

Scattering Amplitudes and Conservative Binary Dynamics at G⁴

Mikhail Solon

Bhaumik Institute for Theoretical Physics, UCLA

Quantum Field Theory

Gravitational Wave Science

Cheung, Rothstein, MS (PRL 18) Bern, Cheung, Roiban, Shen, MS, Zeng (PRL 19, JHEP 19) Cheung, MS (JHEP 20, PRL 20) Cheung, Shah, MS (PRD 20)

Bern, Parra-Martinez, Roiban, Ruf, Shen, MS, Zeng (PRL 21)

. . .

Gravitational Wave Science

Gravitational Wave Science

$$G_{ab} = 8\pi T_{ab} \quad \longrightarrow \quad$$

Decades of heroic effort

Turn it into an easier problem

Relativity

Tools of Theoretical High Energy Physics onshell methods, advanced multiloop integration, effective field theory

Underlying dynamics are universal

Scalable pipeline using tools from QFT:

$$\begin{array}{c} G(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} + \cdots) \\ G^2(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} + \cdots) \\ G^3(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} + \cdots) \\ G^4(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} + \cdots) \\ G^5(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} + \cdots) \\ G^6(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} + \cdots) \\ G^7(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} + \cdots) \end{array}$$

Cheung, Rothstein, MS PRL18 Bern, Cheung, Roiban, Shen, MS, Zeng PRL19 Bern, Parra-Martinez, Roiban, Ruf, Shen, MS, Zeng PRL 21

Theorists at LIGO are interested

Antonelli, Buonanno, Steinhoff, van de Meent, Vines 2019

NEW! from Alessandra Buonanno's recent talk at GGI

Crucial to push PM calculations at higher order, and resum them in EOB formalism.

(Damour 19, Antonelli, AB, Steinhoff, van de Meent & Vines 19, Khalil, AB, Steinhoff & Vines in prep 21)

Fruitful exchanges between GR and HEP

Bini, Damour, Geralico 2019, 2020, ... Damour 2019 Damour 2020

Not yet in the pipeline

Scalable pipeline using tools from QFT:

Classical limit is taken at the earliest stages.

Classical Limit

"In reality classical effects are smaller than quantum." - Aneesh Manohar

$$\mathcal{M}_{\text{QED}} \sim \left(\frac{Q^2}{Q_{\text{pl}}^2} \frac{q}{m}\right)^{\mathcal{C}} \left(\frac{q}{m}\right)^{\mathcal{Q}} \quad e \sim 10^{-1} Q_{\text{pl}}$$

soft: $(\omega, \ell) \sim (|\boldsymbol{q}|, |\boldsymbol{q}|) \longrightarrow$ potential: $(\omega, \ell) \sim (|\boldsymbol{q}| |\boldsymbol{v}|, |\boldsymbol{q}|)$ radiation: $(\omega, \ell) \sim (|\boldsymbol{q}| |\boldsymbol{v}|, |\boldsymbol{q}| |\boldsymbol{v}|)$

NRGR Goldberger, Rothstein

There are eight classical cuts:

Boundary condition from NR integration

$$\int \frac{d\omega_1}{2\pi} \frac{d\omega_2}{2\pi} \frac{d\omega_3}{2\pi} \mathcal{I}(\omega_1, \omega_2, \omega_3) = \sum S_i \operatorname{Res}_i \mathcal{I}(\omega_1, \omega_2, \omega_3)$$
$$\boxed{= \frac{5}{24}} + \frac{1}{8}$$

 $\mathcal{L} = \mathcal{L}_{\mathrm{kin}} - \int_{\boldsymbol{k},\boldsymbol{k}'} V(\boldsymbol{k},\boldsymbol{k}') A^{\dagger}(\boldsymbol{k}') A(\boldsymbol{k}) B^{\dagger}(-\boldsymbol{k}') B(-\boldsymbol{k})$

$$V(\boldsymbol{p}, \boldsymbol{r}) = \sum_{i=1}^{\infty} c_i(\boldsymbol{p}^2) \left(\frac{G}{|\boldsymbol{r}|}\right)^i$$

$$= \mathcal{M} + \int \mathcal{M} \frac{1}{Y} \mathcal{M} + \int \mathcal{M} \frac{1}{Y} \mathcal{M} \frac{1}{Y} \mathcal{M} + \cdots$$

