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From Einstein to Maxwell: The Classical Double Copy
Yang-Mills amplitudes AYM (properly gauged) ‘square’ to gravity
amplitudesMgrav:

AYM ∼
∑
k

nkck
props

−→ Mgrav ∼
∑
k

nknk
props

Also scalar theory with amplitudes As ∼
∑

k ck c̃k/props
For review see ch 10 of Bern, Carrasco, Chiodaroli, Johansson, Roiban 1909.01358

Kerr-Schild Map (Monteiro, O’Connell, White 1410.0239)

Pick metric in Kerr-Schild coordinates (with k2 = 0):

gµν = ηµν + φkµkν −→ Gµν = 0

Aµ = φkµ −→ ∇νFµν = 0

φ −→ ∇2φ = 0

Note our color factors will always be trivial, so we are restricting to the U(1) sector.



From Einstein to Maxwell: The Weyl Classical Double
Copy

For Type D/N spacetimes with principal null vectors aligning in
pairs/all four align

Rewrite Weyl tensor in spinor notation:
CABCD = 1

4Wµνλγσ
µν
ABσ

λγ
CD

Decompose in principle spinors CABCD = α(AβBγCδD)

CDABCD ∼ α(AαBβCβD), CNABCD ∼ α(AαBαCαD)

For these special spacetimes, can ‘square root’ the Weyl tensor:

CABCD =
1

S
f(ABfCD), with e.g. f(AB) = α(AβB)

and ∇2
0S = 0. Spinor fAB → Fµν which satisfies ∇µ0Fµν = 0.

Luna, Monteiro, Nicholson, O’Connell 1810.08183;

Godazgar2, Monteiro, Veiga, Pope 2010.02925



Why Fluid-Gravity Duality?

Questions from the Classical Double Copy

Why is there a spacetime (not momentum space) double copy?
∃ linearized derivation via twistors and the Penrose transform
White 2012.02479; Chacon, Nagy, White 2103.16441

Can we extend the classical copy to Petrov type II or type I
solutions? 2012.02479: type III example, 2103.16441:
(linearized) whenever ∃ a Penrose transform
Fluid-gravity gives physically interesting type II solutions to test
Can we go beyond the linearized level?
Cutoff fluid-gravity duality is non-linear but still perturbative.
Good forum to ask.
Can we build a Weyl double copy in higher dimensions? Yes, for
Schwarzschild Monteiro, Nicholson, O’Connell 1809.03906

Fluid-grav duals generalize to higher d; 3+1d fluid=5d grav.



Overview

Outline

From Einstein to Maxwell: the classical double copy via Weyl
From Navier-Stokes to Einstein: fluid-gravity duality via a cutoff
Algebraic Speciality in Fluids

Type D Fluids: constant vorticity
Type N Fluids: potential flows

Towards a general fluid?



History of Fluid/Gravity Duality
Membrane Paradigm

Began with prescient thesis of Damour in 1978
Fluctuations of a black hole horizon act like a viscous fluid
Fluid viscosity is computed to be η = 1/16πG

Dividing by the entropy density s = 1/4G gives η/s = 1/4π

Always considers fluctuations at the black hole horizon r = rh
itself; produces Damour-Navier Stokes equation

AdS/CFT Method

Policastro, Son, Starinets hep-th/0205052 considered the
hydrodynamics of N = 4SU(N) SYM via AdS/CFT
Again find η/s = 1/4π

Performed at AdS spatial infinity r =∞
Requires string theory, SUSY gauge theory, and AdS/CFT



A ‘Wilsonian’ Approach
Fluid-gravity duality in the cutoff
approach relates solutions of the
incompressible Navier-Stokes equation

∂ivi = 0, ∂τvi− η̄∂2vi+∂iP+vj∂jvi = 0

to solutions of the Einstein equation:

Gµν = 0

Fixing cutoff surface r = rc, then perturbing:

induced metric at r = rc is Ricci flat
waves are infalling at r = rh

extrinsic curvature at r = rc becomes fluid stress tensor . . .
in a hydrodynamic limit

