all loop
orders it would have important implications in studies
of the ultraviolet behavior of quantum gravity theories
(for recent reviews see refs. [22]). We close by remark-
ing that the double-copy gravity numerators hint at some
notion of compositeness, albeit with a rather novel struc-
ture. This structure may very well have important con-

sequences outside of perturbation theory.
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.
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Worldsheet models for Field Theory

Ambitwistor string [Mason,Skinner ’13; c.f. Berkovits]

SA =
1

2π

∫
Σ

P · D̄X − ẽ

2
P 2 + SM

D = ∂̄ + e∂

no α′!

I chiral worldsheet theory: Xµ ∈ Ω0(Σ), Pµ ∈ Ω0(KΣ)

I ‘RNS’ model: SM = Sψ1 + Sψ2 (others possible)

• action: Sψ =
∫
ψ ·Dψ + χP · ψ with ψµr=1,2 ∈ ΠΩ0(K

1/2
Σ )

• BRST: free, linear CFTs with dcrit = 10

I target space: A = phase space of complexified null geodesics

L

x

x′

M

X

X ′

A

L
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Spectrum and correlators
I Spectrum: type II supergravity

VNS = cc̃ δ(γ1)δ(γ2) εµνψ
µ
1ψ

ν
2 e

ik·X with k2 = εµνk
ν = εµνk

µ = 0

⇒ worldsheet theory for QFT amplitudes

I correlators = field theory amplitudes

A = (0) + (1) + (2) + . . .

SE

1
k2

L

τ

τ ′

τ ′′

A = + + + . . .

1I tree-level = CHY amplitude [Cachazo, He, Yuan ’13]

A(0)
n =

〈
n∏
i=1

V (σi)

〉
=

∫
M0,n

dnσ

vol SL(2,C)

∏
i

′
δ̄ (Ei) In

• P localizes onto EoM: ∂̄Pµ =
∑
i ki µδ̄(σ − σi) dσ

• tree-level: Pµ =
∑
i

ki µ
σ−σi

dσ

• P 2 = 0 ↔ scattering equations
Ei = ResσiP

2 = 2ki · P (σi)
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CHY amplitudes [Cachazo, He, Yuan ’13]

A(0)
n =

∫
M0,n

dnσ

vol SL(2,C)

∏
i

′
δ̄ (Ei) I(0)

n

δ̄(z) = ∂̄
(

1
2πi z

)I Measure
• integral over M0,n

• fully localized on scattering equations

Ei = ResσiP
2 =

∑
j 6=i

2ki · kj
σi − σj

with Pµ(σ) =
∑
i

ki µ
σ − σi

dσ

σi ∈ CP1

k2
i = 0

momenta ki ∈ Rd

I Integrand I(0)
n

• specifies theory

Yang-Mills, εµ t
a eik·X : IYM = Ikin(σi, ki, εi) × C(σi, ai)

Gravity, εµ ε̃ν e
ik·X : Igrav = Ikin(σi, ki, εi) × Ikin(σi, ki, ε̃i)

• ‘woldsheet double copy’ c.f [Kawai,Lewellen,Tye ’86; Bern,Carrasco,Johansson ’08]

Gravity ∼ YM2
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Integrand and the Colour-kinematics duality
I Colour-kinematics duality

[Bern,Carrasco,Johansson ’08]

AYM =
∑
α∈Γn

Nα(ε) Cα(a)

Dα
Agrav =

∑
α∈Γn

Nα(ε) Nα(ε̃)

Dα

fa1a2·f ·a3· . . .

Kinematic numerators Nα satisfying same Jacobi’s as Cα:

1 4

2 3

=
1 4

2 3

−
1 4

2 3

I CHY integrands
[CHY ’13; Bjerrum-Bohr et.al. ’16, ...]

• Connection to BCJ:

C(a) =
∑

α∈Sn−2

Cα(a)

(1αn)
Ikin(ε)

SE
=
∑

α∈Sn−2

Nα(ε)

(1αn)

Parke-Taylor factor

(12 . . . n) := σ12σ23 . . . σn1

• Colour Cα and BCJ numerators Nα
for ‘half-ladder’ master diagrams

1 n

α(2) α(3) α(n− 1)
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genus-g correlators = loop integrands

A = (0) + (1) + (2) + . . .

