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Section 1

Motivation
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An analogy: The choice of an gauge

Consider a scattering amplitude in Yang-Mills theory.

It can be expressed as a sum of Feynman diagrams.

In computing Feynman diagrams we make a gauge choice.

The scattering amplitude is independent of the gauge choice.

Remark: This can be non-trivial. Consider for example the calculation of the

Altarelli-Parisi splitting functions in Feynman gauge and in the axial gauge.
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This talk: The choice of a pair of periods for an elliptic curve

Consider a (scalar, elliptic) Feynman integral.

It can be expressed as a linear combination of master integrals.

In computing elliptic master integrals we make a choice for a pair of

periods.

The original Feynman integral is independent of this choice.
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Modular transformations

Let’s assume we choose as periods (ψ2,ψ1), while somebody else made the

choice (ψ′
2,ψ

′
1).

The two choices are related by a (2×2)-matrix γ:

(

ψ′
2

ψ′
1

)

= γ

(

ψ2

ψ1

)

This is called a modular transformation.
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Questions

Suppose our elliptic Feynman integral can be expressed for a particular choice

of periods as iterated integrals of modular forms for a congruence

subgroup Γ.

1 What happens for a modular transformation γ /∈ Γ?

2 Even worse, for γ ∈ Γ we can show that in general iterated integrals of

modular forms for Γ do not transform into iterated integrals of modular

forms for Γ. What is going on here?

Both questions have a nice answer.
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Section 2

Background from physics
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Feynman integrals

Notation:

Iν1ν2...νn
(ε,x) = elεγE

(

µ
2
)ν− lD

2

∫ l

∏
r=1

dDkr

iπ
D
2

nint

∏
j=1

1
(

−q2
j +m2

j

)νj

Kinematic variables x1, . . . ,xNB+1:

−pi ·pj

µ2
,

m2
i

µ2
.

As µ
2 is arbitrary, we may set one kinematic variable to one.

Integration-by-parts allows us to express any Iν1ν2...νn
as a linear combination

of master integrals.
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Notation

NF = NFibre: Number of master integrals,

master integrals denoted by I = (I1, ..., INF
).

NB = NBase: Number of kinematic variables,

kinematic variables denoted by x = (x1, ...,xNB
).
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The method of differential equations

We want to calculate

I = (I1, ..., INF
)

1 Find a differential equation with respect to the kinematic variables for the

Feynman integrals.

[d +A(ε,x)] I = 0.

2 Transform the differential equation into a simple form.

[d + εA(x)] I = 0.

3 Solve the latter differential equation with appropriate boundary conditions.
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Transformations

Change the basis of the master integrals

I′ = UI,

where U(ε,x) is a NF ×NF -matrix. The new connection matrix is

A′ = UAU−1 +UdU−1.

Perform a coordinate transformation on the base manifold:

x ′
i = fi (x) , 1 ≤ i ≤ NB.

The connection transforms as

A =
NB

∑
i=1

Aidxi ⇒ A′ =
NB

∑
i,j=1

Ai

∂xi

∂x ′
j

dx ′
j .
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Section 3

Background from mathematics
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Representing an elliptic curve as C/Λ

Re z

Im z

ψ1

ψ2

Points inside fundamental parallelogram ⇔ Points on elliptic curve

An elliptic curve together with a choice of periods (ψ2,ψ1) is called a framed

elliptic curve.
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Notation

Convention: Normalise (ψ2,ψ1)→ (τ,1), where

τ =
ψ2

ψ1

and require Im(τ)> 0.

Definition (The complex upper half-plane)

H = {τ ∈C|Im(τ)> 0}
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Modular transformations

The periods ψ1 and ψ2 generate a lattice. Any other basis as good as

(ψ2,ψ1).

1

τ τ
′

Change of basis:

(

ψ′
2

ψ′
1

)

=

(

a b

c d

)(

ψ2

ψ1

)

,

Transformation should be invertible:

(

a b

c d

)

∈ SL2 (Z) ,

In terms of τ and τ′: τ′ =
aτ+b

cτ+d
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Modular forms

A meromorphic function f :H→ C is a modular form of modular weight k for

SL2(Z) if

1 f transforms under modular transformations as

f

(

aτ+b

cτ+d

)

= (cτ+d)k · f (τ) for γ =

(

a b

c d

)

∈ SL2(Z)

2 f is holomorphic on H,

3 f is holomorphic at i∞.

