Elliptic Feynman integrals and modular transformations

Stefan Weinzierl

Institut für Physik, Universität Mainz

August 19, 2021

Section 1

Motivation

An analogy: The choice of an gauge

- Consider a scattering amplitude in Yang-Mills theory.
- It can be expressed as a sum of Feynman diagrams.
- In computing Feynman diagrams we make a gauge choice.
- The scattering amplitude is independent of the gauge choice.

Remark: This can be non-trivial. Consider for example the calculation of the Altarelli-Parisi splitting functions in Feynman gauge and in the axial gauge.

This talk: The choice of a pair of periods for an elliptic curve

- Consider a (scalar, elliptic) Feynman integral.
- It can be expressed as a linear combination of master integrals.
- In computing elliptic master integrals we make a choice for a pair of periods.
- The original Feynman integral is independent of this choice.

Let's assume we choose as periods (ψ_2, ψ_1) , while somebody else made the choice (ψ_2', ψ_1') .

The two choices are related by a (2×2) -matrix γ :

$$\left(\begin{array}{c} \psi_2' \\ \psi_1' \end{array}\right) \ = \ \gamma \left(\begin{array}{c} \psi_2 \\ \psi_1 \end{array}\right)$$

This is called a modular transformation.

Questions

Suppose our elliptic Feynman integral can be expressed for a particular choice of periods as iterated integrals of modular forms for a congruence subgroup Γ .

- **①** What happens for a modular transformation $\gamma \notin \Gamma$?
- ② Even worse, for $\gamma \in \Gamma$ we can show that in general iterated integrals of modular forms for Γ do not transform into iterated integrals of modular forms for Γ . What is going on here?

Both questions have a nice answer.

Section 2

Background from physics

Feynman integrals

Notation:

$$I_{\nu_{1}\nu_{2}...\nu_{n}}(\varepsilon,x) = e^{i\varepsilon\gamma_{E}} \left(\mu^{2}\right)^{\nu-\frac{iD}{2}} \int \prod_{r=1}^{l} \frac{d^{D}k_{r}}{i\pi^{\frac{D}{2}}} \prod_{j=1}^{n_{\text{int}}} \frac{1}{\left(-q_{j}^{2}+m_{j}^{2}\right)^{\nu_{j}}}$$

Kinematic variables x_1, \ldots, x_{N_B+1} :

$$\frac{-p_i\cdot p_j}{\mu^2}, \qquad \frac{m_i^2}{\mu^2}.$$

As μ^2 is arbitrary, we may set one kinematic variable to one.

Integration-by-parts allows us to express any $l_{v_1v_2...v_n}$ as a linear combination of master integrals.

Notation

$$N_F = N_{Fibre}$$
: Number of master integrals, master integrals denoted by

 $N_B = N_{Base}$: Number of kinematic variables,

kinematic variables denoted by $x = (x_1, ..., x_{N_B})$.

 $I = (I_1, ..., I_{N_E}).$

9/48

The method of differential equations

We want to calculate

$$I = (I_1, ..., I_{N_F})$$

Find a differential equation with respect to the kinematic variables for the Feynman integrals.

$$[d+A(\varepsilon,x)]I = 0.$$

② Transform the differential equation into a simple form.

$$[d + \varepsilon A(x)]I = 0.$$

Solve the latter differential equation with appropriate boundary conditions.

Transformations

Change the basis of the master integrals

$$I' = UI,$$

where $U(\varepsilon, x)$ is a $N_F \times N_F$ -matrix. The new connection matrix is

$$A' = UAU^{-1} + UdU^{-1}.$$

Perform a coordinate transformation on the base manifold:

$$x_i' = f_i(x), \quad 1 \leq i \leq N_B.$$

The connection transforms as

$$A = \sum_{i=1}^{N_B} A_i dx_i \qquad \Rightarrow \qquad A' = \sum_{i,j=1}^{N_B} A_i \frac{\partial x_i}{\partial x_j'} dx_j'.$$

11/48

Section 3

Background from mathematics

Representing an elliptic curve as \mathbb{C}/Λ

Points inside fundamental parallelogram \Leftrightarrow Points on elliptic curve

An elliptic curve together with a choice of periods (ψ_2,ψ_1) is called a framed elliptic curve.