SE

1
k2

L

τ

τ ′

τ ′′

A = + + + . . .

1



Genus-g correlator = loop int’s [Adamo,Casali,Skinner,Tourkine,YG,Mason,Monteiro ’13-’18]

g ≤ 2

A(g)
n =

〈
n∏
i=1

V (σi)

〉
Σg

=

∫
d10`I

∫
Mg,n

∏
I≤J

dΩIJ δ̄
(
uIJ
) ∏

i

δ̄ (Ei) I(g)
n

I Moduli space Mg,n

• homology basis: #(AI , BJ) = δIJ
modular group: Sp(4,Z)#

• holomorphic differentials ωI

δIJ =

∮
AI

ωJ ΩIJ =

∮
BI

ωJ

I Scattering equations

• P determined by ∂̄P =
∑
i ki δ̄(z − zi) dz

Pµ(z) = 2πi `Iµ ωI(z) +
∑
i

ki µ ωi,∗(z)

hom. solution
loop momenta

merom. diff’s ω[ij]

Resziωij = 1

• scattering equations enforce P 2(z) = 0:

Ei = ResziP
2 P 2

∣∣∣
Ei = 0

= uIJ ωIωJ
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Higher genus amplitude formulae

A(g)
n =

∫
d10`I

∫
Mg,n

∏
I≤J

dΩIJ δ̄
(
uIJ
) ∏

i

δ̄ (Ei) I(g)
n

I Properties

• modular invariance
• localization on scattering equations

dimMg,n = # SE’s = 3g − 3 + n

I Questions

• loop integration UV divergent in d = 10
• calculation of loop integrand?

Field theory! How can we see that the integrand is rational?
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Residue theorem to the nodal sphere [YG,Mason,Monteiro,Tourkine ’15-’18]

I Residue theorem on fundamental domain
Look at g = 1:

A = + + + . . .

1
2- 12

τ

2

solutions to u = 0

on Ei = 0

q = e2πiτ = 0

τ = i∞

I Integrand localizes on nodal sphere

I(1)
n =

∫
M1,n

dq

q
δ̄(u) I(1)(q)

res
= −

∫
M1,n

dq

u
δ̄(q) I(1)(q) = − 1

`2

∫
M0,n+2

I(1)(0)

=

res
=
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Loop amplitudes from the nodal sphere

A(g)
n =

∫
d10`I∏
(`I)2

∫
M0,n+2g

c(g)
(
J (g) I(g)

L

)(
J (g) I(g)

R

) n+2g∏
A=1

′
δ̄ (EA)

I From residue theorem
• traded localization on P 2 = 0 for qII = eiπΩII = 0

• modular parameters qIJ = e2iπΩIJ vs. nodal points σI±∏
I<J

dqIJ
qIJ

=
J (g)

vol SL(2,C)
J (g) = J (g)

∏
I±

dσI±

J (1) =
(
σ+−

)−2
**

J (2) =
(
σ1+2+σ1+2−σ1−2+σ1−2−

)−1

• c(g) remnant of fundamental domain

c(1) = 1

c(2) =
σ
1+2−σ1−2+

σ
1+1−σ2+2−

• Scattering equations

EA = ResσAP
(g) P(g) = P 2 − (`IωI+I−)2 + LIJ

(g) ωI+I−ωJ+J−

LIJ
(1) = 0

L12
(2) = `21 + `22
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Comments

A = + + + . . .

1
2- 12

τ

2

I Different theories possible
• dim. red. to d ≤ 10
• sugra and sYM (next slide)

I Unorthodox integrand representation

• ‘linear’ propagator factors of form 2`I ·K +K2

• related to standard representation by residue theorem

Example

K

`

`+K

1

`2(`+K)2
=

1

`2(2` ·K +K2)
+

1

(`+K)2(−2` ·K −K2)

shift−→
1

`2

(
1

2` ·K +K2
+

1

−2` ·K +K2

)

I Physical interpretation of P(g) and c(g)

• P(g): correct poles in ‘linear’ representation
• c(g): no unphysical poles
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Colour-kinematics at loop level [Bern,Carrasco,Johansson ’10]

I BCJ double copy at g loops
State-of-the-art: 5 loops
[Bern,Carrasco,Chen,Edison,Johansson,Parra-Martinez,Roiban,Zeng ’17-18]

A(g)

YM =
∑
α∈Γ

(g)
n

∫
g∏
I=1

dD`I
Nα(ε) Cα(a)

SαDα
A(g)

grav =
∑
α∈Γ

(g)
n

∫
g∏
I=1

dD`I
Nα(ε) Nα(ε̃)

SαDα

symmetry
factor

I Nodal sphere
[He,Schlotterer,Zhang ’16-’17; YG,Monteiro ’17-19’; ...]