Define the |k γ operator by

(f |k γ)(τ) = (cτ+d)−k · f (γ(τ)).

Then item 1 can be written as

f |k γ = f .
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Congruence subgroups

Apart from SL2(Z) we may also look at congruence subgroups, for example

Γ0(N) =

{(

a b

c d

)

∈ SL2(Z) : c ≡ 0 mod N

}

Γ1(N) =

{(

a b

c d

)

∈ SL2(Z) : a,d ≡ 1 mod N, c ≡ 0 mod N

}

Γ(N) =

{(

a b

c d

)

∈ SL2(Z) : a,d ≡ 1 mod N, b,c ≡ 0 mod N

}

Modular forms for congruence subgroups: Require “nice” transformation

properties only for subgroup Γ (plus holomorphicity on H and at the cusps).
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Modular forms

For a congruence subgroup Γ of SL2(Z) denote by Mk(Γ) the space of

modular forms of weight k .

We have the inclusions

Mk(SL2(Z))⊆ Mk(Γ0(N))⊆ Mk(Γ1(N)) ⊆ Mk(Γ(N))

Mk(Γ(N)) is the largest space.
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Fourier expansions

Let N ′ be the smallest positive integer such that

(

1 N ′

0 1

)

∈ Γ.

It follows that modular forms for Γ have a Fourier expansion

f (τ) =
∞

∑
n=0

anq̄n
N ′ , q̄N ′ = exp

(

2πiτ

N ′

)

.
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Iterated integrals of modular forms

Let f1, . . . , fn be modular forms for the congruence subgroup Γ.

I (f1, f2, ..., fn;τ) = (2πi)n

τ∫

i∞

dτ1f1 (τ1)

τ1∫

i∞

dτ2f2 (τ2) ...

τn−1∫

i∞

dτnfn (τn)

An integral over a modular form is in general not a modular form.

Analogy: An integral over a rational function is in general not a rational

function.
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Section 4

One kinematic variable
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Elliptic Feynman integrals

Examples of elliptic Feynman integrals depending on one kinematic variable

x = −p2

m2 (solid internal lines of mass m, dashed lines massless):

p2 p2

p2

m2

p2

m2
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Transformation to an ε-form

We may put the differential equation for these Feynman integrals into an ε-form

with only simple poles by

making a choice for the two periods (ψ2,ψ1),

performing a fibre transformation J = UI.

performing a base transformation x → τ.
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Example: The equal mass sunrise integral

(d +A)J = 0, A = 2πi ε





0 0 0

0 f2 (τ) f0 (τ)
f3 (τ) f4 (τ) f2 (τ)



dτ.

For this particular example, the fk(τ)’s are modular forms of modular weight k

for Γ1(6).

Solution given as iterated integrals of modular forms for Γ1(6):

J2 =

[

3Cl2

(

2π

3

)

+4I (f0, f3;τ)

]

ε2 +O
(

ε3
)

.
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Modular transformations

Let us now consider the base transformation

τ′ = γ(τ) with γ =

(

a b

c d

)

∈ SL2(Z).
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Modular transformations

For f ∈ Mk(Γ) of level N and γ ∈ SL2(Z) we have in general

f |k γ /∈ Mk(Γ).

However if f ∈ Mk(Γ) we also have f ∈ Mk(Γ(N)).
As the principal congruence subgroup Γ(N) is a normal subgroup of

SL2(Z) we have for any γ ∈ SL2(Z)

f |k γ ∈ Mk (Γ(N)) .

This solves question 1 for the case of one kinematic variable.
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Modular transformations

Consider now the coordinate transformation

τ = γ−1
(

τ′
)

=
aτ′+b

cτ′+d
, γ−1 ∈ Γ.

We have

I (f ;τ) = 2πi

τ∫

i∞

f (τ̃)d τ̃

= 2πi

γ(τ)∫

γ(i∞)

(

cτ̃′+d
)k−2

(f |k γ−1)(τ̃′) d τ̃′.

