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Introduction
• Planar N=4 Yang-Mills scattering amplitudes have been 

computed to very high loop order.

• They have many remarkable properties, that have sparked 
interest from mathematicians  working on combinatorics, 
algebraic geometry and  number theory.

• At the same time, several methods that have been developed 
for N=4 Yang-Mills are directly applicable to, and have greatly 
aided, QCD computations.

• In this talk, I will review some recent developments in N=4 
Yang-Mills amplitudes and describe some approaches that 
hope to explain their properties using various mathematical 
constructions.
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• 6 and 7-point amplitudes: cluster algebras
• 8 and 9-point amplitudes: new features
• Symbol alphabet from plabic graphs 
• Symbol alphabet from tensor diagrams
• Conclusions



Status: n-point amplitudes 
in N=4 planar Yang-Mills

• n<6 all loops
• n=6  through 7-loops
• n=7 through 4-loops
• n=8 MHV through 3-loop
• n=8, 9 MHV, NMHV through 2-loops
• All n MHV through 2-loops   

Bern, Dixon, Smirnov ‘05

Caron-Huot, Dixon, Drummond, Dulat, 
Foster, Gurdogan, von Hippel, McLeod,
Papathanasiou, review: 2005.06735

He, Li, Zhang ’19’20

Caron-Huot ’11

Li, Zhang [to appear: poster session]



Method: Amplitudes Bootstrap

[Caron-Huot, Dixon, Drummond, 
Dulat, Foster, Gurdogan, von Hippel, 
McLeod, Papathanasiou 2005.06735]

Write down the answer as linear combo of functions and 
determine the coefficients 

by solving a system of linear constraints.

Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou

Constraint L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1. H6 6 27 105 372 1214 3692?

2. Symmetry (2,4) (7,16) (22,56) (66,190) (197,602) (567,1795?)

3. Final-entry (1,1) (4,3) (11,6) (30,16) (85,39) (236,102)

4. Collinear (0,0) (0,0) (0⇤,0⇤) (0⇤,2⇤) (1⇤3,5⇤3) (6⇤2,17⇤2)

5. LL MRK (0,0) (0,0) (0,0) (0,0) (0⇤,0⇤) (1⇤2,2⇤2)

6. NLL MRK (0,0) (0,0) (0,0) (0,0) (0⇤,0⇤) (1⇤,0⇤2)

7. NNLL MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0⇤)

8. N3LL MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

9. Full MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

10. T 1 OPE (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

11. T 2 OPE (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Table 5: Remaining parameters in the ansätze for the (MHV, NMHV) amplitude after each constraint is
applied, at each loop order. The superscript “⇤” (“⇤n”) denotes an additional ambiguity (n ambiguities)
which arises only due to lack of knowledge of the cosmic normalization constant r at the given stage.
The “?” indicates an ambiguity about the number of weight 12 odd functions that are “dropouts”; they
are allowed at symbol level but not function level. The seven-loop MHV amplitude was constrained in a
somewhat different order. As the parameter counts are not directly comparable it is omitted from the table.

region in order to obtain a nontrivial result. As can be seen from the aforementioned limit, it is
natural to organize perturbative expansion of the amplitude also with respect to the order of the
divergent logarithm, logL�p�1 a1, denoted as the (next-to)p-leading-logarithmic (NpLL) approxi-
mation. A remarkable consequence of the integrability of the theory is that this double expansion
can be computed at any loop order and logarithmic approximation, not only for n = 6 [122], but
also at arbitrary multiplicity [123].

Finally, the table contains the expansion around the collinear limit, arranged in dofferent pow-
ers of a particular cross ratio T ! 0, which is governed by the Pentagon OPE [55, 56, 57, 59, 61,
62, 63, 64, 65, 66, 67] also mentioned in the introduction. That is, while the resummation of the
entire OPE is a challenging endeavor, individual terms in this expansion can be straightforwardly
evaluated using the methods of [58, 60]. As we move down each column of the table, the com-
plete determination of the amplitude for both helicity configurations at the given loop order occurs
with the first (0,0) table entry we encounter. Any entries below the latter then provide consistency
checks of our unique solution.

The table clearly shows the difference between six loop MHV and all other cases shown, in
that one parameter survives all the way through the multi-Regge limit and O(T 1) OPE constraints.
The same is true for the seven-loop MHV amplitude, whose parameter counts we have not included
in the table, since it was computed somewhat differently.

With the new six- and seven-particle amplitudes at hand, we may proceed to analyze their
behavior at various interesting kinematic subspaces and points, either numerically or analytically.
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Tools: Momentum Twistors

Momentum -> Momentum Twistors

Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou

Particularly for n = 6,7, the notation
ui ⌘ ui�1,i+2 (2.7)

is also used. Expressing all the cross ratios in terms of an independent subset is possible with the
help of (conformal) Gram determinant constraints, which simply encode the fact that no more than
d vectors can be linearly independent in d dimensions. Nevertheless, in practice these parametriza-
tions of the kinematics turn out to be quite complicated.

Instead, it proves significantly more advantageous to parametrize massless, planar, dual con-
formal invariant kinematics in terms of momentum twistors [78], which are also reviewed for ex-
ample in [79]. In a nutshell, these variables stem from the fact that we can represent xµ 2 R1,3 as
projective null vectors XM 2 R2,4, X2 = 0, X ⇠ lX . This SO(2,4) vector XM is also equivalent to
an antisymmetric representation XIJ of SU(2,2), given that the two algebras are isomorphic. The
latter can be built out of two copies of the fundamental representation ZI of SU(2,2), or, after com-
plexifying, SL(4,C). The momentum twistors are precisely these Z’s, and we see that each point in
R1,3 is mapped to a pair of points, namely a line in momentum twistor space. Similarly to X , they
are also defined up to rescalings Z ⇠ tZ, and so they may be equivalently viewed as homogeneous
coordinates on complex projective space P3. One can show that the usual Mandelstam invariants
(2.5) can be expressed in terms of momentum twistors as

x2
i j µ hi�1i j�1 ji , (2.8)

up to proportionality factors that drop out from conformally invariant quantities, where

hi jkli ⌘ hZiZ jZkZli= det(ZiZ jZkZl) (2.9)

is a four-bracket of momentum twistors.
Conformal transformations of the dual positions x map to SO(2,4) rotations of X , and in turn

to SL(4,C) transformations of the momentum twistors. Therefore the space of dual conformal
invariant kinematics can be written as a 4⇥ n matrix, whose columns are the cyclically ordered
momentum twistors/homogeneous CP3 coordinates defined up to rescalings, and modulo SL(4,C)
transformations. In the Appendix, we provide examples of explicit parametrizations, or coordinate
frames, on the space of six- and seven-particle kinematics. It is worth noting that this space of
momentum twistor kinematics is also equivalent to the quotient Gr(4,n)/(C⇤)n�1 of a Graßman-
nian [30]. This may be seen by recalling that the Graßmannian Gr(m,n) is defined as the space
of m-dimensional planes going through the origin in n-dimensional space, and thus may also be
realized as an m⇥n matrix, this time modulo GL(4,C) transformations.

To summarize, in the planar limit (color-ordered, super-)amplitudes in N = 4 SYM only
depend on the particle number n, the helicity degree k, 3n � 15 variables in the space of dual
conformally invariant kinematics, and the order L of loops or perturbative corrections.

3. Multiple Polylogarithms and Symbols

Having specified the quantum numbers and kinematic variables that A(L)
n,k depends on, let us

now move on to describe the class of functions it belongs to. A great deal of evidence from all
explicit calculations to date, as well as from an analysis of the integrand [80] , suggests that at
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Penrose, Hodges, Arkani-Hamed et al

Figure 1: Defining the connections between momentum-twistors, dual-coordinates, and

cyclically-ordered external four-momenta

point x in spacetime corresponds to set of twistors Z = (�, µ) which satisfy

µ↵̇ = x↵ ↵̇�↵. (2.2)

Twistors satisfying this relation form a projective line in CP3. Even though Z has

the components of a point in C4, the incidence relation cannot distinguish Z from

tZ, and therefore the space is projectivized.

In order to specify a line in twistor space—and therefore a point in spacetime—

all that is needed is a pair of twistors, say ZA and ZB, that belong to the line. Given

the twistors, the line or spacetime point is found by solving the four equations coming

from imposing the incidence relation for ZA and ZB with x. It is easy to check that

the solution is,

x↵ ↵̇ =
�A,↵µB,↵̇

h�A �Bi
+

�B,↵µA,↵̇

h�B �Ai
. (2.3)

(Here, we have made use of the familiar Lorentz-invariant contraction of two spinors

h�A �Bi ⌘ ✏↵ ��↵
A�

�

B).

Hodges’ construction starts with any set of n twistors {Z1, . . . , Zn}. Using the

association xa $ (Za, Za+1), n spacetime points are defined. Quite nicely, it is trivial

that p2

a = (xa�xa�1)2 = 0 because the corresponding lines, or (CP1s), intersect. This

is illustrated in Figure 1.

Given the importance of this latter fact, it is worth giving it a slightly more

detailed discussion than we have so far. If two lines in twistor-space intersect, i.e.

share a twistor Zint, then the corresponding spacetime points, say x and y, associated

with the lines are null-separated. To see this, take the di↵erence of the incidence
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ZA
i = (Z1

i ,Z
2
i ,Z

3
i ,Z

4
i ) 2 P3

{ak}

Z = (�↵, x↵↵̇�
↵)

dFm =
X

�↵12�
F

�↵1
m�1d log �↵1

dF
�↵1
m�1 =

X

�↵22�
F

�↵2 ,�↵1
m�2 d log �↵2

S[Fm] =
X

�↵1 ,�↵2 ,...�↵m2�
F

�↵m ,�↵m�1 ,...,�↵2�↵1
0 [�↵m ⌦ �↵m�1 ⌦ ...⌦ �↵2 ⌦ �↵1 ]

dLi2(z) = � log(1� z)d log(z) ! S[Li2(z)] = �(1� z)⌦ z

�↵i

Li2L(x) =
Z x

0

dt

t
Li2L�1(t) Li1(x) = � log(1� x)

G(a1, . . . , a2L; x) =
Z x

0

dt

t� a1
G(a2, . . . , a2L; t)

h1234ih2345i = 0

hij̄i hi� 1 i j � 1ji

hj(j � 1 j + 1)(i i+ 1)(k k + 1)i

h1256i ⌦ h1346i ⌦ h1246i ⌦ h1456i+ . . . 7272 terms

h1235i, h2345i, h1345i, h2456i, h1356i, h1246i, h1245i, h2356i, h1346i

1



Tools: Symbol Alphabet
“Dogma”: MHV and NHMV L-loop amplitudes 

can be expressed in terms of 
multiple polylogarithms of weight m=2L

• encodes singularities
• input in bootstrap    

Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou

least for k = 0,1, A(L)
n,k can be expressed in terms of Goncharov or multiple polylogarithms (MPL)

[24, 25, 26] (see also the review [81]) of weight m = 2L. A function Fm is defined to be an MPL of
weight m if its total differential obeys

dFm = Â
fb2F

Ffb
m�1 d logfb , (3.1)

such that that Ffa
m�1 is an MPL of weight m�1,

dFfb
m�1 = Â

fa2F
Ffa ,fb

m�2 d logfa , (3.2)

and so on, with the recursive definition terminating with the usual logarithms (m = 1) on the left-
hand side, and rational numbers (m = 0) as coefficients of the total differentials on the right-hand
side. The set F of arguments of the dlogs is called the symbol alphabet, and it encodes the positions
of the possible branch points of F . This iterative structure is part of the coaction operation D
[41, 42, 43, 44] (sometimes loosely referred to as a coproduct), which ‘decomposes’ an MPL of
weight m to linear combinations of pairs of MPLs with weight {m�m1,m1} for m1 = 0,1, . . .m.