• sYM from single copy

I(g)

YM = C(g)
(
J (g)I(g)

kin(ε)

)
I(g)

grav =
(
J (g)I(g)

kin(ε)

)(
J (g)I(g)

kin(ε̃)

)
• Half-integrands in BCJ representation:

C(g) =
∑

α ∈ Sn+2g−2

C(g)
(1+α 1−)

(1+ α 1−)
J (g)I(g)

kin =
∑

α ∈ Sn+2g−2

N (g)
(1+α, 1−)

(1+ α 1−)3

where we used the determinant

∆
(g)
i1...ig

= εI1...Ig ωI1(σi1) . . . ωIg (σig ) (13)

defined for any g. The expression (12) is built from the
differentials ωI , which naturally lift from the nodal sphere
to become the holomorphic Abelian differentials on the
genus-2 surface. Indeed, the genus-2 expression is also

valid as Y(2)
A in (2) and, crucially for us, as Y(2)

S in (1).
The object ∆(g) is a modular form of weight −1 at any

genus, which at genus 2 gives Y(2)
S the appropriate weight

such that the moduli-space integral is well defined. At
three loops, the answer is not as simple as (12), but ∆(3)

still appears, as seen in [10] and as we will see here.

Y(g)
S FROM BCJ NUMERATORS

Let us present and test our strategy. The steps are to:

(i) take a supergravity loop integrand written in a BCJ
double-copy representation,

(ii) translate that integrand into the ambitwistor string
moduli-space integrand localised on the nodal Rie-
mann sphere, i.e. obtain Y(g) ,

(iii) uplift that formula to a higher-genus modular form
conjecturally valid for the superstring, i.e. obtain

Y(g)
S such that Y(g)

S → Y(g) as qII → 0 .

With our current understanding, step (iii) relies on an
educated guess, as we will exemplify.

Starting with step (i), a BCJ representation is one in
which the loop integrand is written in terms of trivalent
diagrams, whose numerators are the square of analogous
numerators in non-planar SYM obeying the BCJ colour-
kinematics duality [12, 32] [33]. See [34] for a review
of this remarkable construction, which was motivated by
the KLT relations of string theory [35]. Indeed, there is a
large body of work relating this construction to aspects
of string theory, e.g. [36–52]. Step (ii) is based on the
connection to the scattering equations story, for which
we use the following relation based on a differential form
with logarithmic singularities [53]

(2πi)4 J (g)Y(g) =
∑

ρ∈S2+2g

N (g)(1+, ρ, 1−)

(1+, ρ, 1−)

4+2g∏
A=1

dσA ,

(14)
where (ABC . . .D) = σABσBC . . . σDA is a Parke-Taylor
denominator. The BCJ numerators N (g), which depend
on a particle ordering, are SYM numerators whose square
gives the supergravity numerators; this square effectively
translates into the square of J (g)Y(g) in (4). Notice, how-
ever, that we have extracted the overall factor R4 in (4),
whose ‘square root’ is therefore not included in the SYM

FIG. 2: Two-loop example. Diagram associated to the
numerator N(1+, 2, 2+, 3, 4, 2−, 1, 1−).

numerators. The correspondence between the numera-
tors N (g) and trivalent diagrams is best understood in
an explicit example, to be discussed below. Before that,
let us make two comments. The first is that two marked
points singled out in (14) were chosen to be σ1± , but the
sum is independent of that choice. The second, for the
reader familiar with the scattering equations formalism
including the developments [54–57], is that equalities like
(14) often hold only when the marked points satisfy the
scattering equations (e.g. for CHY Pfaffians). Here, on
the other hand, we propose that (14) defines Y(g) such
that it may be uplifted to the superstring, as happens up
to two loops.