 $= \mathcal{M}' + \int \mathcal{M}' \frac{1}{Z} \mathcal{M}' + \int \mathcal{M}' \frac{1}{Z} \mathcal{M}' \frac{1}{Z} \mathcal{M}' + \cdots$

$$E - \sqrt{(p+l)^2 + m^2} = E - \sqrt{E+Y}$$

$$+ \cdots = \mathcal{M} + \int \mathcal{M} \frac{1}{Y} \mathcal{M} + \int \mathcal{M} \frac{1}{Y} \mathcal{M} \frac{1}{Y} \mathcal{M} + \cdots$$

$$\mathcal{M} = \frac{p(r)^2 - p^2}{2E}$$

$$\mathbb{I}_{est-particle}$$

$$\mathbb{I}_{est-par$$

 $+ 65637\rho^{7} + 16809\rho^{6} + 3367\rho^{5} + 2865\rho^{4} + 775\rho^{3} - 501\rho^{2} - 252\rho - 21)(\rho - 1)^{2} \right] \qquad \rho = 4r/R$

$$E - \sqrt{(p+l)^2 + m^2} = 2p' \cdot l + \cdots$$

The classical part of the amplitude is the radial action.

Mass dependence $\mathcal{M}_N \sim G^N \left[m_1^{N+1} m_2^2 + m_1^N m_2^3 + \dots + \{1 \leftrightarrow 2\} \right]$ Bini, Damour, Geralico

$$\mathcal{M}_{1} \sim G \left[m_{1}^{2} m_{2}^{2} \right]$$

$$\mathcal{M}_{2} \sim G^{2} \left[m_{1}^{3} m_{2}^{2} + \{1 \leftrightarrow 2\} \right]$$

$$\mathcal{M}_{3} \sim G^{3} \left[m_{1}^{4} m_{2}^{2} + m_{1}^{3} m_{2}^{3} + \{1 \leftrightarrow 2\} \right]$$

$$\mathcal{M}_{4} \sim G^{4} \left[m_{1}^{5} m_{2}^{2} + m_{1}^{4} m_{2}^{3} + \{1 \leftrightarrow 2\} \right]$$

$$\mathcal{M}_{5} \sim G^{5} \left[m_{1}^{6} m_{2}^{2} + m_{1}^{5} m_{2}^{3} + m_{1}^{4} m_{2}^{4} + \{1 \leftrightarrow 2\} \right]$$

$$\mathcal{M}_{6} \sim G^{6} \left[m_{1}^{7} m_{2}^{2} + m_{1}^{6} m_{2}^{3} + m_{1}^{5} m_{2}^{4} + \{1 \leftrightarrow 2\} \right]$$

$$\vdots \quad \text{OSF} \quad \text{1SF} \quad \text{2SF}$$

Amplitudes

$$\mathcal{M}_1 = 16\pi G \nu^2 M^4 |\boldsymbol{q}|^{-2} (2\sigma^2 - 1)$$

$$\mathcal{M}_2 = 6\pi^2 G^2 \nu^2 M^5 |\boldsymbol{q}|^{-1} (5\sigma^2 - 1)$$

$$\mathcal{M}_{3} = 2\pi G^{3} \nu^{2} M^{6} \log q^{2} \left[\frac{(1 + 2\nu(\sigma - 1))(5 - 60\sigma^{2} + 120\sigma^{4} - 64\sigma^{2})}{3(\sigma^{2} - 1)^{2}} + 8\nu \left(\frac{\sigma(14\sigma^{2} + 25)}{3} + (4\sigma^{4} - 12\sigma^{2} - 3) \frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2} - 1}} \right) \right]$$

$$\nu = \frac{m_1 m_2}{(m_1 + m_2)^2} \qquad M = m_1 + m_2 \qquad \sigma = \frac{p_1 \cdot p_2}{m_1 m_2}$$

$$\mathcal{M}_4(\boldsymbol{q}) = G^4 M^7 \nu^2 |\boldsymbol{q}| \left(\frac{\boldsymbol{q}^2}{4^{\frac{1}{3}} \tilde{\mu}^2}\right)^{-3\epsilon} \pi^2 \left[\mathcal{M}_4^{\mathrm{p}} + \nu \left(\frac{\mathcal{M}_4^{\mathrm{t}}}{\epsilon} + \mathcal{M}_4^{\mathrm{f}}\right)\right]$$

$$\mathcal{M}_{4}^{p} = -\frac{35\left(1 - 18\sigma^{2} + 33\sigma^{4}\right)}{8\left(\sigma^{2} - 1\right)} \qquad \mathcal{M}_{4}^{t} = h_{1} + h_{2}\log\left(\frac{\sigma + 1}{2}\right) + h_{3}\frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2} - 1}}$$

