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simple gauge-invariant relation between the conservative
scattering amplitude and the radial action based on a re-
organization of the amplitude into classical and iteration
pieces, distinct from that of Refs. [3–5, 36]. It is well
known that the radial action is also gauge-invariant and
encodes the dynamics of both bound and unbound orbits
(see e.g. Refs. [36, 39, 45]).
Classical Dynamics from Scattering Amplitudes. We
focus on conservative two-body dynamics for spinless
compact objects, described by the four-point amplitude,
M(q), of gravitationally interacting minimally-coupled
massive scalars. The two incoming particles of momenta
p1, p2 have masses m1,m2, and we define σ ≡ p1·p2

m1m2
in

mostly minus signature. We work in the center-of-mass
(COM) frame where the momentum transfer qµ = (0, q)
is purely spatial. Following Refs. [46, 47], we decom-
pose p1, p2 into components orthogonal and along q, i.e.,
p1 = p̄1 − q/2, p2 = p̄2 + q/2 with p̄i · q = 0.
As described in Refs. [3–5], major simplifications are

obtained by taking the classical limit early at the level of
the integrand. This is achieved by an expansion in large
angular momentum J # !. We implement this by rescal-
ing q, " → λq,λ", where " is any graviton momentum, and
then expanding in small λ.
The classical limit therefore identifies the soft region,

defined by the loop momentum scaling "µ = (ω, !) ∼
(λ,λ), as encoding classical dynamics. In the spirit of
EFT [9], we simplify the analysis, especially in the pres-
ence of the tail effect at O(G4), by focusing on the po-
tential and (ultrasoft) radiation subregions defined by the
scalings ∼ (vλ,λ) and ∼ (vλ, vλ), respectively. Here and
below we use v to denote the typical velocity of the binary
constituents, corresponding to the small velocity that de-
fines the PN expansion.
In the present work, we focus on the conservative part

described by the potential contribution, and do not in-
clude radiation. This is sufficient for completely spec-
ifying the conservative dynamics through O(G3) [4, 5].
However, at O(G4), radiative effects contribute to con-
servative dynamics via the tail effect [41]. Since the po-
tential and radiation contributions overlap, this intro-
duces scheme-dependence and IR divergence [44]. We use
conventional dimensional regularization, where the am-
plitudes, including graviton polarizations, are uniformly
continued into D = 4− 2ε dimensions.
Amplitude-Action Relation. Conservative binary dynam-
ics is fully encoded in the four-point amplitude M(q),
truncated to the classical order. There exists another
scalar gauge invariant function which encodes the same
dynamics, namely the radial action, which is defined
as the integral of the radial momentum pr along the
scattering trajectory, Ir(J) ≡

∫

prdr, with appropriate
regularization of the long-distance contribution. Here
we present a simple relation between these two gauge-
invariant quantities, exposed through the EFT intro-
duced in Ref. [3].
In the classical limit, the amplitude at O(Gn) contains

a classical contribution that scales as λn−3 and iteration
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FIG. 1. Generalized unitarity cuts encoding potential-region
contributions to binary dynamics. Ovals represent tree am-
plitudes while exposed lines depict on-shell states. Thin and
thick lines denote gravitons and massive scalars, respectively.

contributions that scale as λn−2,λn−1, · · · ,λ−2. The lat-
ter correspond to iterations of lower-order amplitudes,
are IR divergent, and cancel in physical observables. Al-
though the full amplitude is invariant, the choice of pole
structure of the iterations is not unique and the classical
part is modified accordingly. Previously this was cho-
sen to align with the matter energy poles in the EFT for
direct cancellation without explicit evaluation [3]. This
choice also revealed a connection between the classical
amplitude and the local COM momentum in isotropic
gauge, first observed in [4, 5] and later proven in [32, 36].
In the present analysis, we instead expand the mat-

ter poles about the momentum component along ẑ, the
direction of the spatial component of p̄1. Inspired by
the eikonal approximation [48], this prescription reveals
a gauge-invariant “amplitude-action relation”

iM(q) =

∫

J

(

eiIr(J) − 1
)

, (1)

between the amplitude M(q) and the radial action Ir(J).
The classical part of the amplitude then corresponds to
the term linear in Ir(J), given by

Ĩr(q) =

∫

J
Ir(J) ≡ 4E|p|

∫

µ−2εdD−2b eiq·b Ir(J) , (2)

where p is the spatial momentum, E is the total energy,
|b| = J/|p| is the impact parameter in the COM frame,
and µ is the renormalization scale. As will be shown
elsewhere [49], terms higher order in Ir(J) in the relation
(1) have the following structure under our prescription

∫

J

(iIr(J))n

n!
= i

∫

!