Let us test the strategy at two loops, for which the
BCJ representation of the four-point supergravity loop
integrand is long known [58] [59]. The two-loop BCJ
numerators can be compactly written as

N (2)(1+, ρ1, 2
±, ρ2, 2

∓, ρ3, 1
−) =

{
sij ρ2 = {i, j}
0 otherwise .

(15)

They correspond to half-ladder diagrams with loop mo-
menta ±`1 at the ends; see FIG. 2. A standard two-loop
diagram is then obtained by gluing the nodal legs, i.e. I+

with I−. Taking the result (15) from the literature, it is
possible to obtain Y(2) via (14). Then, it is both natural
and easy to rewrite Y(2) in the form (12), which as ex-
plained earlier can be uplifted to genus 2, matching the

superstring result Y(2)
S . This achieves step (iii).

THREE LOOPS

We now apply our strategy to the much more intricate
three-loop case. From the general form of a three-loop
field theory integrand, namely the inclusion of the rele-
vant diagram topologies, we can determine c(3) and P(3).
However, they do not appear in (14), so they are not im-
portant for the goal of this paper [60]. The important
quantities are J (3) and Y(3). The Jacobian is straight-
forwardly obtained from (7) and can be written as

J (3) = Jhyp

∏
I σI+I−∏

I<J σI+J+σI−J−σI+J−σI−J+

, (16)

where in the factor

Jhyp = σ1+2−σ2+3−σ3+1− − σ1+3−σ3+2−σ2+1− (17)

• ‘half-ladder’ master diagrams
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From field theory to
superstring amplitudes



4-pt amplitudes for g ≤ 2

I Supergravity

A(0) = R4

s12s13s14

from ambitwistor string, higher genus and nodal sphere

A(g)

A = R4

∫
d10`I

∫
Mg,4

∏
I ≤ J

dΩIJ

(
Y (g)

A

)2
4∏
i = 1

δ̄(Ei)
∏
I ≤ J

δ̄(uIJ)

= R4

∫
d10`I∏
I
(`I)2

∫
M0,4+2g

c(g)
(
J (g) Y (g)

)2
4 + 2g∏
A = 1

′
δ̄(EA)

I Type II superstring
chiral splitting form [D’Hoker,Phong ’88, ’05]

A(g)

S = R4

∫
Mg,4

∣∣∣∏
I ≤ J

dΩIJ

∣∣∣2 ∫ d10`I
∣∣Y (g)

S
∣∣2

×
∏
i < j

∣∣E(zi, zj)
∣∣α′sij/2 ∣∣∣eα′2 (iπΩIJ `

I·̀ J+2πi
∑
j `
I·kj

∫ zj
z0
ωI

)∣∣∣ 2
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.

four-loop four-point amplitudes of N = 4 SYM [6], but fail at five loops. A procedure which
works for this case is described in Sec. 8.

Because the duality imposes stringent relations between diagrams’ numerators, a remark-
ably small subset of generalized unitarity cuts is then sufficient to completely determine the
integrand. Of course, to confirm that it is correct, it is necessary to verify that it reproduces
correctly a spanning set of unitarity cuts that fully determine the amplitude. Quite gener-
ally, one expects that a problem with a generalized cut can be addressed by relaxing some
of the auxiliary constraints.

Let us return now to the three-loop four-point amplitudes of N = 4 SYM theory and
illustrate these ideas. A straightforward enumeration shows that there are 17 distinct cubic
diagrams with three loops and four external legs, which do not have one-loop triangle, bubble
or tadpole subdiagrams. It turns out that the twelve diagrams shown in Fig. 27 are sufficient
for finding a solution to the duality and unitarity cut constraints, as shown in Ref. [2]. Had
we kept all 17 diagrams, the construction would be slightly more involved, with the result

123

4

TABLE I: The numerator factors of the integrals I(x) in fig. 2. The first column labels the integral, the second column the relative
numerator factor for N = 4 super-Yang-Mills theory. The square of this is the relative numerator factor for N = 8 supergravity.
An overall factor of stAtree

4 has been removed, s, t, u are Mandelstam invariants corresponding to (k1+k2)
2, (k2+k3)

2, (k1+k3)
2

and τij = 2ki · lj , where ki and lj are momenta as labeled in fig. 2.

