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Why is gravity hard with traditional methods?




Use the color-kinematics duality and unitarity methods
to find massive amplitudes
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Color-kinematics and factorization
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Bootstrapping tree-level amplitudes and loop-level
using the color-kinematics duality
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The color-kinematics duality
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Color-kinematics duality

Color-dual representation: kinematic weights ~ color weights

Bern, Carrasco, Johansson ‘08,
Bern, Carrasco, Johansson ‘10

Only need small number of basis graphs (Solves combinatorics problem!)

See review: Bern, Carrasco,

Weaves a web of theories (Recycling is good) e

Color-kinematics for many representations (adjoint, three-algebras,
(]I’bitI’CII'Y) Bargheer, He, McLoughlin 12

Massive matter in the fundamental Johansson, Ochirov 16, Plefka, Shi, Wang 19,
Bjerrum-Bohr, Cristofoli, Damgaard, Gomez ‘19, Luna,
Nicholson, O'Connell, White 17
Haddad, Helset ‘20



Color-kinematics duality relates kinematic weights
of graphs
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Color-kinematics duality relates kinematic weights
of graphs
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Color-kinematics duality relates kinematic weights

of graphs
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Color-kinematics duality relates kinematic weights
of graphs
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Color-kinematics duality relates kinematic weights
of graphs
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Antisymmetries of graph weights
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Color-kinematics duality relates kinematic weights

of graphs
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What is different about massive particles?
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What is different about massive particles?
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What is different about massive particles?

Jacobi-like relations
b C

c d a b
AT S5 = w4 4
b a c d

a d

TeTL: = feT.  + TRTE



What is different about massive particles?

Jacobi-like relations
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Color-kinematics duality relates kinematic weights

of graphs
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Double copy gives gravity
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3-point amplitudes are completely determined by
color-kinematics and symmetries
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3-point amplitudes are completely determined by
color-kinematics and symmetries
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3-point amplitudes are completely determined by
color-kinematics and symmetries

kg k3

i A



Tree-level amplitudes are completely determined by
color-kinematics and factorization
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Tree-level amplitudes are completely determined by
color-kinematics and factorization
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Tree-level amplitudes are completely determined by
color-kinematics and factorization
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Tree-level amplitudes are completely determined by
color-kinematics and factorization
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Tree-level amplitudes are completely determined by
color-kinematics and factorization
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Tree-level amplitudes are completely determined by
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Tree-level amplitudes are completely determined by
color-kinematics and factorization
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Tree-level amplitudes are completely determined by
color-kinematics and factorization
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Tree-level amplitudes are
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Loop-level
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Loop-level amplitudes are determined by
color-kinematics and unitarity cuts

4-point one-loop
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Loop-level amplitudes are determined by
color-kinematics and unitarity cuts
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Loop-level amplitudes are determined by
color-kinematics and unitarity cuts
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Loop-level amplitudes are determined by
color-kinematics and unitarity cuts

4-point one-loop
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Loop-level amplitudes are determined by
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Loop-level amplitudes are determined by
color-kinematics and unitarity cuts

4-point one-loop
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Loop-level amplitudes are determined by
color-kinematics and unitarity cuts

4-point one-loop
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Loop-level amplitudes are determined by
color-kinematics and unitarity cuts

4-point one-loop
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What does ordered cut mean?
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What does ordered cut mean?
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Loop-level amplitudes are determined by
color-kinematics and unitarity cuts

b-point one-loop

Encodes first correction to radiation



Loop-level amplitudes are determined by
color-kinematics and unitarity cuts
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Loop-level amplitudes are determined by
color-kinematics and unitarity cuts

b-point one-loop

33 topologies 6 basis graphs

10 296 = 1872
parameters parameters



Loop-level amplitudes are determined by
color-kinematics and unitarity cuts

5-point one-loop
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Amplitudes are fully
determined by
color-kinematics and

unitarity methods
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The double copy gives extra massless states
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The double copy gives extra massless states
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Is there a double copy approach?

Johansson, Ochirov ‘14
Lunag, Nicholson, O'Connell, White 17




Carrasco, IAVH 21

Is there a constructive approach?
Yes!



Graph topology N = 0 supergravity numerator A
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Graph topology N = 0 supergravity numerator
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Graph topology A
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Projective double copy
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Projective double copy

ZMt (a,b, ¢ ) ME=(~¢, c, d)

2 2
m1m2 )

= (ky - k) — ((k” ka)” = (Ds —2)




Projective double copy
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Projective double copy
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Projective double copy at loop-level
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Projective double copy at loop-level
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Projective double copy at loop-level
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Projective double copy at loop-level
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Future work includes
exploring double copies directly to pure gravity predictions,
nmassive higher-spins in arbitrary rep,
generating classical observables,

extending to higher loop order (2-loops and more)!




Summary

Color-kinematics and factorization
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3-point amplitudes are completely determined by
color-kinematics and symmetries

k2 Build the ansatz from a kinematic basis
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Tadpoles can be reached using color-kinematics
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Tree-level amplitudes are completely determined by
color-kinematics and factorization

What are symmetries of the graph?
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Tree-level amplitudes are completely determined by
color-kinematics and factorization

What are symmetries of the graph?
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Tree-level amplitudes are completely determined by
color-kinematics and factorization

What are symmetries of the graph?
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