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In spirit, modern amplitudes program has its root in string
theory Bern, Kosower, 1988

A string amplitude with a given set of external states has one
term at every loop order

– avoids having to sum over large number of Feynman diagrams.

Simplest example: Veneziano amplitude∫ 1

0
dy y2p1.p2(1− y)2p1.p3

– gives the tree level ‘color ordered’ amplitude of four open
strings in α′ = 1 unit

– no sum over s-channel, t channel and contact diagrams 2



However many string theory amplitudes written in this form
actually diverge.

Example: Veneziano amplitude∫ 1

0
dy y2p1.p2(1− y)2p1.p3

– diverges for 2p1.p2 ≤ −1 or 2p1.p3 ≤ −1.

Conventional wisdom: Define the integral for 2p1.p2 > −1 and
2p1.p3 > −1 and then analytically continue to other regions.

There are more elegant formalisms involving defining the
integrals as contour integrals in the complex plane

Berera; Witten; Mizera; · · ·

However there are cases where all these prescriptions fail to
give finite results. 3



Strategy:

– first understand the origin of the simple divergences that can
be treated via analytic continuation

– then use this insight to address the cases where analytic
continuation fails

Main tool: String field theory (SFT)
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SFT is a regular quantum field theory (QFT) with infinite number
of fields

Perturbative amplitudes: sum of Feynman diagrams

Each diagram covers part of the integration region over the
world-sheet variables (moduli of Riemann surfaces and
locations of vertex operators)

Sum of the diagrams covers the full integration region.

There are no UV divergences since interaction terms are
exponentially suppressed at large Euclidean momenta.
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How do we get integral over world-sheet variables from a
Feynman diagram?

Use Schwinger parametrization of the internal propagators:

(k2 + m2)−1 =

∫ ∞
0

dt e−t (k2+m2)

The integration over t gives integration over world-sheet
variables after a change of variable.

Divergences come from the t→∞ region for k2 + m2 ≤ 0.

All divergences in string theory are of this kind.

Analytic continuation amounts to defining the integral for
k2 + m2 > 0 and then continuing the result to k2 + m2 < 0.

SFT on the other hand just uses the lhs i.e. (k2 + m2)−1 for
computation 6



(k2 + m2)−1 =

∫ ∞
0

dt e−t (k2+m2)

The problematic cases arise when k2 + m2 is forced to vanish
due to momentum conservation

– both sides diverge and no analytic continuation is possible

Massless tadpole:

The red line has k=0, m=0 and gives divergent propagator

Mass renormalization:

The red line has k2 + m2 = 0 and gives divergent propagator. 7



In the world-sheet description these divergences show up as
divergences arising from degenerate Riemann surfaces.

×× ×× × ××

×

World-sheet theory cannot make sense of these divergences

In SFT, we can address these divergences using standard QFT
rules

Massless tadpole problem is addressed by shifting the vacuum

Mass renormalization problem is addressed by shifting the
definition of on-shell states to k2 + m2 + δm2 = 0

In principle SFT gives a completely well defined expression for
perturbative string amplitudes to all orders. 8



Today we are going to apply SFT techniques to address another
problem in string theory where similar divergences are present

– D-instanton amplitudes

D-instantons are to D-branes what ordinary instantons are to
solitons in QFT

– describe classical solutions in the Euclidean theory that are
localized in all non-compact directions including Euclidean time

(uses Dirichlet b.c. on open strings along all non-compact
directions)

– give non-perturbative contribution to string amplitudes of
order e−C/gs

C: numerical constant, gs: string coupling 9



D-instanton contributions are expected to play important role in
many aspects of string phenomenology.

1. They provide contribution to the superpotential needed for
moduli stabilizations

– lift flat directions in the scalar field potential (KKLT, LVS)

2. In many cases perturbative contribution to Yukawa type
couplings vanish and D-instantons provide the leading
contribution.
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D-instanton contributions to the amplitudes can in principle be
computed systematically using perturbative world-sheet
methods

– theory of open strings on the D-instanton and closed strings

Problem: Opens strings on D-instantons carry zero momentum
along the non-compact directions

– no variable to carry out analytic continuation

– need to use SFT to extract sensible answers. 11



We shall illustrate this procedure for a particular class of
problems

– D-instanton contribution to IIB string theory amplitudes in 10
dimensions.

However the method is quite general and applies to any
euclidean D-brane in any string theory. Alexandrov, A.S., Stefanski
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The problem
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Consider four graviton scattering amplitude in type IIB string
theory.