Notation

Convention: Normalise $(\psi_2, \psi_1) \rightarrow (\tau, 1)$, where

$$\tau = \frac{\psi_2}{\psi_1}$$

and require $\text{Im}(\tau) > 0$.

Definition (The complex upper half-plane)

$$\mathbb{H} = \{\tau \in \mathbb{C} | \text{Im}(\tau) > 0 \}$$

The periods ψ_1 and ψ_2 generate a lattice. Any other basis as good as (ψ_2,ψ_1) .

Change of basis:
$$\begin{pmatrix} \psi_2' \\ \psi_1' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix}$$
,

Transformation should be invertible:

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\in\mathrm{SL}_2(\mathbb{Z}),$$

In terms of τ and τ' : $\tau' = \frac{a\tau + b}{c\tau + d}$

$$\tau' = \frac{a\tau + b}{c\tau + d}$$

Modular forms

A meromorphic function $f: \mathbb{H} \to \mathbb{C}$ is a **modular form** of modular weight k for $\mathrm{SL}_2(\mathbb{Z})$ if

f transforms under modular transformations as

$$f\left(\frac{a\tau+b}{c\tau+d}\right)=(c\tau+d)^k\cdot f(\tau) \qquad \text{for } \gamma=\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)\in \mathrm{SL}_2(\mathbb{Z})$$

- \circ *f* is holomorphic on \mathbb{H} ,
- **③** f is holomorphic at i∞.

Define the $|_k \gamma$ operator by

$$(f|_k\gamma)(\tau) = (c\tau+d)^{-k} \cdot f(\gamma(\tau)).$$

Then item ① can be written as

$$f|_k \gamma = f.$$

16/48

Congruence subgroups

Apart from $SL_2(\mathbb{Z})$ we may also look at congruence subgroups, for example

$$\begin{split} &\Gamma_0(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \bmod N \right\} \\ &\Gamma_1(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \operatorname{SL}_2(\mathbb{Z}) : a, d \equiv 1 \bmod N, \ c \equiv 0 \bmod N \right\} \\ &\Gamma(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \operatorname{SL}_2(\mathbb{Z}) : a, d \equiv 1 \bmod N, \ b, c \equiv 0 \bmod N \right\} \end{split}$$

Modular forms for congruence subgroups: Require "nice" transformation properties only for subgroup Γ (plus holomorphicity on $\mathbb H$ and at the cusps).

Modular forms

For a congruence subgroup Γ of $\mathrm{SL}_2(\mathbb{Z})$ denote by $\mathcal{M}_k(\Gamma)$ the space of modular forms of weight k.

We have the inclusions

$$\mathcal{M}_k(\mathrm{SL}_2(\mathbb{Z}))\subseteq \mathcal{M}_k(\Gamma_0(N))\subseteq \mathcal{M}_k(\Gamma_1(N))\subseteq \mathcal{M}_k(\Gamma(N))$$

 $\mathcal{M}_k(\Gamma(N))$ is the largest space.

Fourier expansions

Let N' be the smallest positive integer such that

$$\left(\begin{array}{cc} 1 & N' \\ 0 & 1 \end{array}\right) \,\in\, \Gamma.$$

It follows that modular forms for Γ have a Fourier expansion

$$f(\tau) = \sum_{n=0}^{\infty} a_n \bar{q}_{N'}^n, \qquad \bar{q}_{N'} = \exp\left(\frac{2\pi i \tau}{N'}\right).$$

Iterated integrals of modular forms

Let f_1, \ldots, f_n be modular forms for the congruence subgroup Γ .

$$I(f_{1}, f_{2}, ..., f_{n}; \tau) = (2\pi i)^{n} \int_{i\infty}^{\tau} d\tau_{1} f_{1}(\tau_{1}) \int_{i\infty}^{\tau_{1}} d\tau_{2} f_{2}(\tau_{2}) ... \int_{i\infty}^{\tau_{n-1}} d\tau_{n} f_{n}(\tau_{n})$$

An integral over a modular form is in general **not** a modular form.

Analogy: An integral over a rational function is in general not a rational function.