For k 6= 2 we pick up a power of the automorphic factor (cτ̃′+d) and leave

the space of iterated integrals of modular forms!
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Transformations of multiple polylogarithms

In the case of multiple polylogarithms

G (z1, . . . ,zk ;y)

the transformations

y ′ = 1− y , y ′ =
1

y
, y ′ =

1

1− y
, y ′ =

1− y

1+ y
,

don’t leave the space of multiple polylogarithms.
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Modular transformations

Solution to question 2:

In order not to leave the space of iterated integrals of modular forms a

base transformation

τ′ = γ(τ)

needs to be accompanied by a fibre transformation

J ′ = UJ.
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Example: The equal mass sunrise integral

For

γ(τ) =
aτ+b

cτ+d
, γ ∈ SL2(Z)

we have to consider the combined transformation

J ′ =





1 0 0

0 (cτ+d)−1
0

0 c
2πiεf0

(cτ+d)



J,

τ′ =
aτ+b

cτ+d
.
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Example: The equal mass sunrise integral

Working out the transformed differential equation we obtain

(

d +A′)J ′ = 0

with

A′ = 2πi ε





0 0 0

0 (f2|2γ−1)(τ′) (f0|0γ−1)(τ′)
(f3|3γ−1)(τ′) (f4|4γ−1)(τ′) (f2|2γ−1)(τ′)



dτ′.

We have

fk |k γ−1 ∈ Mk(Γ(6))

and J ′ can be expressed as iterated integrals of modular forms for Γ(6).
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Example: The equal mass sunrise integral

The fact that we need to redefine the master integrals is not too surprising.

J ′ =





1 0 0

0 (cτ+d)−1
0

0 c
2πiεf0

(cτ+d)



J

We originally defined J2 by

J2 = ε2 π

ψ1

I111 (2−2ε,x).

The automorphic factor (cτ+d) is the ratio of two periods

cτ+d =
ψ′

1

ψ1

.

We find that J ′
2 is given by

J′2 = ε2 π

ψ′
1

I111 (2−2ε,x).
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Section 5

Several kinematic variables
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Moduli spaces

Mg,n: Space of isomorphism classes of smooth (complex, algebraic) curves

of genus g with n marked points.

complex curve
z1

z2

z3⇔

z1

z2

z3

z1

z2

z3⇔z2

z1

z3

real surface
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Coordinates

Genus 0: dimM0,n = n−3.

Sphere has a unique shape

Use Möbius transformation to fix zn−2 = 1, zn−1 = ∞, zn = 0

Coordinates are (z1, ...,zn−3)

Genus 1: dimM1,n = n.

One coordinate describes the shape of the torus

Use translation to fix zn = 0

Coordinates are (τ,z1, ...,zn−1)

Stefan Weinzierl (Uni Mainz) Modular transformations August 19, 2021 35 / 48



Iterated integrals on M0,n

We are interested in differential one-forms, which have only simple poles:

ωmpl (zj) =
dy

y − zj

.

Multiple polylogarithms:

G(z1, ...,zk ;y) =

y∫

0

dy1

y1 − z1

y1∫

0

dy2

y2 − z2

...

yk−1∫

0

dyk

yk − zk

, zk 6= 0
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The Kronecker function

Define the first Jacobi theta function θ1(z, q̄) by

θ1 (z, q̄) = −i
∞

∑
n=−∞

(−1)n
q̄

1
2(n+ 1

2)
2

eiπ(2n+1)z .

The Kronecker function F(z,α,τ):

F (z,α,τ) = θ′1 (0, q̄)
θ1 (z +α, q̄)

θ1 (z, q̄)θ1 (α, q̄)
=

1

α

∞

∑
k=0

g(k) (z,τ)αk

We are interested in the coefficients g(k)(z,τ) of the Kronecker function.
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The coefficients g(k)(z,τ) of the Kronecker function

Properties of g(k)(z,τ):

1 only simple poles as a function of z

2 quasi-periodic as a function of z: Periodic by 1, quasi-periodic by τ.

g(k) (z +1,τ) = g(k) (z,τ) ,

g(k) (z + τ,τ) =
k

∑
j=0

(−2πi)j

j!
g(k−j) (z,τ)

3 quasi-modular:

g(k)

(

z

cτ+d
,

aτ+b

cτ+d

)

= (cτ+d)k
k

∑
j=0

(2πi)j

j!