At tree level, it is given by the supergravity result and an
additional R4 contact interaction: Gross, Witten

i
4
κ2 Kc

[
64
stu

+ 2ζ(3)
]
(2π)10 δ(10)(p1 + p2 + p3 + p4)

in α′ = 1 unit.
κ2 ≡ 8πG = 26π7g2

s

gs: string coupling, normalized so that the D-string tension is
1/(2πgs).

Kc: A kinematic factor that depends on the polarizations and
momenta of the external gravitons (carries 8 powers of
momentum). 14



i
4
κ2 Kc

[
64
stu

+ 2ζ(3)
]
(2π)10 δ(10)(p1 + p2 + p3 + p4)

The supergravity contribution, given by the first term, is
S-duality invariant.

The second term is not, but there is an S-duality invariant
completion containing one loop and non-perturbative terms.

Green, Gutperle

i

4
κ

2 Kc

 64

stu
+ 2ζ(3) +

2π2

3
g2

s + 4 π g3/2
s

∞∑
k=1

√
k

∑
d|k

d−2

{
e2πikτ + e−2πikτ∗

}
{1 + O(gs)}


τ = a + i/gs, a: vev of RR scalar field

e2πikτ = e−2πk/gs × e2πia: k D-instanton contribution,

e−2πikτ∗ = e−2πk/gs × e−2πia: k anti-D-instanton contribution

O(gs) contains higher powers of gs 15



This gives the following prediction for the leading term in the k
D-instanton contribution to the four graviton amplitude:

i 26π8 g7/2
s e2πikτ Kc k1/2

∑
d|k

d−2

Our goal: Reproduce this from direct D-instanton computation.

Once this is done, all the higher order terms in power series
expansion in gs can be obtained using the differential equation
implied by supersymmetry Green, Sethi; Green, Vanhove; · · · , Wang, Yin

– determines the function completely without help of S-duality

Direct calculation should also be possible
Agmon, Balthazar, Cho, Rodriguez, Yin (ABCRY)
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i 26π8 g7/2
s e2πikτ Kc k1/2

∑
d|k

d−2

The e2πikτ comes from exponential of the action of k instantons.

Our goal: Reproduce the 26π8 g7/2
s Kc k1/2∑

d|k d−2 factor.
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Single instanton
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The leading contribution comes from the product of four disk
one point functions and arbitrary number of annulus zero point
functions.

mexp
[ ]

i × × × ×

Note: we include disconnected world-sheet since individual
world-sheets do not conserve momentum

– restored at the end after integration over zero modes

Define N = i exp[A], A: Annulus zero point function

Our first task will be to calculate N.

At this order, all the subtleties reside in the calculation of N. 19



N = i eA

For type IIB D-instantons:

A =

∫ ∞
0

dt
2t

[
1
2
η(it)−12 {ϑ3(0, it)4 − ϑ4(0, it)4 − ϑ2(0, it)4 + ϑ1(0, it)4}]

ϑα are Jacobi theta functions.

The integrand vanishes by theta function identity

– result of cancellation between NS and R sector open string
states.

The first two terms come from NS sector and the last two terms
come from the R sector.
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The general structure of A:

A =

∫ ∞
0

dt
2t

Tr
[
e−2πtL0(−1)F]

The vanishing of the integrand shows that the contribution from
the positive L0 states cancel in Bose-Fermi pair.

For these there are no subtleties and the cancellation is genuine.

However the cencellation cannot be trusted for the zero modes
and we need to treat them carefully.

For this it will be useful to regulate the system by introducing a
small non-zero L0 value h for the zero modes at the intermediate
steps

– put slightly shifted boundary condition on the two boundaries

– preserves conformal and BRST invariance on the world-sheet
21



In this regulated system

A =

∫ ∞
0

dt
2t
(
8 e−2πth − 8 e−2πth) = ∫ ∞

0

dt
2t
(
10 e−2πth − 2 e−2πth − 8 e−2πth)

↓ absence of UV divergence as t→ 0

⇒ N = i eA = i

√
h8 h2

h10 = i
∫ 

9∏
µ=0

dξµ√
2π

 dp dq exp

−1
2

h
9∑

µ=0

ξµξ
µ − h p q


∫ 16∏

α=1

dχα exp
[

1
2

gαβχαχβ
]

ξµ: 10 grassmann even modes related to D-instanton position

p,q: 2 grassmann odd modes representing ghosts

χα: 16 grassmann odd modes representing fermion zero modes

gαβ: an anti-symmetric, 16× 16 hermitian matrix satisfying:

g2 = h I16 , I16: 16× 16 identity matrix
22



We now proceed as follows.