In particular, the total differential (3.1) is essentially equivalent to the {m� 1,1} component
of D,

Dm�1,1Fm = Â
fb2F

Ffb
m�1 ⌦

⇥
logfb mod (ip)

⇤
. (3.3)

The coaction may be repeatedly applied to either the first or the second factor of the pair when
m1 > 1, yielding a further decomposition. As a result of the coassociativity of the coaction there is
a unique decomposition of an MPL of weight m into subspaces of MPLs with weight {m1, . . . ,mr},
such that Âr

i=1 mi = m. Denoting the projection of the coaction on each of these subspaces by
Dm1,...,mr , then equations (3.1) and (3.2) combine to yield the {m�2,1,1} coproduct,

Dm�2,1,1Fm = Â
fa ,fb2F

Ffa ,fb
m�2 ⌦ logfa ⌦ logfb , (3.4)

where here, and in what follows, identification of logf factors up to ip is implied. Furthermore,
maximally iterating the procedure we just described defines the symbol [82, 23],

S[Fm] = D1, . . . ,1
| {z }
m times

Fm = Â
fa1 ,...,fam

F
fa1 ,...,fan

0 [logfa1 ⌦ · · ·⌦ logfam ] , (3.5)

where one typically also simplifies the notation by replacing logfai ! fai for compactness.
As comparison between (3.1) and (3.3) reveals, derivatives only act on the rightmost factor of

the coaction, and the same carries over to the symbol. Similarly, it can be shown that the singulari-
ties or discontinuities of MPLs are encoded in the leftmost factor of their coaction. Particularly at
symbol level, the discontinuity of Fm when going around a potential branch point fb = 0, is given
by

S[Discfb (Fm)] = 2pi Â
fa1 ,...,fam

F
fa1 ,...,fan

0 da1b [fa2 ⌦ · · ·⌦fam ] , (3.6)

namely it is equivalent to clipping off the first entry.
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dFm =
X

�↵12�
F

�↵1
m�1d log �↵1

dF
�↵1
m�1 =

X

�↵22�
F

�↵2 ,�↵1
m�2 d log �↵2

S[Fm] =
X

�↵1 ,�↵2 ,...�↵m2�
F

�↵m ,�↵m�1 ,...,�↵2�↵1
0 [�↵m ⌦ �↵m�1 ⌦ ...⌦ �↵2 ⌦ �↵1 ]

dLi2(z) = � log(1� z)d log(z) ! S[Li2(z)] = �(1� z)⌦ z

�↵i

Li2L(x) =
Z x

0

dt

t
Li2L�1(t) Li1(x) = � log(1� x)

G(a1, . . . , a2L; x) =
Z x

0

dt

t� a1
G(a2, . . . , a2L; t)

h1234ih2345i = 0

hij̄i hi� 1 i j � 1ji

hj(j � 1 j + 1)(i i+ 1)(k k + 1)i

h1256i ⌦ h1346i ⌦ h1246i ⌦ h1456i+ . . . 7272 terms

h1235i, h2345i, h1345i, h2456i, h1356i, h1246i, h1245i, h2356i, h1346i

hii+ 1i hiji

{a1, a2}

a1, a2, a3 =
1 + a2
a1

, a4 =
1 + a1 + a2

a1a2
, a5 =

1 + a1
a2

1

SYMBOL

SYMBOL ALPHABET



n=6

n=6 symbol alphabet is given by 15 letters

all Gr(4,6) Plucker coordinates 
<a a+1 b c>

R(2)
6 = Li4

✓
�h1234ih2356i
h1236ih2345i

◆
� 1

4
Li4

✓
�h1246ih1345i
h1234ih1456i

◆
+ · · ·

R(2)
7 = Li2,2

✓
�h1(27)(34)(56)i

h1267ih1345i ,�h1(27)(34)(56)i
h1234ih1567i

◆
+
1

2
Li2,2

✓
h1267ih1456ih2345i

h2456ih1(23)(45)(67)i ,
h1237ih1456i
h1(23)(45)(67)

◆
+· · ·

1

Del Duca, Duhr, Smirnov;
Goncharov Spradlin Vergu AV

[9 DCI ratios]



n=7
n=7 symbol alphabet is given by 49 letters

all Gr(4,7) Plucker coordinates <a a+1 b c>
7 cyclic images <1(23)(45)(67)> and <1(27)(34)(56)>

R(2)
6 = Li4

✓
�h1234ih2356i
h1236ih2345i

◆
� 1

4
Li4

✓
�h1246ih1345i
h1234ih1456i

◆
+ · · ·

R(2)
7 =

1

4
Li2,2

✓
h1267ih2345i
h1237ih2456i ,�

h2456ih1(23)(45)(67)i
h1267ih1456ih2345i

◆
� 1

2
Li2,2

✓
h1267ih1345i
h1234ih1567i ,

h1(27)(34)(56)i
h1267ih1345i

◆
+ · · ·

1

with

c12 = f0f1f2f3f4f5f6f7 , c14 = �0 , c15 = �f0f1f2f3f4 , (5.3)

c16 = �f0f1f2f3 , c17 = �f0f1(1 + f3) , c18 = �f0(1 + f3) , (5.4)

c32 = 0 , c34 = f0f1f2f3f4f5f6f8 , c35 = f0f1f2f3f4f6f8 , (5.5)

c36 = f0f1f2f3f6f8 , c37 = f0f1f3f6f8 , c38 = f0f3f6f8 . (5.6)

The solution to C · Z = 0 for generic Z 2 Gr(4, 8) can be written as

f0 =

s
h7(12)(34)(56)i h1234i

a5 h2(34)(56)(78)i h3478i
, f5 =

s
a1a6a9 h3(12)(56)(78)i h5678i
a4a7 h6(12)(34)(78)i h3478i

,

f1 = �

s
a7 h8(12)(34)(56)i
h7(12)(34)(56)i , f6 = �

s
a3 h1(34)(56)(78)i h3478i
a2 h4(12)(56)(78)i h1278i

,

f2 = �

s
a4 h5(12)(34)(78)i h3478i
a8 h8(12)(34)(56)i h3456i

, f7 = �

s
a2 h4(12)(56)(78)i
a1h3(12)(56)(78)i

,

f3 =

s
a8 h1278i h3456i
a9 h1234i h5678i

, f8 = �

s
a5 h2(34)(56)(78)i
a3 h1(34)(56)(78)i

,

f4 = �

s
h6(12)(34)(78)i

a6 h5(12)(34)(78)i
,

(5.7)

where

ha(bc)(de)(fg)i ⌘ habdeihacfgi � habfgihacdei (5.8)

and the nine ai provide a (multiplicative) basis for the algebraic letters of the eight-

particle symbol alphabet that contain the four-mass box square root
p
�1357, as re-

viewed in Appendix B.

The nine face weights shown in (5.7) satisfy
Q

f↵ = 1 so only eight are multiplica-

tively independent. It is easy to check that they remain multiplicatively independent

if one sets all of the Plücker coordinates and brackets of the form (5.8) to one. This

means that the projection of this eight-dimensional space onto the nine-dimensional

space spanned by the nine algebraic letters is eight dimensional (and not smaller). We

could try building an eight-particle alphabet by taking any subset of eight of the face

weights as basis elements (i.e., letters), but we would always be one letter short of

spanning the full algebraic space.

Fortunately there is a second plabic graph relevant to
p
�1357: the one obtained by

performing a square move on f3 of (5.1). As is by now familiar, performing the square
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Caron-Huot;
Golden Goncharov Spradlin Vergu AV

[42 DCI ratios]



n=8

2 x 9 ALGEBRAIC LETTERS (SQUARE ROOTS)

He, Li, Zhang ’19

Figure 2. A plabic graph associated to the 12-dimensional cell in G+(3, 8) labeled by the

decorated permutation {4, 5, 7, 6, 9, 8, 11, 10}. The cubic symbol letter h4̄ \ (467) \ 2̄ \ (278)i
appears in the solution of C Z = 0 after performing a non-square move mutation on face f8.

• 68 Plücker coordinates of the form ha a+1 b ci,

• 8 cyclic images of h124̄ \ 7̄i,

• 40 cyclic images of h1(23)(45)(78)i, h1(23)(56)(78)i, h1(28)(34)(56)i, h1(28)(34)(67)i,
h1(28)(45)(67)i,

• 48 dihedral images of h1(23)(45)(67)i, h1(23)(45)(68)i, h1(28)(34)(57)i,

• 8 cyclic images of h2̄ \ (245) \ 8̄ \ (856)i,

• and 8 distinct dihedral images of h2̄ \ (245) \ 6̄ \ (681)i.

We see that 96 are quadratic in Plückers and the last 16 are cubic. (The G(4, 8) cluster

algebra has, in total, 120 quadratic and 174 cubic cluster variables [31].) By applying

the algorithm described in [18, 19] to all plabic graphs associated to 4k-dimensional cells

of G+(k, 8), one encounters all of the Plücker coordinates and quadratic cluster variables

(in addition, of course, to numerous non-cluster variables, similar to the examples

described in [18], as well as the 18 algebraic symbol letters). However, the cubic symbol

letters on the above list are missing (see also [30]).

We find that the cubic letters are obtainable if one allows non-plabic C-matrices as

described in the previous subsection. For example, the first type of cubic letter can be

obtained from the (non-top cell) G+(3, 8) plabic graph shown in Fig. 2 by applying a

mutation on face f8. We spare the details of writing down the C-matrix for this graph

and the solution for all face variables; it su�ces to display

1 + f8 =
h3567ih4̄ \ (467) \ 2̄ \ (278)i
h2378ih4567ih3(12)(45)(67)i (2.6)

– 5 –

180 RATIONAL LETTERS

• 16 dihedral images of hh12345678ii,

• 2 letters, h1357i and h2468i,

• 8 cyclic images of h1(23)(46)(78)i,

• 16 dihedral images of h1(27)(34)(56)i,

• 2 cyclic images of h2̄ \ 4̄ \ 6̄ \ 8̄i,

• 8 cyclic images of h2̄ \ (246) \ 6̄ \ 8̄i,

• 32 dihedral images of hh12435678ii, hh12436578ii,

• 16 dihedral images of h1234ih1678ih2456i�h1267ih1348ih2456i+h1248ih1267ih3456i,

Here habcdi are Plücker coordinates on G(4, n) and we define

ā ⌘ (a�1 a a+1) ,

ha(bc)(de)(fg)i ⌘ habdeihacfgi � hacdeihabfgi ,
ha, b, c, (de) \ (fgh)i ⌘ habcdihefghi � habceihdfghi ,
hx, y, (abc) \ (def)i ⌘ hxabcihydefi � hyabcihxdefi ,

hhabcdefghii ⌘ habcdihabefihdeghi � habdeihabefihcdghi
+ habdeihabghihcdefi ,

hx̄ \ (abc) \ ȳ \ (def)i ⌘ ha, (bc) \ x̄, d, (ef) \ ȳi .

(2.1)

We know from [13] that for any cluster parameterization C of the top cell of

G+(4, 8), solving CZ = 0 expresses the parameters of C in terms of products of pow-

ers of G(4, 8) cluster variables. Our aim is to identify a set of parameterizations that

collectively involve precisely the 280 letters of the extended rational alphabet (and no

other letters).

We begin by taking C to be the boundary measurement of the plabic graph shown

in Fig. 1 (see [11, 13] for more details on our conventions). Then the solution to CZ = 0

– 3 –

The boundary measurement for graph (c) has

c13 = �f0f1f2f3f4f5f6 , c23 = f0f1f2f3f4f5f6f8 ,

c14 = �f0f1f2f3(1 + f6 + f4f6) , c24 = f0f1f2f3f6f8(1 + f4) ,

c15 = �f0f1f2(1 + f6) , c25 = f0f1f2f6f8 ,

c16 = �f0(1 + f2 + f2f6) , c26 = f0f2f6f8 ,

(A.3)

and the solution to C · Z = 0 is

f (c)
0 = �h1234i

h2346i , f (c)
1 = �h2346i

h2345i , f (c)
2 =

h2345ih1246i
h1234ih2456i ,

f (c)
3 = �h1256i

h1246i , f (c)
4 =

h2456ih1236i
h2346ih1256i , f (c)

5 = �h1246i
h1236i ,

f (c)
6 =

h1456ih2346i
h3456ih1246i , f (c)

7 = �h3456i
h2456i , f (c)

8 = �h2456i
h1456i .

(A.4)

B Notation for Algebraic Eight-Particle Symbol Letters

Here we review some details from [12] to set the notation used in Sec. 5. There are two

basic square roots of four-mass box type that appear in symbol letters of eight-particle

amplitudes. These are
p
�1357 and

p
�2468 with

�1357 = (h1256ih3478i � h1278ih3456i � h1234ih5678i)2 � 4h1234ih3456ih5678ih1278i
(B.1)

and �2468 given by cycling every index by 1 (mod 8).

The eight-particle symbol alphabet can be written in terms of 180 Gr(4, 8) cluster

variables, plus 9 letters that are rational functions of Plücker coordinates and
p
�1357

and another 9 that are rational functions of Plücker coordinates and
p
�2468. We focus

on the first 9 as the latter is a cyclic copy of the same story.

There are many di↵erent ways to write a basis for the eight-particle symbol alphabet

as the various letters one can form satisfy numerous multiplicative identities among

each other. For the sake of definiteness we use the basis provided in the ancillary

Mathematica file attached to [12]. The choice of basis made there starts by defining

z =
1

2
(1 + u� v +

p
(1� u� v)2 � 4uv) ,

z̄ =
1

2
(1 + u� v �

p
(1� u� v)2 � 4uv)

(B.2)

in terms of the familiar eight-particle cross ratios

u =
h1278ih3456i
h1256ih3478i , v =

h1234ih5678i
h1256ih3478i . (B.3)
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we choose the internal black vertex as the center, then the top, bottom right, and bottom left

vertices are assigned (123), (45), and (678), respectively, where we use the shorthand

(ij) =
1

2
εabcdZ

a
i Z

b
j , (ijk) = εabcdZ

a
i Z

b
jZ

c
k . (3.4)

Contracting indices at the central vertex computes the diagram’s invariant, which can be

expressed as 〈45(123) ∩ (678)〉 using the notation

〈ab(cde) ∩ (fgh)〉 = 〈acde〉〈bfgh〉 − 〈bcde〉〈afgh〉 . (3.5)

3.4 Non-Arborizable Web Invariants

According to the Fomin-Pylyavskyy conjectures, every cluster monomial (a product of com-

patible cluster variables) in G(k, n) is an n-point slk web invariant. However, the converse

is not true because of the existence of non-arborizable webs. Their invariants are multiplica-

tively independent of cluster variables and so indicate that bases for cluster algebras must

(in general) have elements beyond cluster monomials. The simplest non-arborizable sl3 webs

appear at n = 9 and the simplest sl4 webs appear at n = 8. These include for example [23,

Figure 31] and [22, (8.2)], shown in Fig. 6.