Integral I(x) N = 4 Super-Yang-Mills (
√N = 8 supergravity) numerator

(a)–(d) s2

(e)–(g)
�

s (−τ35 + τ45 + t)− t (τ25 + τ45) + u (τ25 + τ35)− s2
�

/3

(h)
�

s (2τ15 − τ16 + 2τ26 − τ27 + 2τ35 + τ36 + τ37 − u)

+t (τ16 + τ26 − τ37 + 2τ36 − 2τ15 − 2τ27 − 2τ35 − 3τ17) + s2
�

/3

(i)
�

s (−τ25 − τ26 − τ35 + τ36 + τ45 + 2t)

+t (τ26 + τ35 + 2τ36 + 2τ45 + 3τ46) + u τ25 + s2
�

/3

(j)-(l) s(t− u)/3

especially as relevant to four loops and beyond [20].
Perhaps the most surprising feature of our construc-

tion is that, with the duality (3) imposed, the only cut
information actually required to construct the complete
N = 4 sYM amplitude is that under maximal cut condi-
tions the numerator of diagram (e) is s τ45. This suggests
that the constraints of this duality are powerful enough
so that only a relatively small subset of unitarity cuts is
necessary to fully determine higher-loop amplitudes.
The above three-loop example has maximal supersym-

metry. Naturally there is a question of whether our loop-
level conjecture (6) relies on supersymmetry. To see that
it does not we need only look at the two-loop four-point
identical-helicity amplitude in pure Yang-Mills given in
ref. [21]. As noted in ref. [8] the duality is manifest in this
example when cut conditions are imposed. This property
also persists with off-shell loop momenta, and when the
numerators are squared, we obtain the correct identical-
helicity four-graviton amplitude in the theory of gravity
coupled to an antisymmetric tensor and dilaton.
In summary, we propose that the gauge-theory dual-

ity between color and kinematic numerators imposed in
ref. [8] carries over naturally to loop level. This allows
the expression of numerators of gravity diagrams using
two copies of gauge-theory ones. To test this idea, we
discussed two nontrivial examples, one in some detail.
The known connection between scattering amplitudes of
N = 4 super-Yang-Mills theory at weak [5] and strong
coupling [7], suggests that the duality between color
and kinematics will also impose nontrivial constraints at
strong coupling. It also seems likely that an analogous
duality should hold in higher-genus perturbative string
theory. It has not escaped our attention that should the
duality between color and kinematics hold to all loop
orders it would have important implications in studies
of the ultraviolet behavior of quantum gravity theories
(for recent reviews see refs. [22]). We close by remark-
ing that the double-copy gravity numerators hint at some
notion of compositeness, albeit with a rather novel struc-
ture. This structure may very well have important con-

sequences outside of perturbation theory.
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.
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Let us return now to the three-loop four-point amplitudes of N = 4 SYM theory and
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.
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works for this case is described in Sec. 8.

Because the duality imposes stringent relations between diagrams’ numerators, a remark-
ably small subset of generalized unitarity cuts is then sufficient to completely determine the
integrand. Of course, to confirm that it is correct, it is necessary to verify that it reproduces
correctly a spanning set of unitarity cuts that fully determine the amplitude. Quite gener-
ally, one expects that a problem with a generalized cut can be addressed by relaxing some
of the auxiliary constraints.

Let us return now to the three-loop four-point amplitudes of N = 4 SYM theory and
illustrate these ideas. A straightforward enumeration shows that there are 17 distinct cubic
diagrams with three loops and four external legs, which do not have one-loop triangle, bubble
or tadpole subdiagrams. It turns out that the twelve diagrams shown in Fig. 27 are sufficient
for finding a solution to the duality and unitarity cut constraints, as shown in Ref. [2]. Had
we kept all 17 diagrams, the construction would be slightly more involved, with the result
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example when cut conditions are imposed. This property
also persists with off-shell loop momenta, and when the
numerators are squared, we obtain the correct identical-
helicity four-graviton amplitude in the theory of gravity
coupled to an antisymmetric tensor and dilaton.
In summary, we propose that the gauge-theory dual-

