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How do you construct a UV complete
theory which has an isolated massive
high-spin particle in the IR?



How do you construct a UV complete
theory which has an isolated massive
high-spin particle in the IR?

More modestly: can you construct a low-energy
EFT of a massive high-spin particle with a
parametrically large separation between the
mass and the cutoff”




Massive Particles

Interacting, massive high-spin particles do exist
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e QCD: m?® ~ AQQCD

1
» Kaluza-Klein Theory: m? ~ =5
1 m
» String Theory: m® ~ —

o 0

} no parametric gap




Massive Particles
Can the spectrum look like this?

I spin-0: yes!

. |

parametrically large gap Spln 1 . yeS
M >>m .

spin=2: 77?7
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Need to construct a low energy EFT with cut-off >> mass



Massive Spin-2’s:

* First “high-spin” particle

* Possible relevance to gravity



Massive Spin-2’s at High Energies

Outline

* Intro to massive spin-2s
- Causality constraints

* Raising the cutoff

Work with:

James Bonifacio, Kurt Hinterbichler, Austin Joyce
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Intro to
Massive Spin-2s




Massive Spin-2
The Free Theory

Sy = /d% (—200hW O R + 0k, thM — 0,h* 8, h + 20\hO™h
+m3 h,, h* + msh

\/

add a mass!



Massive Spin-2
The Free Theory

Sy = / d*x (—20xhu O MM + 0,hy 0" WP — O,k O, h + 2O hO R

—2m®(hu WY — h?)) «—_ FIERZ-PAUL
MASS TERM

4 Bianchi constraints: m%@“hw + m%c‘?yh =2
. additional constraint: m2h = 0

10—4—-1=5 DOF



Massive Spin-2
The Interacting Theory

/ d*x (—20xhu O MM + 0,hy 0" WP — O,k O, h + 2O hO R
—3m®(h b — h*) +O(h*) + O(h*) + ... )

add interaction terms

* |s there a non-linear theory of a massive
spin-2 particle that maintains a
constraint at the fully non-linear level
and thus avoids an extra, pathological (o)

DOF?

Boulware, Deser (1972)



Massive Spin-2
The Interacting Theory

S = Mfl {/d% det e R[e] m2/7ioﬁnSn[e]}

Sole] = €qpeq €4 N e’ A e€ A el

Sile] = €qpea € N e’ A e A 1°
Sole] = €qpeae® N e? A1 A 1°
Ssle] = eqpeq €® A1 A 16 A 19
Sile] = €apea 12 A 1P A1 A 17

Free parameters: Mp;, A, m, Bs, B3

C. de Rham, G. Gabadadze, A. J. Tolley (2010) S. F. Hassan, RAR (2011) K. Hinterbichler, RAR (2012)



What about the cut-off?

GGeneric massive gravity:
S = / d*x (—30xhu O + 0,hyx0” WP — O, O, h + 2O hO R

—Lm2(h, W™ — B2) +O(R*) + O(h*) + ... )

2-2 scattering of the helicity-O mode:

B 10
M ~ (A—> where Ap = (m4Mp)1/5
5)



What about the cut-off?

Ghost-free massive gravity:
M2
S = 2Pl/d4a:{det6R QZﬁn }

2-2 scattering of the helicity-O mode:

7\
M ~ <A_> where A3 = (mQJ\IP)l/3
3



What about the cut-off?

S = ]\42131 /d4x {deteR[e] —m? ZﬁnSn[e]}

EFT cut-off:
Ag — (Mplm2)1/3 As

Ag =>m

3
|
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hierarchy is stable under quantum corrections



What about the cut-off?