(

cz

cτ+d

)j

g(k−j) (z,τ)
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Differential one-forms on M1,n

1 From modular forms:

ωmodular
k = 2πi fk(τ)dτ

2 From the Kronecker function:

ωKronecker
k = (2πi)2−k

[

g(k−1) (L(z) ,τ)dL(z)+(k −1)g(k) (L(z) ,τ)
dτ

2πi

]

,

L(z) =
n−1

∑
j=1

αj zj +β.
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Modular transformations

A modular transformation acts as

τ′ =
aτ+b

cτ+d
, z ′j =

zj

cτ+d
, β′ =

β

cτ+d
.

We may view β as being a further marked point in a higher dimensional space

M1,n′ with n′ > n.

We find

ωKronecker
k

(

L′
(

z′
)

,τ′
)

= (cτ+ d)k−2
k

∑
j=0

1

j!

(

cL(z)

cτ+ d

)j

ωKronecker
k−j (L(z) ,τ) .
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Example: The unequal mass sunrise

7 master integrals

3 kinematic variable

x1 =
−p2

m2
3

, x2 =
m2

1

m2
3

, x3 =
m2

2

m2
3

.

m1

m3

m2
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Example: The unequal mass sunrise

We may put the differential equation into an ε-form with only simple poles by

making a choice for the two periods (ψ2,ψ1),

performing a fibre transformation J = UI.

performing a base transformation (x1,x2,x3)→ (τ,z1,z2).

(d +A)J = 0, A = ε
NL

∑
j=1

Cj ωj

and the ωj ’s are either of the form ωmodular or ωKronecker .
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Example: The unequal mass sunrise

A modular transformation on the base

(τ,z1,z2,β) →
(

τ′,z ′1,z
′
2,β

′)

is accompanied by the fibre transformation

J ′ = U J,

with U given by

U =

























1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1
cτ+d

0 0 0

0 0 0
6ic(z1+z2)

cτ+d
1 0 0

0 0 0
2ic(z1−z2)

cτ+d
0 1 0

0 0 0 − c
2πiε +

c2(z2
1+z1z2+z2

2)
cτ+d

− ic(z1+z2)
4

− ic(z1−z2)
4

cτ+d

























.
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Section 6

Comments
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q̄-expansions

Why do we bother about modular transformations?

Iterated integrals in the elliptic case are evaluated with the help of their

q̄-expansions.

The q̄-series converge for |q̄|< 1.

By a modular transformation we may map τ to the fundamental domain,

resulting in

|q̄| ≤ e−π
√

3 ≈ 0.0043,

resulting in a fast converging series.
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Uniqueness

Are master integrals of uniform weight unique?

Assume that J is a set of master integrals of uniform weight and U an

x-independent invertible (NF ×NF)-matrix. Then

J ′ = UJ

is also of uniform weight.

Assume that J is of uniform weight and contains elliptic Feynman

integrals. A modular transformation induces a x-dependent

transformation U, such that J ′ is again of uniform weight.

Maybe we shouldn’t use the word “canonical” in this context.
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Bootstrap

Modularity puts (in addition to integrability) constraints on the matrix A:

Example

Consider a system consisting of one master integral J depending on two

variables (z,τ) with differential equation

(d +A)J = 0.

The matrix

A = ε
[

ωKronecker
2 (z,τ)−2ωKronecker

2 (z,2τ)
]

is modular, while the apparent simpler choice

A = εωKronecker
2 (z,τ)

is not.
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Conclusions

For elliptic Feynman integrals we expect that the choice of periods does

not matter. This implies that the system should be modular.

By a modular transformation we can always achieve |q̄| ≤ 0.0043.

Unfortunately, as a modular transformation is always accompanied by a

fibre transformation, there is no black-box numerical evaluation algorithm

just for iterated integrals of ωmodular and ωKronecker .

There are x-dependent fibre transformations, which transform master

integrals of uniform weight into master integrals of uniform weight.

Modularity puts constraints on the matrix A.
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