Ĩr(!1) . . . Ĩr(!n)

Z1 . . . Zn−1
, (3)

Zj = −4E|p|
(

(!1 + !2 + · · ·+ !j) · ẑ + i0
)

,

where
∫

!
≡

∫
∏n

i=1
dD−1!i
(2π)D−1 (2π)D−1δ(

∑n
j=1 !j − q) and

we only keep the leading classical expansion in the nu-
merator of Eq. (3). Crucially, we manifest the pole struc-
ture in Zj when computing the amplitude such that the
classical part can be isolated and iterations can be safely
dropped without explicitly evaluating them, following the
path of Ref. [3]. With our prescription, we avoid track-
ing such terms, which is necessary in standard eikonal
exponentiation [48].

M
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Scalable pipeline using tools from QFT:



G(1 + v2 + v4 + v6 + v8 + v10 + v12 + · · · )

G2(1 + v2 + v4 + v6 + v8 + v10 + v12 + · · · )
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Conservative Two-Body Potential (no radiation)

Bern, Cheung, Roiban, Shen, MS, Zeng  PRL19
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Theorists at LIGO are interested
Antonelli, Buonanno, Steinhoff, van de Meent, Vines  2019
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FIG. 2. Energetics of PM Hamiltonians. We compare to NR the binding energy as a function of orbital frequency GM�
from both PM and PM-EOB Hamiltonians for a nonspinning binary black hole with mass ratio q = 1 (left panel) and q = 10
(right panel). The dots at the end of the curves mark the ISCOs, when present in the corresponding two-body dynamics. The
NR binding energy and its error are in cyan. The top x-axis shows the number of orbits until merger. In the lower panel we
show the fractional di�erence between the approximants and the NR result.

q = 1 and 10 [24]. In Fig. 1 we display the NR waveforms.
Those simulations span about 56 and 36 GW cycles (cor-
responding to ⇠ 28 and ⇠ 18 orbital cycles), for q = 1
and q = 10, respectively, before merger. We highlight in
Fig. 1 the portion of the waveform that we use to com-
pare with the binding-energy approximants. As can be
seen, the comparisons with NR extend up to about 1.4
and 1.8 GW cycles, for q = 1 and q = 10, respectively,
before the two black holes merge. Thus, our comparisons
of analytic models to NR predictions extend to the late
inspiral of a binary evolution, a stage characterized by
high velocity and strong gravity.

We compare NR predictions against analytic results
obtained with PM, EOB and PN Hamiltonians, summa-
rized in Table I. Notably, we compute results with the
Hamiltonian at mPM orders with m = 1, 2, 3 [64, 81]
(labeled HmPM), and with the EOB Hamiltonian of
Refs. [53, 56] and this paper at mPM orders with m =
1, 2, 3 (labeled HEOB,PS

mPM ). We also compare results with
the PM EOB Hamiltonian augmented with PN results
up to 4PN order (labeled HEOB,PS

mPM+nPN), as derived in Ap-
pendix A. Furthermore, the (original) EOB Hamiltonian
employed in LIGO/Virgo data analysis [25, 27] is built
from the EOB Hamiltonian of Refs. [18, 66, 67], and it
resums perturbative PN results di�erently from the PM

EOB Hamiltonian. To understand the impact of the dif-
ferent resummation, and also highlight the accuracy that
PM results would need to achieve in order to motivate
their use in waveform modeling, we also show results
with such an EOB Hamiltonian (labeled HEOB

nPN ). Fi-
nally, we also employ the PN Hamiltonian from Ref. [84]
(labeled HnPN), and an alternative 3PM EOB Hamilto-
nian presented for circular orbits in Appendix B (labeled

HEOB,�PS
3PM ).

In Figs. 2 and 3 we compare the binding energy com-
puted in NR with the ones from PM and PM EOB
Hamiltonians versus either the binary’s orbital frequency
(Fig. 2) or angular momentum (Fig. 3), for mass ratios
q = 1 and q = 10. We clearly see the improvement of
the PM binding energy from 1PM to 3PM, especially at
low frequency. The PM-EOB binding energies generally
show better agreement with NR, but they have a much
smaller range of variation from 1PM to 3PM. The 3PM
result does slightly better than 1PM, while 2PM is worse
than the other two. Overall those results demonstrate
the value and relevance of pushing PM calculations at
higher order, and of further exploring how to use PM
results to improve EOB models.