General Relativity:
| non-linear | linear >
I Y
r o~ a2 3 km
P
| quantum classical >
I I 1
1038
r Vo 10 km T
Massive Gravity:
| non-linear | linear
I | 1/3
1 M
r~— ~ 1016 km
Ag M;)/g
| quantum | classical
| SUEINTE r »
T~ A_3 ~ m

(NOT TO SCALF)



Causality
Constraints




Causality Contraints

In the S-Matrix, causality manifests as
momentum space analyticity

/dt /de Yoty ()

if Yi(t) =0fort <0 — S(w) analytic in upper half plane



Causality Contraints

Analyticity Constraints

L= (0¢)° - AC4(6’¢)4+...

forward limit t — 0
¥

* analyticity gives: J = L ds A(s,0)
2mi J O (s — 1)

= c > ()

= >0

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi (2006)



Causality Contraints

Analyticity Constraints

L = (0¢)* AC4(6’¢)4+...

forward limit t — 0
¥

* analyticity gives: J = i ds A(s,0)
2 (s — p?)

= c > ()

= >0

* low energy EFT: ¢ must be positive to avoid
superluminality around non-trivial backgrounds

constraints agree!

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi (2006)



Causality Contraints

Analyticity Constraints

IS this connection always manifest?

Let’s try a different example...



Massive Spin-2 Particles

Analyticity Constraints

Consistency of scattering

amplitudes in the forward
Allowed | limit constrains the two
' | free parameters of a

massive spin-2 particle

Cheung, Remmen (2016)



Massive Spin-2 Particles

What about superluminality?

* Can the backgrounds in question can be
reached dynamically within the regime of
validity of the effective theory?

* [s the superluminality itself is visible within
the effective theory?

Asymptotic superluminality: S-matrix observable,
doesn’t depend on existence of non-trivial background solution



Causality Contraints

Eikonal Scattering

2-2 scattering at large CoM energy,
large impact parameter t/s — 0:

/\/leik(s, t) — +

iMeik(s,t) = 23/d2gei‘7'5<

1
time delay: Az~ = —

p

t’ Hooft (1987), Kabat & Ortiz (1992)

d(s,b)

+

X ;

(i0(s,0) _ 1)

"\

§(s,b) > 0 <— eikonal phase



Causality Contraints

Eikonal Scattering

elkonal phase depends only on on-shell cubic vertices:

1 d*q _i.-
o(5,0) = 2_3/ (27T)2e 7 Miree(d)

 factorizes!

Powerful: Can take CoM energy well above EFT cutoff
and only the on-shell cubic vertices are relevant

Camanho, Edelstein, Maldacena, Zhiboedov (2014)



Massive Spin-2 Particles

Only 5 on-shell cubic vertices

[Al 2122 2223 2321

................................................................................

................................................................................

S 1261361010, 0" 2 h]

As (b1 ) (P2 21)” (ps - 22)

..................................................................................

Free coefficients: aq,as,as, ay, as

Joyce, Hinterbichler, RAR (2017)



Massive Spin-2 Particles

Order-by-order constraints mb < 1

Highest order:

Next order:

Next order:

Finally:

Joyce, Hinterbichler, RAR (2017)

2520s a?
m Mg, (mb)®

d(s,b) =+

:I:(2a2—a3)2s 1
V2r M3, (mb)*’
:I:3(2a2—a3)2s 1
167rMI%£ (mb)4
6(s,b) = < :l:(2a2_a3) s 1
2rM3,  (mb)4>
%(2a2—a3)23 1
47 M3, (mb)4

2
ais 1
:|:4871'M1%l (mb)?2 7’

4 a?s 1
4(s,b) = { 24v/2m Mg, (mb)* 2

as — 0
kills R3
as — 2&2

Kills pseudo-linear
(for D>4 also have as =0)

a1 — 0
fixes h3 coefficient

positive!



Massive Spin-2 Particles

Order-by-order constraints mb < 1

. 2520s a2
Highest order:  9(s:0) =% 30 as =0

( :’:(2a2—a3)23 1

V2rMZ, (mb)*”’
:t3(2a2—ag)2s ( 1b)4
167w M m )
Next order: 6(s,0) =4 | (2a2-a5)s 1 as = 2as
2rM3,  (mb)4>
%(2a2—a3)23 1
47 M3, (mb)4 ?

2
+ ajs _ ml ,
Next order: 5(s,b) = { AT, (e ay =0
:|:4871'M1%l (mb)?2 7’
' G%S L,
Finally: 9(5:0) = g arz Kolmb) positive!