Bredberg, CAK, Lysov, Strominger, 1006.1902 and 1103.2355



Satisfying the Einstein Constraints

The Nonlinear Metric in the Hydrodynamic Limit

ds2 =− rdτ2 + 2dτdr + dxidx
i

− 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc
dxidr

+

(
1− r

rc

)[(
v2 + 2P

)
dτ2 +

vivj
rc

dxidxj
]

+

(
v2

rc
+

2P

rc

)
dτdr

−
(
r2 − r2

c

)
rc

∂2vidx
idτ + . . .O(ε3)

with vi ∼ O(ε), P ∼ O(ε2), ∂i ∼ O(ε), ∂τ ∼ O(ε2).
Induced metric at r = rc cutoff is flat
constraint eqns at O(ε2) are ∂ivi = 0

constraint eqns at O(ε3) are ∂τvi − rc∂2vi + ∂iP + vj∂jvi = 0,
Navier-Stokes with viscosity η̄ = rc

Gra, Gab, Grr = O(ε4)



Cutoff Approach

Highlights

Does not require AdS, but is connectible to the AdS approach
(Brattan, Camps, Loganayagam, Rangamani 1106.2577)

Toy to test how double copy relates to AdS/CFT?
Extendible to higher orders
(Compere, McFadden, Skenderis, Taylor, 1103.3022; Pinzani-Fokeeva, Taylor

1401.5975)

Hydrodynamic limit can be recast as near horizon limit
Spacetime is algebraically special!
Generic 4d fluid-duals are Petrov type II through O(ε14)
(Bredberg, Keeler, Lysov, Strominger 1101.2451

More restricted fluids are more special!

Petrov type II: CIIABCD ∼ α(AαBβCγD)

Type D: CDABCD ∼ α(AαBβCβD) Type N: CNABCD ∼ α(AαBαCαD)
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Algebraic Speciality in Fluids
Can prove algebraic speciality by writing

CABCD =Ψ0ιAιBιCιD − 4Ψ1o(AιBιCιD) + 6Ψ2o(AoBιCιD)

− 4Ψ3o(AoBoCιD) + Ψ4oAoBoCoD

If only Ψ2 is nonzero, then the spacetime is type D.
If only Ψ4 is nonzero, then the spacetime is type N.
For general fluid-dual spacetimes, Ψ0,Ψ1,Ψ3 = 0 +O(ε3),

Ψ2 = −iε2 (∂xvy − ∂yvx) /4rc +O(ε3)

Ψ4 = −ε2 (∂xvx − ∂yvy + i(∂xvy + ∂yvx)) /2r +O(ε3).

Algebraically special fluid-dual spacetimes (τ -independent)

Type D fluids have constant vorticity
Type N fluids are potential flows



Type D fluids: Constant Vorticity

Only nonzero ΨI is

Ψ2 = −iε2ω/2rc +O(ε3)

with natural background

ds2
(0) = −rdτ2 + 2drdτ + dx2 + dy2

Single and Zeroth Copies

S = iωrce
2iθ, fAB = eiθω

(
1 0
0 −1

)
→

{
F τr = −ω cos θ

F xy = −ω sin θ

all other Fµν components are zero
S is constant so trivially solves ∇2

(0)S = 0

∇(0)
ν Fµν = 0, ∇(0)

[µ F ρσ] = 0



Type D fluid single copy: A giant solenoid

Choosing θ = 3π/2 we have

vx = −ωy, vy = ωx

F τr = 0, F xy = ω

Eµ = 0, Bµ = ωδrµ

Type D Fluid Double Copy Summary

Fluid is solution inside of slowly rotating cylinder with no-slip
conditions at the wall
Magnetic field ~B = ωr̂ is uniform field inside a big solenoid with
current proportional to ω
zeroth copy field S is constant and thus plays a passive role
Fluid only in hydro regime for x, y ∼ ε−1; can fix by going to
near-horizon expansion instead