1
2 3

4

5

67
8

9

1
2

3

4

5
6

7

8

(a) (b)

Figure 6: Two of the simplest non-arborizable webs, for (a) G(3, 9) and (b) G(4, 8).

4 From Tensor Diagrams to Kinematic Functions

In this section we study a map X that associates a kinematic function F = X([D]) to certain

tensor invariants [D]. A key property we want the map to have is that if [D] is a cluster

variable, then X([D]) should be the kinematic function naturally associated to [D] (in the

same sense of association as between the first and third columns of Tab. 1).

More specifically, and more generally, X is defined as follows: if [D] is a tensor invariant

whose g-vector (defined as reviewed in Sec. A.3) is y ∈ Zd, and if y is the first integer

point along the ray R+g (in which case we say that y and [D] are primitive), then X([D]) is

the kinematic function Fy computed according to (A.9). These steps trace counterclockwise
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• 16 dihedral images of hh12345678ii,

• 2 letters, h1357i and h2468i,

• 8 cyclic images of h1(23)(46)(78)i,

• 16 dihedral images of h1(27)(34)(56)i,

• 2 cyclic images of h2̄ \ 4̄ \ 6̄ \ 8̄i,

• 8 cyclic images of h2̄ \ (246) \ 6̄ \ 8̄i,

• 32 dihedral images of hh12435678ii, hh12436578ii,

• 16 dihedral images of h1234ih1678ih2456i�h1267ih1348ih2456i+h1248ih1267ih3456i,

Here habcdi are Plücker coordinates on G(4, n) and we define

ā ⌘ (a�1 a a+1) ,

ha(bc)(de)(fg)i ⌘ habdeihacfgi � hacdeihabfgi ,
ha, b, c, (de) \ (fgh)i ⌘ habcdihefghi � habceihdfghi ,
hx, y, (abc) \ (def)i ⌘ hxabcihydefi � hyabcihxdefi ,

hhabcdefghii ⌘ habcdihabefihdeghi � habdeihabefihcdghi
+ habdeihabghihcdefi ,

hx̄ \ (abc) \ ȳ \ (def)i ⌘ ha, (bc) \ x̄, d, (ef) \ ȳi .

(2.1)

We know from [13] that for any cluster parameterization C of the top cell of

G+(4, 8), solving CZ = 0 expresses the parameters of C in terms of products of pow-

ers of G(4, 8) cluster variables. Our aim is to identify a set of parameterizations that

collectively involve precisely the 280 letters of the extended rational alphabet (and no

other letters).

We begin by taking C to be the boundary measurement of the plabic graph shown

in Fig. 1 (see [11, 13] for more details on our conventions). Then the solution to CZ = 0
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and 1 cyclic
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He, Li, Zhang ’19

Figure 2. A plabic graph associated to the 12-dimensional cell in G+(3, 8) labeled by the

decorated permutation {4, 5, 7, 6, 9, 8, 11, 10}. The cubic symbol letter h4̄ \ (467) \ 2̄ \ (278)i
appears in the solution of C Z = 0 after performing a non-square move mutation on face f8.

• 68 Plücker coordinates of the form ha a+1 b ci,

• 8 cyclic images of h124̄ \ 7̄i,

• 40 cyclic images of h1(23)(45)(78)i, h1(23)(56)(78)i, h1(28)(34)(56)i, h1(28)(34)(67)i,
h1(28)(45)(67)i,

• 48 dihedral images of h1(23)(45)(67)i, h1(23)(45)(68)i, h1(28)(34)(57)i,

• 8 cyclic images of h2̄ \ (245) \ 8̄ \ (856)i,

• and 8 distinct dihedral images of h2̄ \ (245) \ 6̄ \ (681)i.

We see that 96 are quadratic in Plückers and the last 16 are cubic. (The G(4, 8) cluster

algebra has, in total, 120 quadratic and 174 cubic cluster variables [31].) By applying

the algorithm described in [18, 19] to all plabic graphs associated to 4k-dimensional cells

of G+(k, 8), one encounters all of the Plücker coordinates and quadratic cluster variables

(in addition, of course, to numerous non-cluster variables, similar to the examples

described in [18], as well as the 18 algebraic symbol letters). However, the cubic symbol

letters on the above list are missing (see also [30]).

We find that the cubic letters are obtainable if one allows non-plabic C-matrices as

described in the previous subsection. For example, the first type of cubic letter can be

obtained from the (non-top cell) G+(3, 8) plabic graph shown in Fig. 2 by applying a

mutation on face f8. We spare the details of writing down the C-matrix for this graph

and the solution for all face variables; it su�ces to display

1 + f8 =
h3567ih4̄ \ (467) \ 2̄ \ (278)i
h2378ih4567ih3(12)(45)(67)i (2.6)
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The boundary measurement for graph (c) has

c13 = �f0f1f2f3f4f5f6 , c23 = f0f1f2f3f4f5f6f8 ,

c14 = �f0f1f2f3(1 + f6 + f4f6) , c24 = f0f1f2f3f6f8(1 + f4) ,

c15 = �f0f1f2(1 + f6) , c25 = f0f1f2f6f8 ,

c16 = �f0(1 + f2 + f2f6) , c26 = f0f2f6f8 ,

(A.3)

and the solution to C · Z = 0 is

f (c)
0 = �h1234i

h2346i , f (c)
1 = �h2346i

h2345i , f (c)
2 =

h2345ih1246i
h1234ih2456i ,

f (c)
3 = �h1256i

h1246i , f (c)
4 =

h2456ih1236i
h2346ih1256i , f (c)

5 = �h1246i
h1236i ,

f (c)
6 =

h1456ih2346i
h3456ih1246i , f (c)

7 = �h3456i
h2456i , f (c)

8 = �h2456i
h1456i .

(A.4)

B Notation for Algebraic Eight-Particle Symbol Letters

Here we review some details from [12] to set the notation used in Sec. 5. There are two

basic square roots of four-mass box type that appear in symbol letters of eight-particle

amplitudes. These are
p
�1357 and

p
�2468 with

�1357 = (h1256ih3478i � h1278ih3456i � h1234ih5678i)2 � 4h1234ih3456ih5678ih1278i
(B.1)

and �2468 given by cycling every index by 1 (mod 8).

The eight-particle symbol alphabet can be written in terms of 180 Gr(4, 8) cluster

variables, plus 9 letters that are rational functions of Plücker coordinates and
p
�1357

and another 9 that are rational functions of Plücker coordinates and
p
�2468. We focus

on the first 9 as the latter is a cyclic copy of the same story.

There are many di↵erent ways to write a basis for the eight-particle symbol alphabet

as the various letters one can form satisfy numerous multiplicative identities among

each other. For the sake of definiteness we use the basis provided in the ancillary

Mathematica file attached to [12]. The choice of basis made there starts by defining

z =
1

2
(1 + u� v +

p
(1� u� v)2 � 4uv) ,

z̄ =
1

2
(1 + u� v �

p
(1� u� v)2 � 4uv)

(B.2)

in terms of the familiar eight-particle cross ratios

u =
h1278ih3456i
h1256ih3478i , v =

h1234ih5678i
h1256ih3478i . (B.3)
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and 1 cyclic

Li, Zhang [to appear: poster session]

Additional 24 letters were very recently found for 3-loop MHV

Amplitudes of planar N = 4
super-Yang-Mills from Q̄-equations
Song He, Zhenjie Li and Chi Zhang

Introduction

We compute the symbol of three-loop MHV octagon [1] and some
two-loop NMHV amplitudes [2, 3] in planar N = 4 super-Yang-Mills
(sYM) from the Q̄ equations [4] (the following figure also from [4]):

n

1
2

3

4. . .

N
k
MHV

n

1
2

3

4. . .

N
k
MHV

n

1
2

3

4. . .

N
k+1

MHV

n+1

n

NMHV

n+1

Q̄ = a
R

� ⇥ ) .d2|3Zn+1(

. . .

tree

Q̄
A

a
Rn,k =

1

4
�cusp Res

✏=0

Z ⌧=1

⌧=0

⇣
d2|3Zn+1

⌘A

a

[Rn+1,k+1�Rn,kR
tree
n+1,1]+cyc. . (1)

It’s an e�cient first principle calculation from anomaly of dual
superconformal symmetry. The results reveal new and rich structures
beyond amplitudes of lower multiplicities, especially the appearance of
algebraic letters.

Review of Q̄ equations

The infrared divergences of planar N = 4 sYM can be captured by the
so-called BDS anstaz, and we are interested in the infrared-finite object,
the BDS-subtracted amplitude, Rn,k = An,k/ABDS

n
, for n-point, NkMHV

amplitude An,k. As shown in [4], Rn,k is a dual conformal invariant (DCI)
but not invariant under the action of dual superconformal generators

Q̄
A

a
=

nX

i=1

�A

i

@

@Za

i

, (2)

where Zi are momentum twistors and �i denote their Grassmann parts.
Nevertheless, this anomaly can be restored by an integral over collinear

limits of higher-point amplitudes eq.(1), where �cusp is the cusp anomalous
dimension, and the particle n+1 is added in collinear limit with n whose
(super-) momentum twistor Zn+1 = (Zn+1,�n+1) is parametrized by ⌧ and
small ✏:

Zn+1 = Zn � ✏Zn�1 + C ✏⌧Z1 + C
0✏2Z2 , (3)

where two constants C and C
0 fix the particle weight, and the integral

measure is (d2|3Zn+1)Aa := "abcdZ b

n+1dZ
c

n+1dZ
d

n+1(d
3�n+1)A. In this collinear

limit, the bosonic integral reads

C (n̄)a Res✏=0

Z
✏d✏

Z 1

0
d⌧ (4)

with (n̄)a := (n�1 n 1)a. The notation Res✏=0 means to extract the
coe�cient of d✏/✏ under the collinear limit of ✏ ! 0.The perturbative
expansion of (1) relates R (L)

n,k to R
(L�1)
n+1,k+1. After working out the integration,

Q̄R
(L)
n,k =

P
↵Y

↵
n,k Q̄ log(a↵) I(2L�1)

↵ , (5)

where Y ↵
n,k are Yangian (superconformal & dual superconformal) invariants

and I(2L�1)
↵ are DCI functions of weight 2L� 1.

There’s no non-trivial DCI function living in the kernel of Q̄ for k = 0, 1.
Thus once a↵ are DCI, taking the trace of Q̄ in eq.(5), we get

dR (L)
n,k =

P
↵Y

↵
n,k d log(a↵) I(2L�1)

↵ , (6)

then the symbol of R (L)
n,k is S[R (L)

n,k ] =
P

↵ Y
↵
n,k S[I

(2L�1)
↵ ]⌦ (a↵). Finally we

want to calculate the functions I(2L�1)
↵ given by integrals of the form

Z 1

0
d log f (⌧ ) In+1(⌧, ✏ ! 0). (7)

Square root & four-mass box

However, there’re Gram-determinant square roots in the integrand of
eq.(7) when we calculate the two-loop 9-pt NMHV amplitude R (2)

9,1 from

1-loop 10-pt N2MHV amplitude R (1)
10,2, and then three loop MHV octagon

R
(3)
8,0 from R

(2)
9,1 . These square roots come from the four-mass boxes in the

box expansion of R (1)
10,2:

a

b�1
b

c�1c

d�1
d

a�1
···

···

···

···

8
>>>><

>>>>:

x
2
ab :=

ha�1 a b�1 bi
ha�1 aihb�1 bi, uabcd =

x
2
adx

2
bc

x2acx
2
bd

, vabcd =
x
2
abx

2
cd

x2acx
2
bd

,

�abcd =
p
(1� uabcd � vabcd)2 � 4uabcdvabcd ,

zabcd z̄abcd = uabcd , (1� zabcd)(1� z̄abcd) = vabcd ,

F := Li2(1� zabcd)� Li2(1� z̄abcd) +
1
2 log(vabcd) log(

zabcd
z̄abcd

).