Section 4

One kinematic variable

Elliptic Feynman integrals

Examples of elliptic Feynman integrals depending on one kinematic variable $x = \frac{-p^2}{m^2}$ (solid internal lines of mass m, dashed lines massless):

22/48

Transformation to an ε-form

We may put the differential equation for these Feynman integrals into an $\epsilon\text{-form}$ with only simple poles by

- making a choice for the two periods (ψ_2, ψ_1) ,
- performing a fibre transformation J = UI.
- performing a base transformation $x \to \tau$.

$$(d+A)J = 0,$$
 $A = 2\pi i \varepsilon \begin{pmatrix} 0 & 0 & 0 \\ 0 & f_2(\tau) & f_0(\tau) \\ f_3(\tau) & f_4(\tau) & f_2(\tau) \end{pmatrix} d\tau.$

For this particular example, the $f_k(\tau)$'s are modular forms of modular weight k for $\Gamma_1(6)$.

Solution given as iterated integrals of modular forms for $\Gamma_1(6)$:

$$J_2 = \left[3\operatorname{Cl}_2\left(\frac{2\pi}{3}\right) + 4I(f_0, f_3; \tau)\right] \epsilon^2 + O\left(\epsilon^3\right).$$

Let us now consider the base transformation

$$au' = \gamma(au) \quad ext{with} \quad \gamma = \left(egin{array}{cc} a & b \ c & d \end{array}
ight) \in \mathrm{SL}_2(\mathbb{Z}).$$

• For $f \in \mathcal{M}_k(\Gamma)$ of level N and $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ we have in general

$$f|_k \gamma \notin \mathcal{M}_k(\Gamma).$$

• However if $f \in \mathcal{M}_k(\Gamma)$ we also have $f \in \mathcal{M}_k(\Gamma(N))$. As the principal congruence subgroup $\Gamma(N)$ is a normal subgroup of $\mathrm{SL}_2(\mathbb{Z})$ we have for any $\gamma \in \mathrm{SL}_2(\mathbb{Z})$

$$f|_{k}\gamma \in \mathcal{M}_{k}(\Gamma(N)).$$

This solves question • for the case of one kinematic variable.

26/48

Consider now the coordinate transformation

$$\tau = \gamma^{-1}(\tau') = \frac{a\tau' + b}{c\tau' + d}, \qquad \gamma^{-1} \in \Gamma.$$

We have

$$I(f;\tau) = 2\pi i \int_{j\infty}^{\tau} f(\tilde{\tau}) d\tilde{\tau}$$

$$= 2\pi i \int_{\gamma(i\infty)}^{\gamma(\tau)} (c\tilde{\tau}' + d)^{k-2} (f|_{k}\gamma^{-1})(\tilde{\tau}') d\tilde{\tau}'.$$

For $k \neq 2$ we pick up a power of the automorphic factor $(c\tilde{\tau}' + d)$ and leave the space of iterated integrals of modular forms!

Transformations of multiple polylogarithms

In the case of multiple polylogarithms

$$G(z_1,\ldots,z_k;y)$$

the transformations

$$y' = 1 - y$$
, $y' = \frac{1}{y}$, $y' = \frac{1}{1 - y}$, $y' = \frac{1 - y}{1 + y}$

don't leave the space of multiple polylogarithms.

28/48

Solution to question 2:

In order not to leave the space of iterated integrals of modular forms a base transformation

$$\tau' = \gamma(\tau)$$

needs to be accompanied by a fibre transformation

$$J' = UJ$$
.

For

$$\gamma(\tau) = \frac{a\tau + b}{c\tau + d}, \qquad \gamma \in \mathrm{SL}_2(\mathbb{Z})$$

we have to consider the combined transformation

$$J' = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & (c au+d)^{-1} & 0 \ 0 & rac{c}{2\pi i arepsilon f_0} & (c au+d) \end{pmatrix} J,$$
 $au' = rac{a au+b}{c au+d}.$

Working out the transformed differential equation we obtain

$$(d+A')J' = 0$$

with

$$A' = 2\pi i \, \epsilon \begin{pmatrix} 0 & 0 & 0 \\ 0 & (f_2|_2\gamma^{-1})(\tau') & (f_0|_0\gamma^{-1})(\tau') \\ (f_3|_3\gamma^{-1})(\tau') & (f_4|_4\gamma^{-1})(\tau') & (f_2|_2\gamma^{-1})(\tau') \end{pmatrix} d\tau'.$$

We have

$$f_k|_k\gamma^{-1} \in \mathcal{M}_k(\Gamma(6))$$

and J' can be expressed as iterated integrals of modular forms for $\Gamma(6)$.