ity between color and kinematic numerators imposed in
ref. [8] carries over naturally to loop level. This allows
the expression of numerators of gravity diagrams using
two copies of gauge-theory ones. To test this idea, we
discussed two nontrivial examples, one in some detail.
The known connection between scattering amplitudes of
N = 4 super-Yang-Mills theory at weak [5] and strong
coupling [7], suggests that the duality between color
and kinematics will also impose nontrivial constraints at
strong coupling. It also seems likely that an analogous
duality should hold in higher-genus perturbative string
theory. It has not escaped our attention that should the
duality between color and kinematics hold to all loop
orders it would have important implications in studies
of the ultraviolet behavior of quantum gravity theories
(for recent reviews see refs. [22]). We close by remark-
ing that the double-copy gravity numerators hint at some
notion of compositeness, albeit with a rather novel struc-
ture. This structure may very well have important con-

sequences outside of perturbation theory.
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four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
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Diagram (e) is the master diagram.
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Lessons from 2 loops: g = 2 ansatz
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n ≤ 3pt:
∑
δ

Ξ8[δ]
(
S
δ
··
)n
cyc

= 0

4pt:
∑
δ

Ξ8[δ]

Ψ10

(
S
δ
··
)4
cyc
∼= π

4
(

∆
(2)
12∆

(2)
34 −∆

(2)
14∆

(2)
23

)



Lessons from 2 loops: g = 2 ansatz

Y(2)
S = Y(2)

A =
1

3

(
(s14 − s13) ∆

(2)
12 ∆

(2)
34 + cyc(234)

)
I Properties

• modular weight mod(Y(g)
S ) = g − 4

• homology inv.
• one-form in zi

}
Functional basis?

I Objects on Σ2

• ∆
(g)
i1...ig

of weight mod(∆(g)) = −1

∆
(g)
i1...ig

= det ωI(ziJ )

• ring of mod forms Ψ4,Ψ6,Ψ10,Ψ12

• RNS superstring: Ξ8[δ]/Ψ10 chiral measure
Sδ(zi, zj) Szegő kernels
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New results:
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TABLE I: The numerator factors of the integrals I(x) in fig. 2. The first column labels the integral, the second column the relative
numerator factor for N = 4 super-Yang-Mills theory. The square of this is the relative numerator factor for N = 8 supergravity.
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information actually required to construct the complete
N = 4 sYM amplitude is that under maximal cut condi-
tions the numerator of diagram (e) is s τ45. This suggests
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so that only a relatively small subset of unitarity cuts is
necessary to fully determine higher-loop amplitudes.
The above three-loop example has maximal supersym-

metry. Naturally there is a question of whether our loop-
level conjecture (6) relies on supersymmetry. To see that
it does not we need only look at the two-loop four-point
identical-helicity amplitude in pure Yang-Mills given in
ref. [21]. As noted in ref. [8] the duality is manifest in this
example when cut conditions are imposed. This property
also persists with off-shell loop momenta, and when the
numerators are squared, we obtain the correct identical-
helicity four-graviton amplitude in the theory of gravity
coupled to an antisymmetric tensor and dilaton.
In summary, we propose that the gauge-theory dual-

ity between color and kinematic numerators imposed in
ref. [8] carries over naturally to loop level. This allows
the expression of numerators of gravity diagrams using
two copies of gauge-theory ones. To test this idea, we
discussed two nontrivial examples, one in some detail.
The known connection between scattering amplitudes of
N = 4 super-Yang-Mills theory at weak [5] and strong
coupling [7], suggests that the duality between color
and kinematics will also impose nontrivial constraints at
strong coupling. It also seems likely that an analogous
duality should hold in higher-genus perturbative string
theory. It has not escaped our attention that should the
duality between color and kinematics hold to all loop
orders it would have important implications in studies
of the ultraviolet behavior of quantum gravity theories
(for recent reviews see refs. [22]). We close by remark-
ing that the double-copy gravity numerators hint at some
notion of compositeness, albeit with a rather novel struc-
ture. This structure may very well have important con-

sequences outside of perturbation theory.
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.

four-loop four-point amplitudes of N = 4 SYM [6], but fail at five loops. A procedure which
works for this case is described in Sec. 8.

Because the duality imposes stringent relations between diagrams’ numerators, a remark-
ably small subset of generalized unitarity cuts is then sufficient to completely determine the
integrand. Of course, to confirm that it is correct, it is necessary to verify that it reproduces
correctly a spanning set of unitarity cuts that fully determine the amplitude. Quite gener-
ally, one expects that a problem with a generalized cut can be addressed by relaxing some
of the auxiliary constraints.