Rationalization of ⌧ -integrals

The nontrivial ⌧ -integrals involving square roots are in the form of
Z

d log(⌧ � b) F (z(⌧ ), z̄(⌧ ))⌦ z(⌧ )� a

z̄(⌧ )� a
,

where F is a (normalized) four-mass box function of pure transcendental
weight 2. We need to rationalize it to perform the ⌧ -integration.
The main observation here is that there’re two rational constants p and

q such that pu(⌧ ) + qv(⌧ ) = 1, which leads a Möbius transformation
⇤(z) = qz�q+1

(p+q)z�q
such that ⇤(z) = z̄ and ⇤2 = id. Thus, the transformation

⌧ ! ⌧ (z) indeed rationalizes the above integral.
On the support z̄ = ⇤(z), it’s also interesting to notice that the symbol

of the function

Fx(z , z̄) :=

Z
d log

z � x

z̄ � x
F (z , z̄)

is an integrable symbol with the minimal algebraic word S[F (z , z̄)]⌦ z�x

z̄�x
:

S[Fx(z , z̄)] = S[F (z , z̄)]⌦ z � x

z̄ � x
+ rational terms. (8)

In our cases, the d log measure can always be written as
Z

d log

✓
f (⌧ ) = c0

(z � c)(z � c̄)

(z � 1)(z � 1̄)

◆
F (z , z̄)⌦ z � a

z̄ � a
,

where we introduce the shorthand x̄ := ⇤(x). By calculating its total
derivative by IBP, we get its symbol

✓Z
d log

z � c

z � c̄
F

◆
⌦ a � c

a � c̄
� S[F1]⌦

a � 1

a � 1̄
� S[Fa]⌦ f (⌧a)

+
1

2
S[F1]⌦ f (⌧a)(a � 1)

c0(a � 1̄)
+ S[F ]⌦ z � a

z̄ � a
⌦ f (⌧ ), (9)

where ⌧a is defined by z(⌧ = ⌧a) = a.

Results & Comments

The symbol of three-loop MHV octagon can be written as
R
(3)
8,0 =

P5
i=2 Pi ⌦ h781ii + cyc., each coe�cient has around 108 terms.

The symbol alphabet of R (3)
8,0 consists of 204 multiplicative-independent

rational letters and 18 independent DCI algebraic letters. The 204 rational
letters are organized as follows
•
�8
2

�
� 2 = 68 : all habcdi except h1357i and h2468i;

• 1 cyclic class of h12(345) \ (678)i;
• 7 cyclic class of h1(ij)(kl)(mn)i with 2  i < j < k < l < m < n  8;
5 cyclic class of h1(28)(kl)(mn)i with 2 < k < l < m < n < 8;

• 5 cyclic class of h2̄ \ 4̄ \ (568) \ 8̄i, h2̄ \ 4̄ \ 6̄ \ (681)i, h(127) \ (235) \
5̄ \ 7̄i, h(127) \ 3̄ \ (356) \ 7̄i, h2̄ \ (278) \ (346) \ 6̄i.
The symbol alphabet of R (2)

8,1 only consists of 180 rational letters, cyclic
images of h1(23)(46)(78)i, h2̄ \ 4̄ \ (568) \ 8̄i and h2̄ \ 4̄ \ 6̄ \ (681)i do
not appear.
Algebraic letters can only appear at the second and third entry of R (2)

n,1

and R
(3)
n,0 for n � 8, and the algebraic part with a given square root �abcd

of the symbol can be written as
X

↵

S[F (zabcd , z̄abcd)]⌦
zabcd � ↵

z̄abcd � ↵
⌦ R↵,

where R↵ is a weight 2L� 3 integrable symbol. For octagon (n = 8),
algebraic letters can be choosen as cyclic images of (z2468 � ↵)/(z̄2468 � ↵)
for ↵ = 0, h1236ih5678ih1256ih3678i,

h1246ih5678i
h1256ih4678i.

Outlook

(1) Amplitudes beyond MHV and NMHV from anomaly (Q (1) equations),
especially the two-loop N2MHV octagon.

(2) Understand the structure of amplitudes involving square roots: Steinmann
relations, extend Steinmann relations, limiting ray of infinite cluster
algebra, cluster adjacency of irrational letters? & ...
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n=9

• 13 cyclic classes of h12kli for 3  k < l  8 but (k, l) 6= (6, 7), (7, 8);

• 7 cyclic classes of h12(ijk) \ (lmn)i for 3  i < j < k < l < m < n  9;

• 8 cyclic classes of h2̄ \ (245) \ 6̄ \ (691)i, h2̄ \ (346) \ 6̄ \ (892)i, h2̄ \ (346) \ 2̄ \
(782)i, h2̄ \ (245) \ 7̄ \ (791)i, h2̄ \ (245) \ (568) \ 8̄i, h2̄ \ (245) \ (569) \ 9̄i,
h2̄ \ (245) \ (679) \ 9̄i, h2̄ \ (256) \ (679) \ 9̄i;

• 10 cyclic classes of h1(i i+1)(j j+1)(k k+1)i for 2  i, i+ 1 < j, j + 1 < k  8;

• 6 cyclic classes h1(2i)(j j+1)(k9)i for 3  i < j, j + 1 < k  8, but (i, k) 6=
(3, 8), (4, 7);

• 14 cyclic classes of h1(29)(ij)(k k+1)i for 3 < i < j  8, 3  k  i � 2 or

j + 1  k  7;

• 1 cyclic class of h1, (56) \ 3̄, (78) \ 3̄, 9i.

Figure 2. A plabic graph associated to the top cell of G+(5, 9).
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The boundary measurement for graph (c) has

c13 = �f0f1f2f3f4f5f6 , c23 = f0f1f2f3f4f5f6f8 ,

c14 = �f0f1f2f3(1 + f6 + f4f6) , c24 = f0f1f2f3f6f8(1 + f4) ,

c15 = �f0f1f2(1 + f6) , c25 = f0f1f2f6f8 ,

c16 = �f0(1 + f2 + f2f6) , c26 = f0f2f6f8 ,

(A.3)

and the solution to C · Z = 0 is

f (c)
0 = �h1234i

h2346i , f (c)
1 = �h2346i

h2345i , f (c)
2 =

h2345ih1246i
h1234ih2456i ,

f (c)
3 = �h1256i

h1246i , f (c)
4 =

h2456ih1236i
h2346ih1256i , f (c)

5 = �h1246i
h1236i ,

f (c)
6 =

h1456ih2346i
h3456ih1246i , f (c)

7 = �h3456i
h2456i , f (c)

8 = �h2456i
h1456i .

(A.4)

B Notation for Algebraic Eight-Particle Symbol Letters

Here we review some details from [12] to set the notation used in Sec. 5. There are two

basic square roots of four-mass box type that appear in symbol letters of eight-particle

amplitudes. These are
p
�1357 and

p
�2468 with

�1357 = (h1256ih3478i � h1278ih3456i � h1234ih5678i)2 � 4h1234ih3456ih5678ih1278i
(B.1)

and �2468 given by cycling every index by 1 (mod 8).

The eight-particle symbol alphabet can be written in terms of 180 Gr(4, 8) cluster

variables, plus 9 letters that are rational functions of Plücker coordinates and
p
�1357

and another 9 that are rational functions of Plücker coordinates and
p
�2468. We focus

on the first 9 as the latter is a cyclic copy of the same story.

There are many di↵erent ways to write a basis for the eight-particle symbol alphabet

as the various letters one can form satisfy numerous multiplicative identities among

each other. For the sake of definiteness we use the basis provided in the ancillary

Mathematica file attached to [12]. The choice of basis made there starts by defining

z =
1

2
(1 + u� v +

p
(1� u� v)2 � 4uv) ,

z̄ =
1

2
(1 + u� v �

p
(1� u� v)2 � 4uv)

(B.2)

in terms of the familiar eight-particle cross ratios

u =
h1278ih3456i
h1256ih3478i , v =

h1234ih5678i
h1256ih3478i . (B.3)
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h1234i

h1235i

h1245i

h1345i

h2345i

h1236i

h1256i

h1456i

h3456i

. . .

. . .

. . .

. . .

h123n�1i

h12n�2n�1i

h1n�3n�2n�1i

hn�4n�3n�2n�1i

h123ni

h12n�1ni

h1n�2n�1ni

hn�3n�2n�1ni

Figure 2: Quiver diagram for the initial Gr(4,n) cluster.

For the six-particle amplitude, or equivalently Gr(4,6), a convenient such choice for the sym-
bol alphabet is [16]4

a1 =
h1245i2h3456i2h6123i2

h1234ih2345i . . .h6123i , m1 =
h1356ih2346i
h1236ih3456i , y1 =

h1345ih2456ih1236i
h1235ih1246ih3456i , (4.4)

as well as two more cyclic transformations l1 ! l1+i with l 2 {a,m,y} induced by shifting Zm !
Zm�2i on the right-hand side. The cluster variables, also known as A -coordinates, are color-coded
in blue.

For the seven-particle amplitude, or Gr(4,7), a choice for the corresponding symbol alphabet
is [10]

a11 =
h1234ih1567ih2367i
h1237ih1267ih3456i , a41 =

h2457ih3456i
h2345ih4567i ,

a21 =
h1234ih2567i
h1267ih2345i , a51 =

h1(23)(45)(67)i
h1234ih1567i , (4.5)

a31 =
h1567ih2347i
h1237ih4567i , a61 =

h1(34)(56)(72)i
h1234ih1567i ,

where we have again denoted the cluster A -coordinates in blue, and

ha(bc)(de)( f g)i ⌘ habdeihac f gi�hab f gihacdei , (4.6)

together with ai j obtained from ai1 by cyclically relabeling the momentum twistors Zm ! Zm+ j�1.
It is interesting to note that for n = 7, and more generally when n is odd, any cluster A -coordinate
can be rendered invariant under rescalings Zi ! tZi by suitable products of powers of frozen vari-
ables.

4Note that any set of equal size, consisting of multiplicatively independent combinations of these letters, would
make an equally valid choice. Indeed, in the original literature [5, 6, 7, 8, 9] the letters ui and 1� ui were used. The
relation with the presently used alphabet is ai = ui/(ui�1ui+1) and mi = 1�1/ui.

8

Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou

As we mentioned, mutations only act on cluster variables. Letting ak be a cluster variable, the
arrows of a cluster containing it encode the information of how it will transform under mutation as
follows,

ak ! a0k =
1
ak

 

’
arrows i!k

ai + ’
arrows k! j

a j

!
. (4.1)

For example, mutating h1245i in the left of figure 1, we obtain

h1245i ! h1235ih1456i+ h1345ih1256i
h1245i = h1356i , (4.2)

where the last equality is obtained by means of the following Plücker relation2 ,

hcde f ihabe f i�hbde f ihace f i+ hade f ihbce f i= 0. (4.3)

for e = 1, f = 5,a = 2,b = 3,c = 4 and d = 6.
Apart from ak ! a0k, in the new quiver resulting from this mutation, all the rest of the cluster

variables and coefficients remain unchanged. However, the arrows connecting them are obtained
by modifying those of the cluster before the mutation of ak as follows:

• For each path i ! k ! j add an arrow i ! j, except if both i and j are frozen variables.

• Reverse the direction of all arrows pointing to or originating from k.

• Remove any pairs of arrows pointing in opposite directions, �.

In this manner we see, for example, that the mutation of h1245i we performed on the Gr(4,6)
initial cluster, leads to the new cluster depicted on the right of figure 1.

We have thus specified all the rules of the game, and obtaining the entire cluster algebra is just
a matter of applying them over and over at each vertex of every quiver we encounter. For Gr(4,n)
with n = 6,7, relevant for scattering amplitudes with the same particle multiplicity n, we see that
after a certain number of mutations, we return to a cluster we had encountered before. Namely the
cluster algebra is finite.3 The initial quiver for generic Gr(4,n), from which the n = 7 case may be
studied with the same set of rules we spelled out, is depicted in figure 2.

Specifically, for Gr(4,6) (Gr(4,7)), one finds 9 (42) different cluster variables, distributed
in 14 (833) distinct clusters (the order of the variables of each cluster does not matter). Quite
remarkably, in [30] these cluster variables were found to precisely agree with the symbol alphabet
of the then known six- and seven-particle amplitudes, thus lending support to the expectation that
the same should hold true to all loops.

More precisely, the cluster variables are homogeneous polynomials of four-brackets, and to
obtain the symbol alphabet one needs to consider a complete set of multiplicatively independent,
scale-invariant combinations thereof, also including the frozen variables.

2This identity is equivalent to the Schouten identity, as can be seen by the duality between Gr(4,6) and Gr(2,6),
which replaces a four-bracket with a spinor bracket of its complement, e.g. h1234i ! h56i.

3In the Dynkin classification of finite cluster algebras, Gr(4,6) and Gr(4,7) can thus be shown to correspond to the
A3 and E6 cluster algebras (with coefficients), respectively.
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F
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dF
�↵1
m�1 =

X

�↵22�
F
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S[Fm] =
X

�↵1 ,�↵2 ,...�↵m2�
F
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dLi2(z) = � log(1� z)d log(z) ! S[Li2(z)] = �(1� z)⌦ z

�↵i

Li2L(x) =
Z x

0

dt

t
Li2L�1(t) Li1(x) = � log(1� x)

G(a1, . . . , a2L; x) =
Z x

0

dt

t� a1
G(a2, . . . , a2L; t)

h1234ih2345i = 0

hij̄i hi� 1 i j � 1ji
hj(j � 1 j + 1)(i i+ 1)(k k + 1)i

h1256i ⌦ h1346i ⌦ h1246i ⌦ h1456i+ . . . 7272 terms
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{a1, a2}
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Matches symbol alphabets for n=6, 7 amplitudes!