The fact that we need to redefine the master integrals is not too surprising.

$$J' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & (c\tau + d)^{-1} & 0 \\ 0 & \frac{c}{2\pi i \varepsilon f_0} & (c\tau + d) \end{pmatrix} J$$

We originally defined J_2 by

$$\mathbf{J_2} = \epsilon^2 \frac{\pi}{\psi_1} \mathbf{I}_{111} (\mathbf{2} - \mathbf{2}\epsilon, \mathbf{x}).$$

The automorphic factor $(c\tau + d)$ is the ratio of two periods

$$c\tau + d = \frac{\psi_1'}{\psi_1}.$$

We find that J_2' is given by

$$J_2' = \epsilon^2 \frac{\pi}{\psi_1'} I_{111} (2 - 2\epsilon, x).$$

Section 5

Several kinematic variables

Moduli spaces

 $\mathcal{M}_{g,n}$: Space of isomorphism classes of smooth (complex, algebraic) curves of genus g with n marked points.

Coordinates

Genus 0: $\dim \mathcal{M}_{0,n} = n - 3$.

Sphere has a unique shape

Use Möbius transformation to fix $z_{n-2} = 1$, $z_{n-1} = \infty$, $z_n = 0$

Coordinates are $(z_1,...,z_{n-3})$

Genus 1: $\dim \mathcal{M}_{1,n} = n$.

One coordinate describes the shape of the torus

Use translation to fix $z_n = 0$

Coordinates are $(\tau, z_1, ..., z_{n-1})$

Iterated integrals on $\mathcal{M}_{0,n}$

We are interested in differential one-forms, which have only simple poles:

$$\omega^{\mathrm{mpl}}(z_j) = \frac{dy}{y-z_j}.$$

Multiple polylogarithms:

$$G(z_1,...,z_k;y) = \int_0^y \frac{dy_1}{y_1-z_1} \int_0^{y_1} \frac{dy_2}{y_2-z_2} ... \int_0^{y_{k-1}} \frac{dy_k}{y_k-z_k}, \quad z_k \neq 0$$

The Kronecker function

Define the first Jacobi theta function $\theta_1(z, \bar{q})$ by

$$\theta_1(z,\bar{q}) = -i\sum_{n=-\infty}^{\infty} (-1)^n \bar{q}^{\frac{1}{2}(n+\frac{1}{2})^2} e^{i\pi(2n+1)z}.$$

The Kronecker function $F(z, \alpha, \tau)$:

$$F(z,\alpha,\tau) = \theta'_1(0,\bar{q}) \frac{\theta_1(z+\alpha,\bar{q})}{\theta_1(z,\bar{q})\theta_1(\alpha,\bar{q})} = \frac{1}{\alpha} \sum_{k=0}^{\infty} \mathbf{g}^{(k)}(\mathbf{z},\tau) \alpha^k$$

We are interested in the coefficients $g^{(k)}(z,\tau)$ of the Kronecker function.

The coefficients $g^{(k)}(z,\tau)$ of the Kronecker function

Properties of $g^{(k)}(z,\tau)$:

- \bigcirc only simple poles as a function of z
- **Q** quasi-periodic as a function of z: Periodic by 1, quasi-periodic by τ .

$$g^{(k)}(z+1,\tau) = g^{(k)}(z,\tau),$$

$$g^{(k)}(z+\tau,\tau) = \sum_{j=0}^{k} \frac{(-2\pi i)^{j}}{j!} g^{(k-j)}(z,\tau)$$

quasi-modular:

$$g^{(k)}\left(\frac{z}{c\tau+d},\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k \sum_{j=0}^k \frac{(2\pi i)^j}{j!} \left(\frac{cz}{c\tau+d}\right)^j g^{(k-j)}(z,\tau)$$

38/48

Differential one-forms on $\mathcal{M}_{1,n}$

From modular forms:

$$\omega_k^{\text{modular}} = 2\pi i f_k(\tau) d\tau$$

From the Kronecker function:

$$\begin{split} \omega_k^{\text{Kronecker}} &= (2\pi i)^{2-k} \left[g^{(k-1)} \left(L(z), \tau \right) dL(z) + (k-1) g^{(k)} \left(L(z), \tau \right) \frac{d\tau}{2\pi i} \right], \\ L(z) &= \sum_{j=1}^{n-1} \alpha_j z_j + \beta. \end{split}$$

Modular transformations

A modular transformation acts as

$$\tau' = \frac{a\tau + b}{c\tau + d}, \quad z'_j = \frac{z_j}{c\tau + d}, \quad \beta' = \frac{\beta}{c\tau + d}.$$

We may view β as being a further marked point in a higher dimensional space $\mathcal{M}_{1,n'}$ with n'>n.