To understand the impact of PM calculations for
LIGO/Virgo analyses, it is important to compare the
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FIG. 4. Energetics of PM Hamiltonians augmented by PN information. Same as in Fig. 2 but now we compare
to NR the binding energy of PM EOB Hamiltonians augmented by PN information. Notice that adding 3PM information at
3PN or above does not lead to a visible di�erence from plain PN EOB Hamiltonians (the 3PM-3PN and 3PN curves, as well
as the 3PM-4PN and 4PN ones, are essentially on top of each other). Also included is a curve for an alternative 3PM EOB

Hamiltonian, HEOB, �PS
3PM , derived in Appendix B.

improvement coming from 4PM. The conclusion is that
it will be very useful to extend the knowledge of PM cal-
culations to higher orders — for example at least 4PM,
but even 5PM order.

Before ending this section we remark that the compar-
ison results that we have illustrated depend on several
choices. First of all, we have decided to compare the
binding energy extracted from NR simulations to results
obtained from an adiabatic sequence of circular orbits,
instead of the ones from the Hamilton equations with
radiation-reaction force. To illustrate the impact of this
choice we compare in Fig. 6 the binding energies of HEOB

3PN

and HEOB,PS
nPN obtained by evolving the Hamilton equa-

tions with a suitable radiation-reaction force (labeled “in-
spiral”) and using an adiabatic sequence of circular orbits
(labeled “circular”). The di�erence is small early in the
evolution and grows as the inspiral approaches the ISCO,
where we observe a typical di�erence in the binding en-
ergy of 5% to 10% (for q = 1).

Lastly, Fig. 7 demonstrates the di�erence of calculat-
ing e(�) numerically, treating the various approximants
of the Hamiltonian as exact, and analytically as an ex-
pansion in (GM�). The plots show the results of calcu-
lating e(�) numerically from mPM and nPN Hamiltoni-
ans treated as “exact”, and also the curves from the ana-

lytically computed binding-energy EnPN(�) truncated at
2PN (i.e., (GM�)6/3 with respect to leading term) and
3PN (i.e., (GM�)8/3) order (see Eq. (232) in Ref. [9])
(labeled EnPN). As already noticed in Ref. [86], the dif-
ferences can be quite substantial. However, it is worth
re-emphasizing that if one calculates e(�) analytically
starting from either H3PM or H2PN one recovers the 2PN
result exactly.

IV. CONCLUSIONS

The study of the energetics conducted in this work,
using currently available PM Hamiltonians up to third
order, highlights two main points. Firstly, the binding
energy for circular orbits computed with the 3PM Hamil-
tonian of Ref. [81] and the 3PM EOB Hamiltonian of
Sec. II are closer to NR predictions than the ones com-
puted at lower PM orders, especially for small frequencies
(or high angular momenta) (see Figs. 2 and 3). This sug-
gests that similar improvements can be made by pushing
PM calculations to higher orders, leading to a more ac-
curate modeling of the inspiral phase.

Secondly, we find that higher-order PM calculations
of the conservative two-body dynamics would be needed

orbits to merger
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binding energy extracted from NR simulations to results
obtained from an adiabatic sequence of circular orbits,
instead of the ones from the Hamilton equations with
radiation-reaction force. To illustrate the impact of this
choice we compare in Fig. 6 the binding energies of HEOB

3PN

and HEOB,PS
nPN obtained by evolving the Hamilton equa-

tions with a suitable radiation-reaction force (labeled “in-
spiral”) and using an adiabatic sequence of circular orbits
(labeled “circular”). The di�erence is small early in the
evolution and grows as the inspiral approaches the ISCO,
where we observe a typical di�erence in the binding en-
ergy of 5% to 10% (for q = 1).