Cluster Coordinates:n=6 and n=7
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4. Symbol Alphabets and Cluster Algebras

Once we have identified MPLs as the class of functions that contains A(L)
n,k , the next step is to

clarify how the symbol alphabet depends on the kinematic variables. For n = 6, this was achieved
by an explicit two-loop computation [46, 47], as well as by the analysis of closely related inte-
grals [83, 84]. For general n, strong motivation comes from the cluster algebra structure [30] of the
space of kinematics.

More precisely, we already mentioned in section 2 that the space of momentum twistor kine-
matics can be realized as the quotient Gr(4,n)/(C⇤)n�1 of a Graßmannian. The latter space is
naturally endowed with a cluster algebra structure, so it is sensible to explore any implications it
may have on the symbol alphabet.

There already exist many excellent introductions to cluster algebras [85, 86, 87, 88], as well as
articles with detailed review sections on their relation to scattering amplitudes [89, 35], so we will
not attempt to repeat this here. Instead, we will briefly highlight their main features, and outline a
simple example of a Graßmannian cluster algebra, which is relevant for our discussion.

Cluster algebras [90, 91, 92, 93] are commutative algebras equipped with a distinguished set
of generators ai, the cluster variables, grouped into overlapping subsets {a1, . . . ,ad} of rank d,
the clusters. Starting from an initial cluster, they may be constructed recursively by a mutation
operation on the cluster variables. They may also be generalized to contain frozen variables or
coefficients {ad+1, . . . ,ad+m}, whose main difference from the cluster variables is that they do not
mutate.

For our purposes, cluster algebras can be described by directed graphs or quivers. In figure
1, we depict the initial cluster of the Gr(4,6) cluster algebra, relevant for six-particle scattering.
Cluster and frozen variables correspond to the unboxed and boxed vertices of the graph, and we
observe that they are all four-brackets, or equivalently Plücker coordinates, namely 4⇥4 minors of
the 4⇥n matrix realization of Gr(4,n), here for n = 6. Nevertheless, frozen and cluster variables
also have an important difference: The former are always of the form hi, i+1, i+2, i+3i, modulo
n+ i ⇠ i identifications, whereas this is not the case for the latter.

h1234i

h1235i

h1245i

h1345i

h2345i

h1236i

h1256i

h1456i

h3456i

h1234i

h1235i

h1356i

h1345i

h2345i

h1236i

h1256i

h1456i

h3456i

Figure 1: Left: The quiver diagram for the Gr(4,6) initial cluster. Right: The quiver that arises by mutating
h1245i of the initial cluster, where the effect of the mutation is described in eqs. (4.1) and (4.2) for the
variable, and below eq. (4.3) for the arrows of the quiver.
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15 cluster coordinates:
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833 quivers give 49 cluster coordinates: 
35 Plucker coordinates <a a+1 b c>, 

7 cyclic images <1(23)(45)(67)>, <1(27)(34)(56)>

Caron-Huot; Golden, Goncharov, Spradlin, Vergu, AV
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As we mentioned, mutations only act on cluster variables. Letting ak be a cluster variable, the
arrows of a cluster containing it encode the information of how it will transform under mutation as
follows,

ak ! a0k =
1
ak

 

’
arrows i!k

ai + ’
arrows k! j

a j

!
. (4.1)

For example, mutating h1245i in the left of figure 1, we obtain

h1245i ! h1235ih1456i+ h1345ih1256i
h1245i = h1356i , (4.2)

where the last equality is obtained by means of the following Plücker relation2 ,

hcde f ihabe f i�hbde f ihace f i+ hade f ihbce f i= 0. (4.3)

for e = 1, f = 5,a = 2,b = 3,c = 4 and d = 6.
Apart from ak ! a0k, in the new quiver resulting from this mutation, all the rest of the cluster

variables and coefficients remain unchanged. However, the arrows connecting them are obtained
by modifying those of the cluster before the mutation of ak as follows:

• For each path i ! k ! j add an arrow i ! j, except if both i and j are frozen variables.

• Reverse the direction of all arrows pointing to or originating from k.

• Remove any pairs of arrows pointing in opposite directions, �.

In this manner we see, for example, that the mutation of h1245i we performed on the Gr(4,6)
initial cluster, leads to the new cluster depicted on the right of figure 1.

We have thus specified all the rules of the game, and obtaining the entire cluster algebra is just
a matter of applying them over and over at each vertex of every quiver we encounter. For Gr(4,n)
with n = 6,7, relevant for scattering amplitudes with the same particle multiplicity n, we see that
after a certain number of mutations, we return to a cluster we had encountered before. Namely the
cluster algebra is finite.3 The initial quiver for generic Gr(4,n), from which the n = 7 case may be
studied with the same set of rules we spelled out, is depicted in figure 2.

Specifically, for Gr(4,6) (Gr(4,7)), one finds 9 (42) different cluster variables, distributed
in 14 (833) distinct clusters (the order of the variables of each cluster does not matter). Quite
remarkably, in [30] these cluster variables were found to precisely agree with the symbol alphabet
of the then known six- and seven-particle amplitudes, thus lending support to the expectation that
the same should hold true to all loops.

More precisely, the cluster variables are homogeneous polynomials of four-brackets, and to
obtain the symbol alphabet one needs to consider a complete set of multiplicatively independent,
scale-invariant combinations thereof, also including the frozen variables.

2This identity is equivalent to the Schouten identity, as can be seen by the duality between Gr(4,6) and Gr(2,6),
which replaces a four-bracket with a spinor bracket of its complement, e.g. h1234i ! h56i.

3In the Dynkin classification of finite cluster algebras, Gr(4,6) and Gr(4,7) can thus be shown to correspond to the
A3 and E6 cluster algebras (with coefficients), respectively.
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after a certain number of mutations, we return to a cluster we had encountered before. Namely the
cluster algebra is finite.3 The initial quiver for generic Gr(4,n), from which the n = 7 case may be
studied with the same set of rules we spelled out, is depicted in figure 2.

Specifically, for Gr(4,6) (Gr(4,7)), one finds 9 (42) different cluster variables, distributed
in 14 (833) distinct clusters (the order of the variables of each cluster does not matter). Quite
remarkably, in [30] these cluster variables were found to precisely agree with the symbol alphabet
of the then known six- and seven-particle amplitudes, thus lending support to the expectation that
the same should hold true to all loops.

More precisely, the cluster variables are homogeneous polynomials of four-brackets, and to
obtain the symbol alphabet one needs to consider a complete set of multiplicatively independent,
scale-invariant combinations thereof, also including the frozen variables.

2This identity is equivalent to the Schouten identity, as can be seen by the duality between Gr(4,6) and Gr(2,6),
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

Figure 2: The quiver diagram for the initial cluster for the algebra associated to
Conf6(P3).

that the corner is the origin in the associated set of X -coordinates.

The cluster X -coordinates are edge coordinates in that they can be associated
to the one-dimensional edges (axes) which meet at the vertex corresponding to the
cluster. On each edge the associated X -coordinate runs over 0 < x < ∞, in cor-

respondence with the fact that the X -coordinate associated to a given edge inverts
under the mutation along that edge.

3.1 Hexagons and the A3 associahedron

For Conf6(P3), the initial cluster is represented by the quiver diagram given in Fig.

2 with Plücker coordinates at each of the nodes. The unfrozen A-coordinates of this
cluster are

a1 = 〈1235〉 , a2 = 〈1245〉 , a3 = 〈1345〉 . (3.7)

By repeated mutation of the above data according to (3.2) and (3.3) one obtains
14 distinct clusters arranged in the topology of the Stasheff polytope or associahedron

illustrated in Fig. 3. In total nine distinct unfrozen A-coordinates are obtained,
corresponding to the nine faces of the polytope, in addition to the six frozen ones

present in every cluster. Three are square faces and six are pentagonal. Each cluster
corresponds to a vertex, with the unfrozen A-coordinates of the cluster corresponding
to the faces of the polytope which meet at the vertex. The frozen A-coordinates

〈i i+1 i+2 i+3〉, being present in every cluster, are not shown in Fig. 3. The initial
cluster drawn in Fig. 2 corresponds to the cluster in the top left of Fig. 3. The edges

between clusters correspond to mutation operations.

Fig. 3 also makes manifest the discrete symmetries of the Conf6(P3) cluster

algebra. A cyclic rotation of the initial cluster can be generated by a threefold
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈1237〉

〈1267〉

〈1567〉

〈2345〉 〈3456〉 〈4567〉

Figure 7: The initial cluster of the Conf7(P3) cluster algebra, relevant for heptagon
amplitudes.

3.2 Heptagons and the E6 polytope

For Gr(4, 7), the initial cluster is represented by the quiver diagram of Fig. 7. Each
cluster contains six unfrozen nodes as well as the seven frozen ones labelled by the
adjacent four-brackets 〈i i+1 i+2 i+3〉. Repeated mutation generates a total of 833

distinct clusters containing a total of 42 distinct unfrozen A-coordinates in addition
to the 7 frozen ones.

A useful feature of cases of Gr(k, n) where the pair (k, n) is coprime (such as the
heptagon case) is that one may use the frozen A-coordinates to render the unfrozen

ones homogeneous [26]. In this way one can make a natural set of 42 homogeneous
letters labelled in one-to-one correspondence with the 42 unfrozen A-coordinates.

They are given by the following six quantities together with their cyclic rotations,

a11 =
〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉

a31 =
〈1567〉〈2347〉

〈1237〉〈4567〉

a51 =
〈1(23)(45)(67)〉

〈1234〉〈1567〉

a21 =
〈1234〉〈2567〉
〈1267〉〈2345〉

a41 =
〈2457〉〈3456〉

〈2345〉〈4567〉

a61 =
〈1(34)(56)(72)〉

〈1234〉〈1567〉
, (3.16)

Here we use the notation

〈1(23)(45)(67)〉 = 〈1234〉〈5671〉 − 〈1235〉〈4671〉 . (3.17)

By labelling the nodes of the quiver diagram with the homogenised A-coordinates,
the initial cluster can be illustrated as in Fig. 8.

Just as in the hexagon case we should try to visualise the 833 clusters being con-
nected together in a polytope (the E6 polytope). The polytope is a six-dimensional
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New Features at n>7
• Gr(4,n) cluster algebra is infinite for n>7
• Symbol letters involve square roots

Is there a mathematical description? 

1. Tropical Geometry
2. Dual Polytopes Arkani-Hamed, Lam, Spradlin ’19 

3. Plabic Graphs Mago, Schreiber, Spradlin, Yelleshpur, AV ’20 ’21 He Li’20

4. Tensor Diagrams  Ren, Spradlin, AV ’21

5. Scattering Diagrams Herderschee ‘21

Drummond, Foster, Gurdogan, Kalousios ’19                  
Henke, Papathanasiou ’19 ‘21



1. Tropical Geometry
• Speyer-Williams’03 associated a fan to the positive 

Grassmanian by solving tropicalized Plucker relations
(multiplication->addition, addition->minimum).

• Building on this idea Drummond, Foster, Gurdogan, 
Kalousios’19 looked at a “smaller” version of Gr(4,8) 
fan by looking at particular Plucker coordinates.

• This fan has 272 rays that are g-vectors for cluster 
coordinates that include 180 rational n=8 letters. 

• There are 2 exceptional rays from which they 
reproduced 18 algebraic n=8 letters.

w0

z0

b1 b2 b3a1a2 a3 a4

Figure 2: The E(1,1)
7 shaped clusters with a doubled arrow between two cluster A-

coordinates, w0 and z0. By mutation on the ai nodes we generate an A2 × A2

subalgebra of clusters containing the same w0, z0 and bi nodes. Frozen nodes are
omitted here.

and combine all frozen nodes outgoing from w0 into fw and those incoming to z0 into
fz,

fw =
8
∏

i=1

fmi

i , fz =
8
∏

i=1

fni

i , mi, ni ∈ N0 . (3.2)

Such a simplified diagram is illustrated at the top of Fig. 3.

The initial mutations to generate the infinite double sequence take the form

z1w0 = b+ fwz
2
0 ,

w1z0 = b+ fzw
2
0 . (3.3)

Thereafter the mutations in the z-direction and w-direction take the uniform form
for n ≥ 0,

zn+2zn = CFn + z2n+1 ,

wn+2wn = C̃Fn + w2
n+1 . (3.4)

The coefficients C and C̃ are given by

C = bfz ,

C̃ = bfw , (3.5)

while the factor F is the product over the frozen nodes,

F = fwfz . (3.6)

The transformations of the g-vectors while performing the doubly infinite se-

quence of mutations are very simple. After a few initial mutations the differences in
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2. Dual Polytopes
• Arkani-Hamed, Lam and Spradlin’19 looked at 

polytopes dual to these fans.
• To compute variables associated to the 

exceptional rays they used the method of 
Chang, Duan, Fraser, Li’19 and found evidence 
for the expected type of square roots.