Let us return now to the three-loop four-point amplitudes of N = 4 SYM theory and
illustrate these ideas. A straightforward enumeration shows that there are 17 distinct cubic
diagrams with three loops and four external legs, which do not have one-loop triangle, bubble
or tadpole subdiagrams. It turns out that the twelve diagrams shown in Fig. 27 are sufficient
for finding a solution to the duality and unitarity cut constraints, as shown in Ref. [2]. Had
we kept all 17 diagrams, the construction would be slightly more involved, with the result
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.
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3 loops (ii): nodal sphere

(ii) Translate to nodal sphere
Use colour-kinematics on the worldsheet

(2πi)4J (3)Y(3) =
∑

α∈S6+2

N (3)
(1+ α 1−)

(1+ α 1−)

• J (3) from modular parameters∏
I<J

dqIJ
qIJ

=
J (g)

vol SL(2,C)
J (g) = J (g)

∏
I±

dσI±

J (3) = Jhyp J
(2)
12 J

(2)
13 J

(2)
23

∏
σI+I+ with J (2)

IJ =
(
σI+J+σI+J−σI−J+σI−J−

)−1

Jhyp = σ1+2−σ2+3−σ3+1− − σ1+3−σ3+2−σ2+1−

• Hyperelliptic locus y2 =
∏2g+2
a=1 (x− xa): Ψ9 = 0

Ψ9 =

√
−
∏
δ

ϑδ(0) and Ψ9

∣∣∣
nodal

= Jhyp J
(2)
12 J

(2)
13 J

(2)
23

∏
σ3
I+I+ q2

II

Take-away: • J (3)Y(3) 6= 0 on hyperelliptic Jhyp = 0

• Y(3)
S ∼

χ8(zi)

Ψ9
+ . . .
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3 loops (iii): higher genus

Y(g)
S = `Iµ YµI +

Y0

2πi

I Construction of Ansatz

Requirements:

• mod(Y(g)
S ) = g − 4

• one-form in zi

• Y(3)
S
∣∣

nodal
= Y(3)

I linear in loop mom `I

I hyperelliptic Y0 ∼ Ψ−1
9

Genus-3 tools:

• ∆
(3)
i1i2i3

= detωI(ziJ )

• ring of mod forms
34 generators [Tsuyumine ’86]

• chiral measure Ξ8/Ψ9
[Cacciatori,Dalla Piazza,van Geemen ’08]

I Result

YµI =
2

3

(
αµ1ωI(z1)∆

(3)
234 +cyc(1234)

)
Y0 = s13s14 (D12, 34 − S12, 34)+cyc(234)

• αµ1 = kµ2 (k3 − k4) · k1 + cyc(234)

• D12, 34 = 1
3

(
ω34(z1)∆

(3)
234 + (1↔ 2)

)
+ (12↔ 34)

• S12, 34 = 1
15

(∑
δ

Ξ8
Ψ9

(
Sδ12S

δ
23S

δ
34S

δ
41 − 1

16
(Sδ12)2(Sδ34)2

)
+ (1↔ 2)

)
I sum over 36 even spin structures δ
I chiral measure Ξ8/Ψ9 [C,DP,vG ’08]
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Comments on the proposal
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I Properties
• modular invariance
• field theory limit Y(3)
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}
by construction

• homology invariance [D’Hoker,Mafra,Pioline,Schlotterer ’20]

I move zl around BL cycle:

zi → zi + δilBL `I → `I − δIL kl
I invariance from interplay of YµI and D12, 34

• consistency with D6R4 low-energy limit [Gomez, Mafra ’13]

I agrees with of YµI , detailed comparison WiP

I Questions
• simplification of S12, 34

• RNS origin of measure unclear [Witten ’15]

• Functional basis? ↔ Uniqueness?
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Outlook
I Strategy for importing field theory results to superstring
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Figure 27: The diagrams for constructing the N = 4 SYM and N = 8 supergravity three-loop
four-point amplitudes. The shaded (red) lines indicate the application of the duality relation. The
external momenta are outgoing and the arrows indicate the directions of the labeled loop momenta.
Diagram (e) is the master diagram.

four-loop four-point amplitudes of N = 4 SYM [6], but fail at five loops. A procedure which
works for this case is described in Sec. 8.