“from EFT point of view, coefficients do not need to be strictly zero but extremely small

Joyce, Hinterbichler, RAR (2017)



Massive Spin-2 Particles

Eikonal Scattering

constrains cubic Interactions
of the massive spin-2:

1 m?

3
L3= Ry + 5 7

h3
2M,

If the cubic Lagrangian is not of this form then new
physics must arise at the scale m.

Joyce, Hinterbichler, RAR (2017)



Massive Spin-2 Particles

Eikonal Scattering

dispersion relation

allowed region —

Joyce, Hinterbichler, RAR (2017)

eikonal

/ allowed line

C3 =

1
!



Massive Spin-2 Particles
agreement for pseudo-linear massive gravity

1 m? m2

L=Lrp Mp)\1£2,3 | Mp)\3£0,3 | Mp2>\4£0,4

Lo = 12641542543 544) (9,,0" b Y2) b /% b 1*
1
Loz = G ([R)’ = 3[h][A?] + 2[r7])
1
Loa = 57 ([h]* = 6[R]°[n*] + 3[A7]° + 8[h][17] — 6[1"])

Hinterbichler (2013)

NO consistency with positivity, NO consistency with luminality

Hinterbichler, RAR (2016); Joyce, Hinterbichler, RAR (2017)



Causality Contraints

Caveats about about asymptotic superluminality

* In flat spacetime, no direct derivation of the absence
of asymptotic time advances in the S-matrix as a
conseqguence of more fundamental notions such as
analyticity or locality

* No proof that eikonal phase is always given by
resummation of ladder graphs

e Bounds don’t apply for cosmological applications



Raising the
Cutoff




Raising the Cutoff

Ghost-free massive gravity:
Mg, [ 4 ">
S = 5 /daj{deteR Zﬁn

2-2 scattering of the helicity-O mode:

I3 6
3



Raising the Cutoff

Gravitational Higgs Mechanism

ADD VECTORS AND SCALAF

S

4 4

Improved behavior?

M~ E" = A, = (Mplm”_l)l/”

Bonifacio, Hinterbichler, RAR (2019)



Raising the Cutoff
Approach 1:

e Start with Einstein Hilbert kinetic term plus a potential
e Consider all relevant cubic vertices:

2
m A s ot oyt _ . s
‘Cﬁfubj — W Z (cl,l,jhuuhwj + C2.1,5TN QaAh,uua h“)‘ -+ C3,1,4MM 48,\8phw8“8 h)\p

P >0

~ —2 A 7 7 ~ —4 A 7 7 =2l
+ Gy 2R, B, b7 A+ Gy ym e Pa,iaahha,,mhm)m e,

ma.m n o n n
U J § a1 B hHYA S B AY JPA
P >0
+ di . .m P9 b B + do 1. 3?79 8.h 20 b7 \m 2O A,
L,l,5 pltvallp 2,l,3 pytip Yvite JrA

mAj Y — ) vl _ A "
oS (A b + day 203 0+ d 1050,y 070"

P >0

+ dv3,l,jm_25“”’\p5‘uiz,\08,ﬁp" + J4,l,jm_45“”AP8M8“lAzM(?,,Bﬁzpa) m_ZZDla’\Aj,,\.

_|_

e Calculate tree-level amplitude, fix coefficients

= recover dRGT potential, no improvement

Bonifacio, Hinterbichler, RAR (2019)



Raising the Cutoff
Approach 2: Model Independent

e \Write down the most general 4-point amplitude
consistent with Lorentz invariance, locality, unitarity,
crossing symmetry and a bounded number of
derivatives using on-shell cubic and quartic vertices

® Finite number of free parameters for the exchange

terms, finite number of free polynomials for the
contact terms

e Expand at high energies, fix coefficients

NO improved behavior

Bonifacio, Hinterbichler, RAR (2019) See also: Bonifacio, Hinterbichler (2018)



Outlook

* Raising the low cutoff of a massive
spin-2 requires massive particles of
spin 2 or higher

* Can you raise the cutoff with a
finite number of particles?

* Can you have a parametrically
large gap between the mass and
new physics?



Thank you!