Type N fluids: Potential flow: The Double Copy Story
The potential φ resides in the zeroth copy scalar S .
We have, using z = x+ iy,

vx = ∂xφ, vy = ∂yφ with φ = f(z) + f̄(z̄)

The zeroth and single copy fields become

S = − e2iθ

2∂2
z̄ f̄(z̄)

, fAB =
eiθ√
r

(
1 1
1 1

)

Type N Fluid Double Copy Summary

∇2
(0)S = 0 nontrivially; because φ = f(z) + f̄(z̄)

‘Background’ single copy field is ~E = −x̂, ~B = ŷ

Poynting vector of single copy is ~S = −r̂.
Gauge field is single copy necessary to build up any fluid with a
potential component.



Algebraically Special Fluid Double Copy Summary
Type D Fluid Double Copy Summary

Fluid: inside of slowly rotating cylinder with no-slip conditions
Magnetic field ~B = ωr̂ is uniform field inside a big solenoid with
current proportional to ω
zeroth copy field S is constant and thus plays a passive role
Fluid only in hydro regime for x, y ∼ ε−1; can fix by going to
near-horizon expansion instead

Type N Fluid Double Copy Summary

∇2
(0)S = 0 nontrivially; because φ = f(z) + f̄(z̄)

‘background’ single copy field is still ~E = −x̂, ~B = ŷ

Poynting vector of single copy is ~S = −r̂.
Gauge field is single copy necessary to build up any fluid with a
potential component.



Can we generalize to all Fluid Dual spacetimes?
Generic fluid-dual spacetime is type II, so its Weyl spinor is

CABCD = 6Ψ2o(AιBoCιD) + Ψ4oAoBoCoD =
1

S
f

(1)
(ABf

(2)
CD) for

f
(1)
AB =β

(
i
√

6Ψ2o(AιB) +
√

Ψ4oAoB

)
f

(2)
AB =

S

β

(
−i
√

6Ψ2o(AιB) +
√

Ψ4oAoB

)
but we cannot pick a single β and S for which both gauge fields
solve Maxwell and the scalar solves Klein-Gordon for all fluids.

Possible Solutions

Extension: C = 1
s1
f (1,1)f (1,2) + 1

s2
f (2,1)f (2,2)

Twistor method? cf. White 2012.02479; Chacon, Nagy, White 2103.16441



Details on General Type II Fluid-Dual spacetimes
The Weyl Spinor

In two dimensions for incompressible fluids: vi = εij∂jχ, where χ is
the stream function and z = x+ iy:

CABCD = 6Ψ2o(AιBoCιD) + Ψ4oAoBoCoD

Ψ2 = i∂z∂z̄χ, Ψ4 = 2i∂z̄∂z̄χ.

(In near horizon, λ expansion)

Factorizing CABCD = α(AαBβCγD):

αA =
P

i
√

6Ψ2
oA

βA = i
√

6Ψ2ιA +
√

Ψ4oA

γA = −iC
√

6Ψ2ιA + C
√

Ψ4oA

Setting S = −CP 2/6Ψ2, we can factorize either as
f1 = α(AβB), f2 = α(AγB) or as f1 = α(AαB), f2 = β(AγB) .



Details on General Type II Fluid-Dual spacetimes, Pt 2

The Weyl Spinor

CABCD = 6Ψ2o(AιBoCιD) + Ψ4oAoBoCoD

Ψ2 = i∂z∂z̄χ, Ψ4 = 2i∂z̄∂z̄χ.