Because the duality imposes stringent relations between diagrams’ numerators, a remark-
ably small subset of generalized unitarity cuts is then sufficient to completely determine the
integrand. Of course, to confirm that it is correct, it is necessary to verify that it reproduces
correctly a spanning set of unitarity cuts that fully determine the amplitude. Quite gener-
ally, one expects that a problem with a generalized cut can be addressed by relaxing some
of the auxiliary constraints.

Let us return now to the three-loop four-point amplitudes of N = 4 SYM theory and
illustrate these ideas. A straightforward enumeration shows that there are 17 distinct cubic
diagrams with three loops and four external legs, which do not have one-loop triangle, bubble
or tadpole subdiagrams. It turns out that the twelve diagrams shown in Fig. 27 are sufficient
for finding a solution to the duality and unitarity cut constraints, as shown in Ref. [2]. Had
we kept all 17 diagrams, the construction would be slightly more involved, with the result

123

4

TABLE I: The numerator factors of the integrals I(x) in fig. 2. The first column labels the integral, the second column the relative
numerator factor for N = 4 super-Yang-Mills theory. The square of this is the relative numerator factor for N = 8 supergravity.
An overall factor of stAtree

4 has been removed, s, t, u are Mandelstam invariants corresponding to (k1+k2)
2, (k2+k3)

2, (k1+k3)
2

and τij = 2ki · lj , where ki and lj are momenta as labeled in fig. 2.

Integral I(x) N = 4 Super-Yang-Mills (
√N = 8 supergravity) numerator

(a)–(d) s2

(e)–(g)
�

s (−τ35 + τ45 + t)− t (τ25 + τ45) + u (τ25 + τ35)− s2
�

/3

(h)
�

s (2τ15 − τ16 + 2τ26 − τ27 + 2τ35 + τ36 + τ37 − u)

+t (τ16 + τ26 − τ37 + 2τ36 − 2τ15 − 2τ27 − 2τ35 − 3τ17) + s2
�

/3

(i)
�

s (−τ25 − τ26 − τ35 + τ36 + τ45 + 2t)

+t (τ26 + τ35 + 2τ36 + 2τ45 + 3τ46) + u τ25 + s2
�

/3

(j)-(l) s(t− u)/3

especially as relevant to four loops and beyond [20].
Perhaps the most surprising feature of our construc-

tion is that, with the duality (3) imposed, the only cut
information actually required to construct the complete
N = 4 sYM amplitude is that under maximal cut condi-
tions the numerator of diagram (e) is s τ45. This suggests
that the constraints of this duality are powerful enough
so that only a relatively small subset of unitarity cuts is
necessary to fully determine higher-loop amplitudes.
The above three-loop example has maximal supersym-

metry. Naturally there is a question of whether our loop-
level conjecture (6) relies on supersymmetry. To see that
it does not we need only look at the two-loop four-point
identical-helicity amplitude in pure Yang-Mills given in
ref. [21]. As noted in ref. [8] the duality is manifest in this
example when cut conditions are imposed. This property
also persists with off-shell loop momenta, and when the
numerators are squared, we obtain the correct identical-
helicity four-graviton amplitude in the theory of gravity
coupled to an antisymmetric tensor and dilaton.
In summary, we propose that the gauge-theory dual-

ity between color and kinematic numerators imposed in
ref. [8] carries over naturally to loop level. This allows
the expression of numerators of gravity diagrams using
two copies of gauge-theory ones. To test this idea, we
discussed two nontrivial examples, one in some detail.
The known connection between scattering amplitudes of
N = 4 super-Yang-Mills theory at weak [5] and strong
coupling [7], suggests that the duality between color
and kinematics will also impose nontrivial constraints at
strong coupling. It also seems likely that an analogous
duality should hold in higher-genus perturbative string
theory. It has not escaped our attention that should the
duality between color and kinematics hold to all loop
orders it would have important implications in studies
of the ultraviolet behavior of quantum gravity theories
(for recent reviews see refs. [22]). We close by remark-
ing that the double-copy gravity numerators hint at some
notion of compositeness, albeit with a rather novel struc-
ture. This structure may very well have important con-

sequences outside of perturbation theory.
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⇒ proposal for 4-pt 3-loop superstring amplitude

I Outlook
• uniqueness?
• stronger evidence / proof?
• higher loops?
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