We find

$$\omega_{k}^{\text{Kronecker}}\left(L'\left(z'\right),\tau'\right) = (c\tau+d)^{k-2} \sum_{j=0}^{k} \frac{1}{j!} \left(\frac{cL(z)}{c\tau+d}\right)^{j} \omega_{k-j}^{\text{Kronecker}}\left(L(z),\tau\right).$$

Example: The unequal mass sunrise

- 7 master integrals
- 3 kinematic variable

$$x_1 = \frac{-p^2}{m_3^2}, \ x_2 = \frac{m_1^2}{m_3^2}, \ x_3 = \frac{m_2^2}{m_3^2}.$$

Example: The unequal mass sunrise

We may put the differential equation into an ϵ -form with only simple poles by

- making a choice for the two periods (ψ_2, ψ_1) ,
- performing a fibre transformation J = UI.
- performing a base transformation $(x_1, x_2, x_3) \rightarrow (\tau, z_1, z_2)$.

$$(d+A)J = 0, \qquad A = \varepsilon \sum_{j=1}^{N_L} C_j \omega_j$$

and the ω_i 's are either of the form $\omega^{modular}$ or $\omega^{Kronecker}$.

42/48

Example: The unequal mass sunrise

A modular transformation on the base

$$(\tau,z_1,z_2,\beta) \ \rightarrow \ (\tau',z_1',z_2',\beta')$$

is accompanied by the fibre transformation

$$J' = U J$$

with U given by

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{c\tau+d} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{6ic(z_1+z_2)}{c\tau+d} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{2ic(z_1-z_2)}{c\tau+d} & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -\frac{c}{2\pi i \varepsilon} + \frac{c^2(z_1^2+z_1z_2+z_2^2)}{c\tau+d} & -\frac{ic(z_1+z_2)}{4} & -\frac{ic(z_1-z_2)}{4} & c\tau+d \end{pmatrix}$$

Section 6

Comments

q-expansions

Why do we bother about modular transformations?

- Iterated integrals in the elliptic case are evaluated with the help of their q-expansions.
- The \bar{q} -series converge for $|\bar{q}| < 1$.
- By a modular transformation we may map τ to the fundamental domain, resulting in

$$|\bar{q}| \leq e^{-\pi\sqrt{3}} \approx 0.0043,$$

resulting in a fast converging series.

Uniqueness

Are master integrals of uniform weight unique?

• Assume that J is a set of master integrals of uniform weight and U an x-independent invertible $(N_F \times N_F)$ -matrix. Then

$$J' = UJ$$

is also of uniform weight.

 Assume that J is of uniform weight and contains elliptic Feynman integrals. A modular transformation induces a x-dependent transformation U, such that J' is again of uniform weight.

Maybe we shouldn't use the word "canonical" in this context.

Bootstrap

Modularity puts (in addition to integrability) constraints on the matrix A:

Example

Consider a system consisting of one master integral J depending on two variables (z,τ) with differential equation

$$(d+A)J = 0.$$

The matrix

$$A = \epsilon \left[\omega_2^{\text{Kronecker}}(z, \tau) - 2\omega_2^{\text{Kronecker}}(z, 2\tau) \right]$$

is modular, while the apparent simpler choice

$$A = \varepsilon \omega_2^{\text{Kronecker}}(z, \tau)$$

is not.

Conclusions

- For elliptic Feynman integrals we expect that the choice of periods does not matter. This implies that the system should be modular.
- ullet By a modular transformation we can always achieve $|ar{q}| \leq 0.0043$.
- Unfortunately, as a modular transformation is always accompanied by a fibre transformation, there is no black-box numerical evaluation algorithm just for iterated integrals of $\omega^{modular}$ and $\omega^{Kronecker}.$
- There are x-dependent fibre transformations, which transform master integrals of uniform weight into master integrals of uniform weight.
- Modularity puts constraints on the matrix A.