$$\begin{aligned} \mathcal{M}_{4}^{f} &= h_{4} + h_{5} \log\left(\frac{\sigma+1}{2}\right) + h_{6} \frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}} + h_{7} \log(\sigma) - h_{2} \frac{2\pi^{2}}{3} + h_{8} \frac{\operatorname{arccosh}^{2}(\sigma)}{\sigma^{2}-1} + h_{9} \left[\operatorname{Li}_{2}\left(\frac{1-\sigma}{2}\right) + \frac{1}{2} \log^{2}\left(\frac{\sigma+1}{2}\right)\right] \\ &+ h_{10} \left[\operatorname{Li}_{2}\left(\frac{1-\sigma}{2}\right) - \frac{\pi^{2}}{6}\right] + h_{11} \left[\operatorname{Li}_{2}\left(\frac{1-\sigma}{1+\sigma}\right) - \operatorname{Li}_{2}\left(\frac{\sigma-1}{\sigma+1}\right) + \frac{\pi^{2}}{3}\right] + h_{2} \frac{2\sigma(2\sigma^{2}-3)}{(\sigma^{2}-1)^{3/2}} \left[\operatorname{Li}_{2}\left(\sqrt{\frac{\sigma-1}{\sigma+1}}\right) - \operatorname{Li}_{2}\left(-\sqrt{\frac{\sigma-1}{\sigma+1}}\right)\right] \\ &+ \frac{2h_{3}}{\sqrt{\sigma^{2}-1}} \left[\operatorname{Li}_{2}\left(1-\sigma-\sqrt{\sigma^{2}-1}\right) - \operatorname{Li}_{2}\left(1-\sigma+\sqrt{\sigma^{2}-1}\right) + 5\operatorname{Li}_{2}\left(\sqrt{\frac{\sigma-1}{\sigma+1}}\right) - 5\operatorname{Li}_{2}\left(-\sqrt{\frac{\sigma-1}{\sigma+1}}\right) + 2\log\left(\frac{\sigma+1}{2}\right)\operatorname{arccosh}(\sigma)\right] \\ &+ h_{12}\operatorname{K}^{2}\left(\frac{\sigma-1}{\sigma+1}\right) + h_{13}\operatorname{K}\left(\frac{\sigma-1}{\sigma+1}\right)\operatorname{E}\left(\frac{\sigma-1}{\sigma+1}\right) + h_{14}\operatorname{E}^{2}\left(\frac{\sigma-1}{\sigma+1}\right), \end{aligned}$$

High-energy limit:
$$\mathcal{M} \sim G^4 p^8 |q| \frac{(m_1 + m_2)}{m_1 m_2}$$

$$h_{1} = \frac{1151 - 3336\sigma + 3148\sigma^{2} - 912\sigma^{3} + 339\sigma^{4} - 552\sigma^{5} + 210\sigma^{6}}{12(\sigma^{2} - 1)}$$

$$h_{2} = \frac{1}{2} \left(5 - 76\sigma + 150\sigma^{2} - 60\sigma^{3} - 35\sigma^{4} \right)$$

$$h_{3} = \sigma \frac{\left(-3 + 2\sigma^{2}\right)}{4(\sigma^{2} - 1)} \left(11 - 30\sigma^{2} + 35\sigma^{4} \right)$$

$$h_{4} = \frac{1}{144(\sigma^{2} - 1)^{2}\sigma^{7}} \left(-45 + 207\sigma^{2} - 1471\sigma^{4} + 13349\sigma^{6} - 37566\sigma^{7} + 104753\sigma^{8} - 12312\sigma^{9} - 102759\sigma^{10} - 105498\sigma^{11} + 134745\sigma^{12} + 83844\sigma^{13} - 101979\sigma^{14} + 13644\sigma^{15} + 10800\sigma^{16} \right)$$

$$h_{5} = \frac{1}{4(\sigma^{2} - 1)} \left(1759 - 4768\sigma + 3407\sigma^{2} - 1316\sigma^{3} + 957\sigma^{4} - 672\sigma^{5} + 341\sigma^{6} + 100\sigma^{7} \right)$$

$$h_{6} = \frac{1}{24(\sigma^{2} - 1)^{2}} (1237 + 7959\sigma - 25183\sigma^{2} + 12915\sigma^{3} + 18102\sigma^{4} - 12105\sigma^{5} - 9572\sigma^{6} + 2973\sigma^{7} + 5816\sigma^{8} - 2046\sigma^{9})$$

$$h_{7} = 2\sigma \frac{(-852 - 283\sigma^{2} - 140\sigma^{4} + 75\sigma^{6})}{3(\sigma^{2} - 1)}$$

$$h_{8} = \frac{\sigma}{8(\sigma^{2} - 1)^{2}} (-304 - 99\sigma + 672\sigma^{2} + 402\sigma^{3} - 192\sigma^{4} - 719\sigma^{5} - 416\sigma^{6} + 540\sigma^{7} + 240\sigma^{8} - 140\sigma^{9})$$

$$h_{9} = \frac{1}{2} (52 - 532\sigma + 351\sigma^{2} - 420\sigma^{3} + 30\sigma^{4} - 25\sigma^{6})$$