1. First we interpret N as the Siegel gauge fixed path integral of
open string field theory on the instanton

– fixes the normalization of the integration measure.

2. In this interpretation, the modes p and q represent
Faddeev-Popov ghosts.

3. Then we show that the Siegel gauge becomes singular in the
h→ 0 limit, and this is the reason why the coefficient of the p q
term, representing the ghost kinetic operator, vanishes.

4. The remedy is to work with the original gauge invariant path
integral before gauge fixing.

This gets rid of the zero modes p and q from the integral. 23



Gauge invariant path integral

N = i
∫ {∏

µ

dξµ√
2π

}{∏
α

dχα

}
dφ e−S

/∫
dθ

S =
1
4
(φ−

√
2h ξ9)2 +

1
2

h
8∑

µ=0

ξµξ
µ − 1

2
gαβχαχβ

φ: an extra ‘field’ that is present in the gauge invariant action

θ: a gauge transformation parameter under which

δφ = h θ, δξ9 =

√
h
2
θ

9 direction is special because we have taken the shifted b.c.
between the two boundaries of the annulus to be along the
9-direction.

Siegel gauge corresponds to setting φ = 0

– gives us back the original expression. 24



After setting h=0, we get

N = i
∫ {∏

µ

dξµ√
2π

}{∏
α

dχα

}
dφe−φ

2/4

/∫
dθ

We can now do the φ integral and write:

N = i (2π)−5 2
√
π

∫ {∏
µ

dξµ
}{∏

α

dχα

}/∫
dθ
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N = i (2π)−5 2
√
π

∫ {∏
µ

dξµ
}{∏

α

dχα

}/∫
dθ

ξµ’s are related to the location xµ of the instanton in space-time.

Precise relation may be found by comparing

–world-sheet result for the coupling of ξµ to a string amplitude

– the expected coupling of xµ via eip.x factor

The gauge transformation parameter θ is related to the rigid U(1)
gauge transformation parameter α on the D-instanton.

Relation between θ and α can be found by comparing string field
theory gauge transformation and rigid U(1) transformation. 26



Result:

ξµ = xµ/(go π
√

2) ⇒
∏
µ

dξµ = (π
√

2go)
−10

∏
µ

dxµ

go: open string coupling = 2−1π−3/2g1/2
s

θ = 2α/go ⇒
∫

dθ = (2/go)

∫
dα = 4π/go

since α has period 2π.
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N = i (2π)−5 2
√
π (π
√

2go)
−10 go/(4π)

∫ {∏
µ

dxµ
}{∏

α

dχα

}
Integrations over the collective modes xµ and χα have to be
done at the end after computing the full amplitude, since the
other world-sheet components also have xµ and χα dependence.

xµ integral eventually generates the (2π)10δ(10)(
∑

j pj) factor.

Integration over the grassmann odd variables χα will vanish
unless there are 16 insertions of χα in the rest of the amplitude.

Only non-vanishing contribution comes from inserting 4 fermion
zero modes on each of the four disks

The χα integrals generate a factor of εα1···α16 multiplying the
product of the four disk amplitudes with χα1 , · · · , χα16 insertions.

– precisely reproduces Green-Gutperle prediction for k=1 28



k-instantons
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The center of mass degrees freedom give the same integral as a
single instanton except for some powers of k from Chan-Paton
factors

The relative degrees of freedom have to be analyzed similarly by
gauge ‘unfixing’ the Siegel gauge and explicitly integrating over
the out of Siegel gauge modes.

The remaining part is a supersymmetric matrix integral which
had already been computed while studying the index of multiple
D0-branes Krauth, Nicolai, Staudacher; Moore, Nekrasov, Shatashvili

Putting these results together we reproduce precisely the
leading term in the k-instanton amplitude as predicted by Green
and Gutperle.
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Conclusion
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String (field) theory gives a systematic procedure for computing
perturbative and D-instanton contribution to the amplitudes.

We should be able to apply this procedure to calculate
D-instanton contribution in situations where S-duality may not
be of help

e.g. semi-realistic string compactifications · · ·

· · · and other problems where D-instanton corrections might
play a dominant role

· · · and perhaps also to find a non-perturbative definition of
string theory.
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