• They conjectured these variables come from a 
generating function of the form

1
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1

function in [7]) defined by

fy(t) =
∑

m≥0

B(my)tm , (2.3)

where B(y) is a cluster algebra basis element associated to the lattice point y ∈ Zd.

In [7] it was conjectured that the cluster series associated to the ray generated by (2.2)

takes the form

1

1−At+B t2
(2.4)

in the canonical basis [38], where

A = 〈1 2 5 6〉〈3 4 7 8〉 − 〈1 2 7 8〉〈3 4 5 6〉 − 〈1 2 3 4〉〈5 6 7 8〉 ,
B = 〈1 2 3 4〉〈3 4 5 6〉〈5 6 7 8〉〈1 2 7 8〉 .

(2.5)

This conjecture was checked through O(t3) by explicit computation using the character for-

mula of [22].

In general fg(t) may depend on the choice of basis, but we expect that certain important

properties of fg(t) are the same in any suitably reasonable basis. In particular, we expect

that it is a rational function of t and that the locations of its poles (in t) are basis-independent

and located on the positive t axis when the series is evaluated at any point in the positive

Grassmannian G>0(k, n).

In Sec. 5 of this paper we introduce a closely related web series. We conjecture that a web

series exists for every ray, but we have not found the specific form of the series in general.

However, for certain rays (those corresponding to almost arborizable webs; see Sec. 5) we

prove, to all orders in t, that the web series takes the form

1−B t2

1−At+B t2
, (2.6)

with A,B depending on the ray. In particular we prove that the web series associated to

the ray generated by (2.2) takes the form (2.6) with A,B given by (2.5). Evidently our web

series use a different basis than the one that gives the series (2.4), but is consistent with the

abovementioned expectations (since it has the same poles, at t = A ±
√
A2 − 4B). We also

prove that the web series has the form (2.6), and evaluate the corresponding A’s and B’s, for

324 normal rays of the polytope C†(4, 9) that might be relevant to the symbol alphabet of

9-particle scattering amplitudes in SYM theory.

Finally let us note that if g is a g-vector, then B(g) is the associated cluster variable

and B(mg) = B(g)m for any choice of basis, so the cluster series is basis-independent and

geometric:

fg(t) =
1

1− tB(g) . (2.7)
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Poles at



3. Plabic Graphs   

Such a duality was proposed in [33], connecting leading singularities of color-stripped, n-particle
NkMHV scattering amplitudes in N = 4 SYM to a simple contour integral over the Grassmannian
G(k, n):

Yn,k(Z) =
1

vol[GL(k)]

Z
d k⇥nC↵a

(1 · · · k)(2 · · · k+1) · · · (n · · · k 1)

kY

↵=1

�4|4(C↵aZa). (1)

Here a = 1, · · · , n labels the external particles, and Za are variables in CP3|4. The original formu-
lation of this object worked with twistor variables Wa = (Wa|e⌘a), and was given as Ln,k+2(W) =
Yn,k+2(W). This was quickly realized [35] to be completely equivalent to a second form in momen-

tum twistor space [36], with Ln,k+2(�, e�, e⌘) = M tree

MHV
⇥ Yn,k(Z). Here the variables Za = (Za|⌘a)

are the “momentum-twistors” introduced by Hodges [37], which are the most natural variables with
which to discuss dual superconformal invariance. Furthermore, these momentum twistors are sim-
ple algebraic functions of the external momenta, upon which scattering amplitudes conventionally
depend2.

Since the Grassmannian integral is invariant under both ordinary and dual superconformal
transformations, it enjoys the full Yangian symmetry of the theory, as has been proven more directly
in [38]. In fact, it has been argued that these contour integrals in G(k, n) generates all Yangian
invariants, 3 [41, 42].

Leading singularities are associated with residues of the Grassmannian integral. Residue the-
orems [43] imply many non-trivial and otherwise mysterious linear relations between leading sin-
gularities. These relations are associated with important physical properties such as locality and
unitarity [33].

Further investigations [44] identified a new principle, the Grassmannian “particle interpreta-
tion”, which determines the correct contour of integration yielding the BCFW form of tree ampli-
tudes [45]. Quite remarkably, a deformation of the integrand connects this formulation to twistor
string theory [44, 46, 47]. Furthermore, another contour deformation produces the CSW expansion
of tree amplitudes [48], making the emergence of local space-time a derived consequence from the
more primitive Grassmannian starting point.

The Grassmannian integral and Yangian-invariance go hand-in-hand and are essentially syn-
onymous; indeed, the Grassmannian integral is the most concrete way of thinking about Yangian
invariants, since not only the symmetries but also the non-trivial relationship between di↵erent
invariants are made manifest; even connections to non-manifestly Yangian-invariant but important
physical objects (such as CSW terms) are made transparent.

Given these developments, we are encouraged to ask again: is there an analogous structure
underlying not just the leading singularities but the full loop amplitudes? Does Yangian-invariance
play a role? And if so, how can we see this through the thicket of IR-divergences that appear to
remove almost all traces of these remarkable symmetries in the final amplitudes?

2 To quickly establish notation and conventions, the momentum of particle a is given by pµa = xµ
a+1 � xµ

a , and
the point xµ

a in the dual co-ordinate space is associated with the line (Za�1 Za) in the corresponding momentum-
twistor space. This designation ensures that the lines (Za�1 Za) and (Za Za+1) intersect, so that correspondingly,
xµ
a+1 � xµ

a = pa is null. (Bosonic) dual-conformal invariants are made with 4-brackets ha b c di = ✏IJKLZ
I
aZ

J
b Z

K
c ZL

d .
An important special case is hi 1 i j 1 ji = hi 1 iihj 1 ji(xj�xi)

2; 2-brackets hiji are computed using the upper-two
components of Zi, Zj and cancel out in dual-conformal expressions. For more detail see [35–37].

3The residues of G(k, n) are Yangian-invariant for generic momenta away from collinear limits. See [39, 40] for
important discussions of the fate of Yangian invariance in the presence of collinear singularities.

3

Our Strategy: start with plabic graph, 
solve C Z=0, compare with known symbol letters. 

2.3 Gluing Three-Particle Amplitudes Into On-Shell Diagrams

It is remarkable that three-particle amplitudes are totally fixed by Poincaré symme-

try; they carry all the essential information about the particle content and obvious

symmetries of the physical theory. It is natural to “glue” these elementary building

blocks together to generate more complicated objects we will call on-shell diagrams.

Such objects will be our primary interest in this paper; examples of these include:

and (2.13)

We draw both planar and non-planar examples here to stress that on-shell diagrams

have nothing to do with planarity. In this paper, however, we will focus on the case

of planar N =4; we leave a systematic exploration of non-planar on-shell diagrams

to future work.

Note that on-shell diagrams such as those of (2.13) are not Feynman diagrams!

There are no “virtual” or “o↵-shell” internal particles involved: all the lines in these

pictures are on-shell (meaning that their momenta are null). Each internal line

represents a sum over all possible particles which can be exchanged in the theory, with

(often complex) momenta constrained by momentum conservation at each vertex—

integrating over the on-shell phase space of each. If I denotes an internal particle

with momentum pI = �I
e�I and helicity hI , then pI flows into one vertex with helicity

hI , and ( pI) flows into the other with helicity ( hI). In pure (non-supersymmetric)

Yang-Mills we would have, [65],

X

hI=±

Z
d2�Id2e�I

vol(GL(1))
, (2.14)

for each internal line; in a theory with maximal supersymmetry we would have,
Z
d4e⌘

Z
d2�Id2e�I

vol(GL(1))
. (2.15)

Here, the on-shell phase-space integral is clearly over �, e�, modulo theGL(1)-redundancy

of the little group—rescaling �I 7! tI�I and e�I 7! t�1
I
e�I .

In general, we have some number of integration variables corresponding to the

(on-shell) internal momenta, and �-functions enforcing momentum-conservation at

each vertex. We may have just enough �-functions to fully localize all the internal
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The matrix C parameterizes 
a cell of the positive Grassmannian; 
such cells are in correspondence with 
(equivalence classes) of plabic graphs.

The building blocks of N=4 SYM amplitudes are 
Yangian invariants which are given by integrals
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Example: n=6, k=2

2 A Motivational Example

Motivated by [19], in this paper we consider solutions to sets of equations of the form

C · Z = 0 (2.1)

which are familiar from the study of several closely connected or essentially equivalent

amplitude-related objects (leading singularities, Yangian invariants, on-shell forms; see

for example [18, 20–23]).

For the application to SYM theory that will be the focus of this paper, Z is the

n⇥4 matrix of momentum twistors describing the kinematics of an n-particle scattering

event, but it is often instructive to allow Z to be n⇥m for general m.

The k ⇥ n matrix C(f0, . . . , fd) in (2.1) parameterizes a d-dimensional cell of the

totally non-negative Grassmannian Gr(k, n)�0. Specifically, we always take it to be

the boundary measurement of a (reduced, perfectly oriented) plabic graph expressed in

terms of the face weights f↵ of the graph (see [17, 18]). One could equally well use edge

weights, but using face weights allows us to further restrict our attention to bipartite

graphs and to eliminate some redundancy; the only residual redundancy of face weights

is that they satisfy
Q

a f↵ = 1 for each graph.

For an illustrative example, consider

(2.2)

which a↵ords us the opportunity to review the construction of the associated C-matrix

from [17]. The graph is perfectly oriented because each black (white) vertex has all

incident arrows but one pointing in (out). The graph has two sources {1, 2} and four

sinks {3, 4, 5, 6} and we begin by forming a 2⇥ (2 + 4) matrix with the 2⇥ 2 identity

matrix occupying the source columns:

C =

✓
1 0 c13 c14 c15 c16
0 1 c23 c24 c25 c26

◆
. (2.3)
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The remaining entries are given by

cij = (�1)s
X

p:i 7!j

Y

↵2bp

f↵ (2.4)

where s is the number of sources strictly between i and j, the sum runs over all allowed

paths p from i to j (allowed paths must traverse each edge only in the direction of its

arrow) and the product runs over all faces ↵ to the right of p, denoted by bp. In this

manner we find

c13 = �f0f1f2f3f4f5f6 , c23 = f0f1f2f3f4f5f6f8 ,

c14 = �f0f1f2f3f4(1 + f6) , c24 = f0f1f2f3f4f6f8 ,

c15 = �f0f1f2(1 + f4 + f4f6) , c25 = f0f1f2f4f6f8 ,

c16 = �f0(1 + f2 + f2f4 + f2f4f6) , c26 = f0f2f4f6f8 .

(2.5)

Then for m = 4, (2.1) is a system of 2⇥ 4 = 8 equations for the eight independent face

weights, which has the solution

f0 = �h1234i
h2346i , f1 = �h2346i

h2345i , f2 =
h2345ih1236i
h1234ih2356i ,

f3 = �h2356i
h2346i , f4 =

h2346ih1256i
h2456ih1236i , f5 = �h2456i

h2356i ,

f6 =
h2356ih1456i
h3456ih1256i , f7 = �h3456i

h2456i , f8 = �h2456i
h1456i ,

(2.6)

where hijkli = det(ZiZjZkZl) are Plücker coordinates on Gr(4, 6).

We pause here to point out two features evident from (2.6). First, we see that on

the solution of (2.1) each face weight evaluates (up to sign) to a product of powers

of Gr(4, 6) cluster variables, i.e. to a symbol letter of six-particle amplitudes in SYM

theory [1]. Moreover, the cluster variables that appear (h2346i, h2356i, h2456i, and the

six frozen variables) constitute a single cluster of the Gr(4, 6) algebra.