Cases with Ψ2 6= 0 and Ψ4 6= 0:
χCouette = A(z − z̄)3 +B(z − z̄)2 + C(z − z̄)
χOseen-Lamb = Ei [−zz̄/4ηt] /4π

Recover type D constant vorticity and type N potential flow
For αβ, αγ factorization, Maxwell’s give ∂z̄ [Ψ4/Ψ2] = 0.
But (e.g. for Couette flow) can’t always get ∇2S 6= 0
(instead have ∇2(1/S) = 0)
For αα, βγ factorization: Maxwell’s: ∂z̄ [Ψ4/Ψ2] = 0, again
Couette flow gives ∇2(1/S) = 0).
Oseen-Lamb vortex doesn’t work under either factorization



Future Directions

Future Questions

Solving for Type II fluids (e.g. Couette or Oseen-Lamb):
Consider extension to sum of terms:

C =
1

s1
f (1,1)f (1,2) +

1

s2
f (2,1)f (2,2)

Use Penrose transform/twistor story?
Perturbative but nonlinear in Navier-Stokes

higher orders in ε or λ?
relate to other fluid-gravity dualities

large D and near horizon physics
AdS/CFT: study fluid modes?

Larger dimensions: 5d gravity= 3+1 d fluid
forthcoming: (S. Chawla+C.K.) on general separable spacetimes as a double copy



Algebraic Speciality in Fluids
Can prove algebraic speciality by writing

CABCD =Ψ0ιAιBιCιD − 4Ψ1o(AιBιCιD) + 6Ψ2o(AoBιCιD)

− 4Ψ3o(AoBoCιD) + Ψ4oAoBoCoD

If only Ψ2 is nonzero, then the spacetime is type D.
If only Ψ4 is nonzero, then the spacetime is type N.
For general fluid-dual spacetimes, Ψ0,Ψ1,Ψ3 = 0 +O(ε3),

Ψ2 = −iε2 (∂xvy − ∂yvx) /4rc +O(ε3)

Ψ4 = −ε2 (∂xvx − ∂yvy + i(∂xvy + ∂yvx)) /2r +O(ε3).

Type D fluid-dual spacetimes

Ψ4 = 0 −→ vx = −ωy, vy = ωx, P = ω2(x2 + y2)/2

if we choose τ independence. This fluid has constant vorticity ω.

Type N fluid-dual spacetimes

Ψ2 = 0 −→ ∂xvy − ∂yvx = 0 so vorticity vanishes.

Also incompressible so ‘potential flow’:

vi = ∂iφ, ∂iP = −∂i∂τφ− ∂jφ∂i∂jφ.

Algebraically special fluid-dual spacetimes

Type D fluids have constant vorticity
Type N fluids are potential flows



Type N fluids: Planar Extensional Flow

The simplest Type N fluid has φ = α
2 (y2 − x2), so

vx = ∂xφ = −αx, vy = ∂yφ = αy

The zeroth and single copy fields become

S =
e2iθ

α
, fAB =

eiθ√
r

(
1 1
1 1

)
Again choosing θ = 3π/2 the nonzero components of F become

F rx = 1, F τx =
2

r
−→ ~E = −x̂, ~B = ŷ.

On the background ds2
(0) = −rdτ2 + 2drdτ + dx2 + dy2 again both

Klein-Gordon and Maxwell’s are solved.
Poynting vector is

~S = −r̂.
Gauge field is single copy necessary to build up any fluid with a
potential component.
What if we consider a different potential φ?



Type N fluids: Potential flow: The Double Copy Story

We already studied extensional
flow: φ = α

2 (y2 − x2), so

vx = ∂xφ = −αx, vy = ∂yφ = αy

~E = −x̂, ~B = ŷ

But there are many other potential
flow fluids!

Potential φ vx vy
Ext. flow −α

2 (x2 − y2) −αx αy

Source/Sink ln(x2 + y2) 2x/(x2 + y2) 2y/(x2 + y2)

Dipole x/(x2 + y2) (y2 − x2)/(x2 + y2)2 −2xy/(x2 + y2)2

Line Vortex arctan(y/x) −y/(x2 + y2) x/(x2 + y2)

If Fµν is just a ‘support’ single copy, then what distinguishes these
fluids from each other? S!