Lastly, Fig. 7 demonstrates the di�erence of calculat-
ing e(�) numerically, treating the various approximants
of the Hamiltonian as exact, and analytically as an ex-
pansion in (GM�). The plots show the results of calcu-
lating e(�) numerically from mPM and nPN Hamiltoni-
ans treated as “exact”, and also the curves from the ana-

lytically computed binding-energy EnPN(�) truncated at
2PN (i.e., (GM�)6/3 with respect to leading term) and
3PN (i.e., (GM�)8/3) order (see Eq. (232) in Ref. [9])
(labeled EnPN). As already noticed in Ref. [86], the dif-
ferences can be quite substantial. However, it is worth
re-emphasizing that if one calculates e(�) analytically
starting from either H3PM or H2PN one recovers the 2PN
result exactly.

IV. CONCLUSIONS

The study of the energetics conducted in this work,
using currently available PM Hamiltonians up to third
order, highlights two main points. Firstly, the binding
energy for circular orbits computed with the 3PM Hamil-
tonian of Ref. [81] and the 3PM EOB Hamiltonian of
Sec. II are closer to NR predictions than the ones com-
puted at lower PM orders, especially for small frequencies
(or high angular momenta) (see Figs. 2 and 3). This sug-
gests that similar improvements can be made by pushing
PM calculations to higher orders, leading to a more ac-
curate modeling of the inspiral phase.

Secondly, we find that higher-order PM calculations
of the conservative two-body dynamics would be needed

13
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NR

Figure 1: Binding energy of equal mass black holes as a function of orbits to merger, adapted
from Figures 2 and 4 of Ref. [8]. Left: O(G), O(G2), and O(G3) predictions obtained using
QFT methods are compared to numerical relativity (NR) and a phenomenological model
called e↵ective one body (EOB). Right: di↵erent versions of EOB are compared including
one with input from the O(G3) prediction. The recent O(G4) result in [7] is currently being
studied by theorists within LIGO. Here, the NR result serves as “truth”, but in general there
are important regions of parameter space where NR is not feasible and analytic results are
crucial.

universality in the high-energy limit, nonperturbative relations to classical solutions,
and connections to background spacetimes.

2 Early Impact

In a series of papers [1, 2, 3, 4, 5, 6, 7], I initiated several aspects of the new QFT-based
approach to classical binary dynamics, culminating in the derivation of a new result in
gravity: the O(G3) conservative Hamiltonian for binary black holes [2, 3]. This two-loop
result is directly relevant to gravitational wave signals measured at observatories, and at the
same time reveals connections between scattering amplitudes and classical observables. It has
thus drawn significant interest among the relativity and high energy communities, including
theorists within the LIGO collaboration who evaluated it against numerical relativity and
strongly encouraged further developments [8]; see Figure 1. Moreover, e↵orts to confirm
the new result have led to new methods for obtaining previously unknown perturbative
corrections [9, 10, 11, 12, 13]. Recently, I extended the analysis using particle physics methods
to the case of neutron binary systems [5], and to binary dynamics at O(G4), i.e., three
loops [7].

Although only recent, the key papers [1, 2, 3] now have a total of over 400 citations, and
were highlighted as a new direction in theoretical high energy physics in JoAnne Hewitt’s
overview talk “The Exciting Physics Before US!” at the Snowmass Community Planning
Meeting in October 2020. This work has consistently featured in high energy physics confer-
ences such as Amplitudes, Strings, and other topical meetings. In the past two years, I had
over 30 invitations to talk on this subject, including a plenary at RADCOR and summer

2



NEW! from Alessandra Buonanno’s recent talk at GGI

Comparison between PMs and NR binding energies

•2-body non-spinning (local-in-time) Hamiltonian at 4PM order computed using scattering-amplitude methods.
(Cheung et al. 18, Bern et al. 19,  Bern et al. 21)

•Crucial to push PM calculations at higher order, and resum them in EOB formalism.
(Damour 19, Antonelli,  AB, Steinhoff, van de Meent & Vines 19, Khalil,  AB, Steinhoff & Vines in prep 21)

current (uncalibrated) Hamiltonian
used to build EOBNR waveform 
models for LIGO/Virgo

binding energy
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Encouraging (local-in-time) 4PM results!