$$h_{10} = 2 (27 + 90\sigma^{2} + 35\sigma^{4})$$

$$h_{11} = 20 + 111\sigma^{2} + 30\sigma^{4} - 25\sigma^{6}$$

$$h_{12} = \frac{834 + 2095\sigma + 1200\sigma^{2}}{2(\sigma^{2} - 1)}$$

$$h_{13} = -\frac{1183 + 2929\sigma + 2660\sigma^{2} + 1200\sigma^{3}}{2(\sigma^{2} - 1)}$$

$$h_{14} = \frac{7 (169 + 380\sigma^{2})}{4(\sigma - 1)}$$

Hamiltonian

$$H(p, r) = \sqrt{p^2 + m_1^2} + \sqrt{p^2 + m_2^2} + \sum_{i=1}^{4} c_i(p^2) \left(\frac{G}{|r|}\right)^i$$

$$c_{1} = \frac{\nu^{2}m^{2}}{\gamma^{2}\xi} \left(1 - 2\sigma^{2}\right) \qquad \xi = E_{1}E_{2}/E^{2}$$

$$c_{2} = \frac{\nu^{2}m^{3}}{\gamma^{2}\xi} \left[\frac{3}{4}\left(1 - 5\sigma^{2}\right) - \frac{4\nu\sigma\left(1 - 2\sigma^{2}\right)}{\gamma\xi} - \frac{\nu^{2}(1 - \xi)\left(1 - 2\sigma^{2}\right)^{2}}{2\gamma^{3}\xi^{2}}\right]$$

$$\begin{aligned} c_{3} &= \frac{\nu^{2}m^{4}}{\gamma^{2}\xi} \Bigg[\frac{1}{12} \Big(3 - 6\nu + 206\nu\sigma - 54\sigma^{2} + 108\nu\sigma^{2} + 4\nu\sigma^{3} \Big) - \frac{4\nu\left(3 + 12\sigma^{2} - 4\sigma^{4} \right) \operatorname{arcsinh} \sqrt{\frac{\sigma - 1}{2}}}{\sqrt{\sigma^{2} - 1}} \\ &- \frac{3\nu\gamma\left(1 - 2\sigma^{2} \right)\left(1 - 5\sigma^{2} \right)}{2(1 + \gamma)(1 + \sigma)} - \frac{3\nu\sigma\left(7 - 20\sigma^{2} \right)}{2\gamma\xi} - \frac{\nu^{2}\left(3 + 8\gamma - 3\xi - 15\sigma^{2} - 80\gamma\sigma^{2} + 15\xi\sigma^{2} \right)\left(1 - 2\sigma^{2} \right)}{4\gamma^{3}\xi^{2}} \\ &+ \frac{2\nu^{3}(3 - 4\xi)\sigma\left(1 - 2\sigma^{2} \right)^{2}}{\gamma^{4}\xi^{3}} + \frac{\nu^{4}(1 - 2\xi)\left(1 - 2\sigma^{2} \right)^{3}}{2\gamma^{6}\xi^{4}} \Bigg], \end{aligned}$$

$$c_{4} = \frac{M^{7}\nu^{2}}{4\xi E^{2}} \left[\mathcal{M}_{4}^{p} + \nu \left(\frac{\mathcal{M}_{4}^{t}}{\epsilon} + \mathcal{M}_{4}^{f} - 10\mathcal{M}_{4}^{t} \right) \right] + \mathcal{D}^{3} \left[\frac{E^{3}\xi^{3}}{3}c_{1}^{4} \right] + \mathcal{D}^{2} \left[\left(\frac{E^{3}\xi^{3}}{p^{2}} + \frac{E\xi(3\xi - 1)}{2} \right)c_{1}^{4} - 2E^{2}\xi^{2}c_{1}^{2}c_{2} \right] + \left(\mathcal{D} + \frac{1}{p^{2}} \right) \left[E\xi(2c_{1}c_{3} + c_{2}^{2}) + \left(\frac{4\xi - 1}{4E} + \frac{2E^{3}\xi^{3}}{p^{4}} + \frac{E\xi(3\xi - 1)}{p^{2}} \right)c_{1}^{4} + \left((1 - 3\xi) - \frac{4E^{2}\xi^{2}}{p^{2}} \right)c_{1}^{2}c_{2} \right],$$

$$\mathcal{D} = \frac{d}{dp^{2}}$$

NEW! from Alessandra Buonanno's recent talk at GGI

Crucial to push PM calculations at higher order, and resum them in EOB formalism.

checks:

Bini, Damour, Geralico 2020 Blümlein, Maier, Marquard, Schäfer 2020 Blümlein, Maier, Marquard, Schäfer 2021 Dlapa, Kälin, Liu, Porto 2021 Gravitational wave science has opened up a new direction in theoretical high energy physics.

Classical binary dynamics has the hallmarks of a great problem in theoretical high energy physics.

This program is in a nascent stage.