The fact that cluster variables of Gr(m,n) seem to arise, at least in this example,

raises the possibility that the symbol alphabets of amplitudes in SYM theory might be

given more generally by the face weights of certain plabic graphs evaluated on solutions

of C · Z = 0. A necessary condition for this to have a chance of working is that the

number of independent face weights should equal the number of equations (both eight

in the above example); otherwise the equations would have no solutions or continuous

families of solutions. For this reason we focus exclusively on graphs for which (2.1)

admits isolated solutions for the face weights as functions of generic n⇥m Z-matrices;

in particular this requires that d = km. In such cases the number of isolated solutions

to (2.1) is called the intersection number of the graph.
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Solution to C Z=0
(a) (b) (c)

h16i h12i

h23i

h34ih45i

h56i

h26i

h36i

h46i
;;

JJ

ee
⌃⌃

&&
pp

⌫⌫
ff

⌦⌦

%%XX

// h16i h12i

h23i

h34ih45i

h56i

h26i

h36i

h35i
⌥⌥

GG

dd
⇧⇧

''
oo

$$

//

EE

gg

oo

// h16i h12i

h23i

h34ih45i

h56i

h26i

h24ih46i oo
⇠⇠

FF

``
~~

55

SS

↵↵

))XX

//

⌃⌃

(d) (e) (f)

h3456i h1456i

h1256i

h1236ih1234i

h2345i

h2456i

h2356i

h2346i
;;

JJ

ee
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&&
pp
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ff
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//
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//
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(g) (h) (i)

Figure 1. The three types of (reduced, perfectly orientable, bipartite) plabic graphs corre-

sponding to km-dimensional cells of Gr(k, n)�0 for k = 2, m = 4 and n = 6 are shown in

(a)–(c). The associated input and output clusters (see text) are shown in (d)–(f) and (g)–(i)

respectively. Lines connecting two frozen nodes are usually omitted, but we include in (g)–(i)

the dotted lines (having “black on the right” in the dual plabic graph) that encode (2.6),

(A.2) and (A.4) (up to signs).
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Figure 1. The three types of (reduced, perfectly orientable, bipartite) plabic graphs corre-

sponding to km-dimensional cells of Gr(k, n)�0 for k = 2, m = 4 and n = 6 are shown in

(a)–(c). The associated input and output clusters (see text) are shown in (d)–(f) and (g)–(i)

respectively. Lines connecting two frozen nodes are usually omitted, but we include in (g)–(i)

the dotted lines (having “black on the right” in the dual plabic graph) that encode (2.6),

(A.2) and (A.4) (up to signs).
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Letters corresponding to this graph 
can be summarized by quiver:



n=6 and n=7
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We exactly reproduce n=6 symbol alphabet

We exactly reproduce n=7 symbol alphabet



Algebraic letters: n=8
with

c12 = f0f1f2f3f4f5f6f7 , c14 = �0 , c15 = �f0f1f2f3f4 , (5.3)

c16 = �f0f1f2f3 , c17 = �f0f1(1 + f3) , c18 = �f0(1 + f3) , (5.4)

c32 = 0 , c34 = f0f1f2f3f4f5f6f8 , c35 = f0f1f2f3f4f6f8 , (5.5)

c36 = f0f1f2f3f6f8 , c37 = f0f1f3f6f8 , c38 = f0f3f6f8 . (5.6)

The solution to C · Z = 0 for generic Z 2 Gr(4, 8) can be written as

f0 =

s
h7(12)(34)(56)i h1234i

a5 h2(34)(56)(78)i h3478i
, f5 =

s
a1a6a9 h3(12)(56)(78)i h5678i
a4a7 h6(12)(34)(78)i h3478i

,

f1 = �

s
a7 h8(12)(34)(56)i
h7(12)(34)(56)i , f6 = �

s
a3 h1(34)(56)(78)i h3478i
a2 h4(12)(56)(78)i h1278i

,

f2 = �

s
a4 h5(12)(34)(78)i h3478i
a8 h8(12)(34)(56)i h3456i

, f7 = �

s
a2 h4(12)(56)(78)i
a1h3(12)(56)(78)i

,

f3 =

s
a8 h1278i h3456i
a9 h1234i h5678i

, f8 = �

s
a5 h2(34)(56)(78)i
a3 h1(34)(56)(78)i

,

f4 = �

s
h6(12)(34)(78)i

a6 h5(12)(34)(78)i
,

(5.7)

where

ha(bc)(de)(fg)i ⌘ habdeihacfgi � habfgihacdei (5.8)

and the nine ai provide a (multiplicative) basis for the algebraic letters of the eight-

particle symbol alphabet that contain the four-mass box square root
p
�1357, as re-

viewed in Appendix B.

The nine face weights shown in (5.7) satisfy
Q

f↵ = 1 so only eight are multiplica-

tively independent. It is easy to check that they remain multiplicatively independent

if one sets all of the Plücker coordinates and brackets of the form (5.8) to one. This

means that the projection of this eight-dimensional space onto the nine-dimensional

space spanned by the nine algebraic letters is eight dimensional (and not smaller). We

could try building an eight-particle alphabet by taking any subset of eight of the face

weights as basis elements (i.e., letters), but we would always be one letter short of

spanning the full algebraic space.

Fortunately there is a second plabic graph relevant to
p
�1357: the one obtained by

performing a square move on f3 of (5.1). As is by now familiar, performing the square
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To obtain the 9th: square move on f3.
Cycling by one: 
we reproduce all n=8 algebraic letters.

This graph gives 8 algebraic letters:

The boundary measurement for graph (c) has

c13 = �f0f1f2f3f4f5f6 , c23 = f0f1f2f3f4f5f6f8 ,

c14 = �f0f1f2f3(1 + f6 + f4f6) , c24 = f0f1f2f3f6f8(1 + f4) ,

c15 = �f0f1f2(1 + f6) , c25 = f0f1f2f6f8 ,

c16 = �f0(1 + f2 + f2f6) , c26 = f0f2f6f8 ,

(A.3)

and the solution to C · Z = 0 is

f (c)
0 = �h1234i

h2346i , f (c)
1 = �h2346i

h2345i , f (c)
2 =

h2345ih1246i
h1234ih2456i ,

f (c)
3 = �h1256i

h1246i , f (c)
4 =

h2456ih1236i
h2346ih1256i , f (c)

5 = �h1246i
h1236i ,

f (c)
6 =

h1456ih2346i
h3456ih1246i , f (c)

7 = �h3456i
h2456i , f (c)

8 = �h2456i
h1456i .

(A.4)

B Notation for Algebraic Eight-Particle Symbol Letters

Here we review some details from [12] to set the notation used in Sec. 5. There are two

basic square roots of four-mass box type that appear in symbol letters of eight-particle

amplitudes. These are
p
�1357 and

p
�2468 with

�1357 = (h1256ih3478i � h1278ih3456i � h1234ih5678i)2 � 4h1234ih3456ih5678ih1278i
(B.1)

and �2468 given by cycling every index by 1 (mod 8).

The eight-particle symbol alphabet can be written in terms of 180 Gr(4, 8) cluster

variables, plus 9 letters that are rational functions of Plücker coordinates and
p
�1357

and another 9 that are rational functions of Plücker coordinates and
p
�2468. We focus

on the first 9 as the latter is a cyclic copy of the same story.

There are many di↵erent ways to write a basis for the eight-particle symbol alphabet

as the various letters one can form satisfy numerous multiplicative identities among

each other. For the sake of definiteness we use the basis provided in the ancillary

Mathematica file attached to [12]. The choice of basis made there starts by defining

z =
1

2
(1 + u� v +

p
(1� u� v)2 � 4uv) ,

z̄ =
1

2
(1 + u� v �

p
(1� u� v)2 � 4uv)

(B.2)

in terms of the familiar eight-particle cross ratios

u =
h1278ih3456i
h1256ih3478i , v =

h1234ih5678i
h1256ih3478i . (B.3)
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Rational Letters
• It is not possible to obtain all rational symbol letters 

from just plabic graphs.
• We have to consider non-plabic C-matrices.

• In some cases, solutions involve non-cluster coordinates. 
• We showed that restricting to the top cell (k=n-4) of the 

Grassmannian but allowing arbitrary non-plabic C-
matrices, we will always produce cluster variables.
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Figure 2. A plabic graph associated to the 12-dimensional cell in G+(3, 8) labeled by the

decorated permutation {4, 5, 7, 6, 9, 8, 11, 10}. The cubic symbol letter h4̄ \ (467) \ 2̄ \ (278)i
appears in the solution of C Z = 0 after performing a non-square move mutation on face f8.

• 68 Plücker coordinates of the form ha a+1 b ci,

• 8 cyclic images of h124̄ \ 7̄i,

• 40 cyclic images of h1(23)(45)(78)i, h1(23)(56)(78)i, h1(28)(34)(56)i, h1(28)(34)(67)i,
h1(28)(45)(67)i,

• 48 dihedral images of h1(23)(45)(67)i, h1(23)(45)(68)i, h1(28)(34)(57)i,

• 8 cyclic images of h2̄ \ (245) \ 8̄ \ (856)i,

• and 8 distinct dihedral images of h2̄ \ (245) \ 6̄ \ (681)i.

We see that 96 are quadratic in Plückers and the last 16 are cubic. (The G(4, 8) cluster

algebra has, in total, 120 quadratic and 174 cubic cluster variables [31].) By applying

the algorithm described in [18, 19] to all plabic graphs associated to 4k-dimensional cells

of G+(k, 8), one encounters all of the Plücker coordinates and quadratic cluster variables

(in addition, of course, to numerous non-cluster variables, similar to the examples

described in [18], as well as the 18 algebraic symbol letters). However, the cubic symbol

letters on the above list are missing (see also [30]).

We find that the cubic letters are obtainable if one allows non-plabic C-matrices as

described in the previous subsection. For example, the first type of cubic letter can be

obtained from the (non-top cell) G+(3, 8) plabic graph shown in Fig. 2 by applying a

mutation on face f8. We spare the details of writing down the C-matrix for this graph

and the solution for all face variables; it su�ces to display

1 + f8 =
h3567ih4̄ \ (467) \ 2̄ \ (278)i
h2378ih4567ih3(12)(45)(67)i (2.6)
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Figure 1. (a) A plabic graph corresponding to the top cell of G+(3, 7) and (b) the associated

dual quiver, associated to a cluster of the G(3, 7) cluster algebra.

At the level of the plabic graph shown in Fig. 1(a), we cannot perform a move

on face f12 since it is not a square, but we certainly can mutate on node f12 in the

corresponding quiver shown in Fig 1(b). This transforms five of the mutable variables

in this cluster according to

f7 7! f 0
7 = f7/(1 + 1/f12) ,

f8 7! f 0
8 = f8(1 + f12) ,

f12 7! f 0
12 =

1

f12
,

f9 7! f 0
9 = f9/(1 + 1/f12) ,

f11 7! f 0
11 = f11(1 + f12) ,

(2.4)

leaving the others unchanged. If we perform this transformation on the C-matrix shown

in (2.1), we obtain a new matrix C 0 that is not the boundary measurement of any plabic

graph, but perfectly well parameterizes the top cell of G+(3, 7) as the f 0s range over

R+. Moreover, it is a cluster parameterization in the sense that the f 0s are cluster

variables of G(3, 7) (they belong to the cluster obtained by mutating Fig. 1(b) on node

f12). This exemplifies what we mean by a “non-plabic cluster parameterization”, or

(more simply) a “non-plabic C-matrix”.

At the level of the solution to C Z = 0, the transformation (2.4) has the e↵ect of

introducing one additional symbol letter not already present as a multiplicative factor

in (2.3). Specifically, by computing

1 + f12 = �h2346ih7(61)(23)(45)i
h2347ih6(71)(23)(45)i (2.5)

we see that the new factor is h7(61)(23)(45)i.

2.2 Rational Eight-Particle Symbol Letters

The symbol alphabet for the two-loop NMHV octagon contains [20] 180 cluster variables

of G(4, 8):
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Symbol Alphabet from Plabic Graphs

• We identified set of graphs that reproduced all 
known n=8 and n=9 symbol alphabets.

• We do not have a theory to explain the 
pattern of which cells are associated to which 
symbol letter observed in amplitudes.

• We provided some “phenomenological” data 
in hope that future work will shed more light 
on this interesting problem.

Mago, Schreiber, Spradlin, Yelleshpur Srikant AV’20 ‘21



4. Tensor Diagrams
Cluster variables can be represented by tensor 

diagrams Fomin Pilyavsky’16
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〈1234〉
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〈1(23)(45)(67)〉

1
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3

4

5
6

7

8

〈45(678)(123)〉

1
2

3

4

5
6

7

8

〈(123), (345), (567), (781)〉

1
2 3

4

5

67
8

9

〈1, 2, (34) ∩ (567), (567) ∩ (89)〉

Figure 9: Examples of webs, and their corresponding invariants (cluster variables), for the

five different basic types (defined in the text) of rational symbol letters that are known to

appear in SYM theory.

B Summary of Known Symbol Letters

Here we summarize what is known about the symbol alphabet Sn of n-particle amplitudes in

SYM theory. In this discussion we of course restrict our attention to those amplitudes which

are of polylogarithmic type, and so have conventionally-defined symbols.

Let us begin with the rational letters. All currently known rational letters are cluster

coordinates of G(4, n), which (according to the FP conjectures) means that we can represent

them as arborizable webs. It expected that the n-particle symbol alphabet is a strict subset

of the n′-particle symbol alphabet for all n′ > n, which corresponds to the fact that we can

always make a valid n′-particle web by adding n′−n boundary vertices, with no edges attached,

to an n-particle web. Therefore it is convenient to categorize different types of symbol letters

according to the smallest value of n at which they first appear; we also categorize them by

Plücker degree. In this way we encounter five basic types of rational letters for n ≤ 9:

(1) Sn≥6 contains the Plücker coordinates of the form 〈1 2 a b〉 for 3 ≤ a < b ≤ n, and

their cyclic images. (For n < 8 all Plücker coordinates are of this type.)

(2) Sn≥7 contains letters that are quadratic in Plücker coordinates having the form

〈a(b c)(d e)(f g)〉 := 〈a b d e〉〈a c f g〉 − 〈a b f g〉〈a c d e〉. Specifically, S7 contains the 14 non-

Plücker cluster variables of G(4, 7): 〈1(23)(45)(67)〉, 〈1(72)(34)(56)〉 and their cyclic images.

The letters of this type for n = 8, 9 are listed in [24, 61].

(3) Sn≥8 contains additional quadratic letters having the form (3.5); specifically 〈12(abc)∩
(def)〉 for 3 ≤ a < b < c < d < e < f ≤ n and their cyclic images.
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Symbol Letters from Tensor Diagrams

In 2106.01405 [L. Ren, MS, A. Volovich] we brought new
mathematical technology to bear on the problem of describing the
connection between these polytopes and cluster variables/algebraic
symbol letters: tensor diagrams and the Fomin-Pylyavskyy
conjectures.

An n-point slk tensor diagram is a finite graph drawn inside a circle
with n marked points along its boundary, satisfying

I all boundary vertices are colored black, and can have arbitrary
valence

I each internal vertex may be black or white, but must have
valence k

I each edge must connect a black and white vertex
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(1) Sn≥6 contains the Plücker coordinates of the form 〈1 2 a b〉 for 3 ≤ a < b ≤ n, and

their cyclic images. (For n < 8 all Plücker coordinates are of this type.)
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Symbol Letters from Tensor Diagrams

To each diagram D one associates an invariant [D] by assigning

I a momentum twistor Zi

I ✏i1···ik to each white vertex

I ✏i1···ik to each black vertex

and then contract the indices together as indicated by the edges.

Some examples:



Skein Relations

= +

= +

= × (−2 )

= × (−1 )

= × (−1 )

= 3

= 0

=

=

=

=

= × 2

= × 2

= × 3

=

= 4

= 6

= = 0

Figure 5: The skein relations for sl3 and sl4 tensor diagrams, adapted from [23, 40]. As

mentioned in the text, the latter graphical relations are equivalences from skein relations

between tensor invariants mod overall sign. Additionally, the sl4 relations in the sixth and

eighth lines hold with all colors exchanged.

For example, if in the diagram

1
2

3

4

5
6

7

8 (3.3)
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Tensor invariants [D] are invariant under 
graphical moves called skein relations.



Fomin-Pylyavsky Conjecture
• A web is a planar tensor diagram.
• An aborizable web is a web that can be turned 

into a tree diagram using skein relations.

• Fomin-Pilyavsky ‘16 conjecture: 
tensor invariants for an arborizable web are in 

one-to-one correspondence with  cluster variables.    
[Proven by Fraser ‘17 for Gr(3,9) and Gr(4,8).]
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〈1 3 5〉

1 2
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45

6

〈1× 2, 3 × 4, 5 × 6〉

1
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4

5

67
8

9

〈(1 × 2)× (3× 4), 5, (6 × 7)× (8× 9)〉

Figure 3: Examples of sl3 webs and their corresponding invariants.
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8 =

1
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8

Figure 4: An example of arborization, where we break the inner hexagon on the left by

applying the first and seventh skein relations shown in Fig. 5 to the blue edges. (The blue

and red colorings serve only to guide the eye.)

3.3 sl4 Tensor Diagrams

Again we emphasize that we have only explained how to compute tensor invariance mod sign

when k is even. In order to formulate the skein relations for sl4 tensor diagrams, it would be

necessary to be careful about the detailed sign convention explained in [39, 41]. In Fig. 5 we

show the equivalence relations (mod sign) that we require for the calculations in this paper.

Freed from having to worry about the sign, we can compute invariants for sl4 trees in a

similar manner to those of sl3. If two vertices are connected by a pair of edges then we call the

pair a double edge. After choosing a central vertex v and assigning to each edge a direction

pointing towards v, every other internal vertex v′ $= v has either a double or single outgoing

edge, and the other two or three edges are incoming. Extending the k = 3 analysis in the

obvious way, we now assign to v′ the 1- or 2-index co- or contravariant tensor constructed

by contracting εabcd (if v′ is white) or εabcd (if v′ is black) with the tensors associated to the

incoming edges (multiplied by 1
2 if there is a double edge). Finally, at the central vertex v all

edges are incoming; contracting their indices with the appropriate ε computes the diagram’s

invariant (up to overall sign).
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Algebraic Letters from Tensor Diagrams
• We proposed to look at almost aborizable webs 

(that can be reduced to having one inner loop), 
and assign to them a “web series”

• We showed that the series takes the form:

• We observe square roots in the poles:
• We reproduce square roots up to n=9.

we choose the internal black vertex as the center, then the top, bottom right, and bottom left

vertices are assigned (123), (45), and (678), respectively, where we use the shorthand

(ij) =
1

2
εabcdZ

a
i Z

b
j , (ijk) = εabcdZ

a
i Z

b
jZ

c
k . (3.4)

Contracting indices at the central vertex computes the diagram’s invariant, which can be

expressed as 〈45(123) ∩ (678)〉 using the notation

〈ab(cde) ∩ (fgh)〉 = 〈acde〉〈bfgh〉 − 〈bcde〉〈afgh〉 . (3.5)

3.4 Non-Arborizable Web Invariants

According to the Fomin-Pylyavskyy conjectures, every cluster monomial (a product of com-

patible cluster variables) in G(k, n) is an n-point slk web invariant. However, the converse

is not true because of the existence of non-arborizable webs. Their invariants are multiplica-

tively independent of cluster variables and so indicate that bases for cluster algebras must

(in general) have elements beyond cluster monomials. The simplest non-arborizable sl3 webs

appear at n = 9 and the simplest sl4 webs appear at n = 8. These include for example [23,

Figure 31] and [22, (8.2)], shown in Fig. 6.

1
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5

67
8

9

1
2

3

4

5
6

7

8

(a) (b)

Figure 6: Two of the simplest non-arborizable webs, for (a) G(3, 9) and (b) G(4, 8).

4 From Tensor Diagrams to Kinematic Functions

In this section we study a map X that associates a kinematic function F = X([D]) to certain

tensor invariants [D]. A key property we want the map to have is that if [D] is a cluster

variable, then X([D]) should be the kinematic function naturally associated to [D] (in the

same sense of association as between the first and third columns of Tab. 1).

More specifically, and more generally, X is defined as follows: if [D] is a tensor invariant

whose g-vector (defined as reviewed in Sec. A.3) is y ∈ Zd, and if y is the first integer

point along the ray R+g (in which case we say that y and [D] are primitive), then X([D]) is

the kinematic function Fy computed according to (A.9). These steps trace counterclockwise
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length of a web invariant [W ] to be equal to 1/k times the number of external legs of the

associated web; this is the same as the degree of [W ] when expressed as a polynomial in

G(k, n) Plücker coordinates.

Now the notion that more complicated invariants are associated to more complicated

kinematic functions is formalized in the statement that the left (or right) kinematic length

of XL([W ]) (or XR([W ])) is equal to the cluster length of [W ]. It is easy to verify that this

statement is true by recursion. If p is a non-frozen Plücker coordinate then by definition its

cluster length is 1 and the left (or right) kinematic length of XL(p) (or XR(p)) is 1. For more

complicated invariants, we note that in all of the recursive definitions (4.6), (4.7), (4.24),

(4.27) and (4.28), each side is linear in both kinematic and cluster length; this establishes the

equality.

5 Web Series

A web series W is a formal power series of webs W1,W2, . . .

W = 1 +
∞
∑

m=1

tmWm , (5.1)

to which we associate the invariant

[W] = 1 +
∞
∑

m=1

tm[Wm] . (5.2)

We are interested in web series whose invariants are cluster series of the type reviewed in

Sec. 2.2. Once a cluster algebra basis is specified (for example, the one provided by the

character formula of [22]), then each such series is (in principle) completely determined by its

first nontrivial term W1. Therefore, we are interested to study natural ways to associate an

entire web series W(W ) to a single web W , with W1 = W and with the higher-order terms

W2,W3, . . . being determined from W in some manner.

One simple way to do this is via the “web thickening” procedure of [23, Definition 10.8].

If W is any web and we take Wm to be the combination of m copies of W , then [Wm] = [W ]m

and the web series invariant is geometric:

1 +
∞
∑

m=1

tm[Wm] =
1

1− t[W ]
, (5.3)

just like the series (2.7) for cluster variables. According to the FP conjectures, [W ] is a cluster

variable precisely when W is an indecomposable arborizable web, so for such W we define

the web series W(W ) by the aforementioned thickening procedure.

However if W is a non-arborizable web we seek a different definition of the web series

W(W ) because we want its invariant to not be geometric, but rather to evaluate to more

complicated rational functions such as (2.4) or (2.6). In Sec. 5.3 we provide such a definition
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function in [7]) defined by

fy(t) =
∑

m≥0

B(my)tm , (2.3)

where B(y) is a cluster algebra basis element associated to the lattice point y ∈ Zd.

In [7] it was conjectured that the cluster series associated to the ray generated by (2.2)

takes the form

1

1−At+B t2
(2.4)

in the canonical basis [38], where

A = 〈1 2 5 6〉〈3 4 7 8〉 − 〈1 2 7 8〉〈3 4 5 6〉 − 〈1 2 3 4〉〈5 6 7 8〉 ,
B = 〈1 2 3 4〉〈3 4 5 6〉〈5 6 7 8〉〈1 2 7 8〉 .

(2.5)

This conjecture was checked through O(t3) by explicit computation using the character for-

mula of [22].

In general fg(t) may depend on the choice of basis, but we expect that certain important

properties of fg(t) are the same in any suitably reasonable basis. In particular, we expect

that it is a rational function of t and that the locations of its poles (in t) are basis-independent

and located on the positive t axis when the series is evaluated at any point in the positive

Grassmannian G>0(k, n).

In Sec. 5 of this paper we introduce a closely related web series. We conjecture that a web

series exists for every ray, but we have not found the specific form of the series in general.

However, for certain rays (those corresponding to almost arborizable webs; see Sec. 5) we

prove, to all orders in t, that the web series takes the form

1−B t2

1−At+B t2
, (2.6)

with A,B depending on the ray. In particular we prove that the web series associated to

the ray generated by (2.2) takes the form (2.6) with A,B given by (2.5). Evidently our web

series use a different basis than the one that gives the series (2.4), but is consistent with the

abovementioned expectations (since it has the same poles, at t = A ±
√
A2 − 4B). We also

prove that the web series has the form (2.6), and evaluate the corresponding A’s and B’s, for

324 normal rays of the polytope C†(4, 9) that might be relevant to the symbol alphabet of

9-particle scattering amplitudes in SYM theory.

Finally let us note that if g is a g-vector, then B(g) is the associated cluster variable

and B(mg) = B(g)m for any choice of basis, so the cluster series is basis-independent and

geometric:

fg(t) =
1

1− tB(g) . (2.7)
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and to compute B2 we look at

1
2

3

4

5
6

7

8 →

1
2

3

4

5
6

7

8 skein relation
==========

1

4
∗

1
2

3

4

5
6

7

8

(5.15)

from which we see that

B(W (3)) = 〈1 2 3 4〉〈5 6 7 8〉〈1 2 7 8〉〈3 4 5 6〉 . (5.16)

Note that (5.13) and (5.16) agree with (2.5).

5.3 A Web Series for Almost Arborizable Webs

We now define a web series W(W ) associated to every almost-arborizable web W via a slight

modification of the thickening procedure of [23]. Let W be a given almost-arborizable web

and let D be a tensor diagram with a single inner loop such that [D] = [W ]. To define the

O(t2) term W(2) in the web series we first draw a combination of two copies of D and then

connect the two inner loops by twisting any pair of edges. For example, if the inner loop is a

hexagon then we take

=⇒ (5.17)

where we suppress the rest of the diagram, showing only the internal loop. The generalization

is clear: W(m) is defined by combining m copies of W , cutting one identical edge on each of

the m inner loops, and gluing them back together after a (cyclic) “shift-by-one” permutation.

Using skein relations and the definitions given in the previous two subsections, it is easy

to see that

[W(2)] = A(W )2 − 2B(W ) ,

[W(m)] = A(W ) [W(m−1)]−B(W ) [W(m−2)] m > 2 ,
(5.18)

where A(W ) = [W ] is the web invariant we start with and B(W ) = B1(W )B2(W ). Thanks

to (5.18), the invariant of the web series W(W ) can be written in the form of (2.6):

[W(W )] =
1−B(W ) t2

1−A(W ) t+B(W ) t2
. (5.19)

To summarize: we have shown that there is a natural web series W(W ) one can associate

to any almost arborizable web W , and that the invariant of this series evaluates to (5.19) in
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Conclusions
• Symbol Alphabet of N=4 Yang-Mills amplitudes is 

described by Gr(4,n) cluster algebras for n=6, 7.
• Starting with n=8 one needs a mechanism 

producing finite subsets in Gr(4,n) and square 
roots.

• We studied candidate mechanisms coming from 
plabic graphs and tensor diagrams.

• Future: more systematics, more examples, cluster 
adjacency, cluster functions, non-SYM…..