Fruitful exchanges between GR and HEP
Damour 2019 Damour 2020Bini, Damour, Geralico 2019, 2020, …
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simple gauge-invariant relation between the conservative
scattering amplitude and the radial action based on a re-
organization of the amplitude into classical and iteration
pieces, distinct from that of Refs. [3–5, 36]. It is well
known that the radial action is also gauge-invariant and
encodes the dynamics of both bound and unbound orbits
(see e.g. Refs. [36, 39, 45]).
Classical Dynamics from Scattering Amplitudes. We
focus on conservative two-body dynamics for spinless
compact objects, described by the four-point amplitude,
M(q), of gravitationally interacting minimally-coupled
massive scalars. The two incoming particles of momenta
p1, p2 have masses m1,m2, and we define σ ≡ p1·p2

m1m2
in

mostly minus signature. We work in the center-of-mass
(COM) frame where the momentum transfer qµ = (0, q)
is purely spatial. Following Refs. [46, 47], we decom-
pose p1, p2 into components orthogonal and along q, i.e.,
p1 = p̄1 − q/2, p2 = p̄2 + q/2 with p̄i · q = 0.
As described in Refs. [3–5], major simplifications are

obtained by taking the classical limit early at the level of
the integrand. This is achieved by an expansion in large
angular momentum J # !. We implement this by rescal-
ing q, " → λq,λ", where " is any graviton momentum, and
then expanding in small λ.
The classical limit therefore identifies the soft region,

defined by the loop momentum scaling "µ = (ω, !) ∼
(λ,λ), as encoding classical dynamics. In the spirit of
EFT [9], we simplify the analysis, especially in the pres-
ence of the tail effect at O(G4), by focusing on the po-
tential and (ultrasoft) radiation subregions defined by the
scalings ∼ (vλ,λ) and ∼ (vλ, vλ), respectively. Here and
below we use v to denote the typical velocity of the binary
constituents, corresponding to the small velocity that de-
fines the PN expansion.
In the present work, we focus on the conservative part

described by the potential contribution, and do not in-
clude radiation. This is sufficient for completely spec-
ifying the conservative dynamics through O(G3) [4, 5].
However, at O(G4), radiative effects contribute to con-
servative dynamics via the tail effect [41]. Since the po-
tential and radiation contributions overlap, this intro-
duces scheme-dependence and IR divergence [44]. We use
conventional dimensional regularization, where the am-
plitudes, including graviton polarizations, are uniformly
continued into D = 4− 2ε dimensions.
Amplitude-Action Relation. Conservative binary dynam-
ics is fully encoded in the four-point amplitude M(q),
truncated to the classical order. There exists another
scalar gauge invariant function which encodes the same
dynamics, namely the radial action, which is defined
as the integral of the radial momentum pr along the
scattering trajectory, Ir(J) ≡

∫

prdr, with appropriate
regularization of the long-distance contribution. Here
we present a simple relation between these two gauge-
invariant quantities, exposed through the EFT intro-
duced in Ref. [3].
In the classical limit, the amplitude at O(Gn) contains

a classical contribution that scales as λn−3 and iteration
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FIG. 1. Generalized unitarity cuts encoding potential-region
contributions to binary dynamics. Ovals represent tree am-
plitudes while exposed lines depict on-shell states. Thin and
thick lines denote gravitons and massive scalars, respectively.

contributions that scale as λn−2,λn−1, · · · ,λ−2. The lat-
ter correspond to iterations of lower-order amplitudes,
are IR divergent, and cancel in physical observables. Al-
though the full amplitude is invariant, the choice of pole
structure of the iterations is not unique and the classical
part is modified accordingly. Previously this was cho-
sen to align with the matter energy poles in the EFT for
direct cancellation without explicit evaluation [3]. This
choice also revealed a connection between the classical
amplitude and the local COM momentum in isotropic
gauge, first observed in [4, 5] and later proven in [32, 36].
In the present analysis, we instead expand the mat-

ter poles about the momentum component along ẑ, the
direction of the spatial component of p̄1. Inspired by
the eikonal approximation [48], this prescription reveals
a gauge-invariant “amplitude-action relation”

iM(q) =

∫

J

(

eiIr(J) − 1
)

, (1)

between the amplitude M(q) and the radial action Ir(J).
The classical part of the amplitude then corresponds to
the term linear in Ir(J), given by

Ĩr(q) =

∫

J
Ir(J) ≡ 4E|p|

∫

µ−2εdD−2b eiq·b Ir(J) , (2)

where p is the spatial momentum, E is the total energy,
|b| = J/|p| is the impact parameter in the COM frame,
and µ is the renormalization scale. As will be shown
elsewhere [49], terms higher order in Ir(J) in the relation
(1) have the following structure under our prescription

∫

J

(iIr(J))n

n!
= i

∫

!

Ĩr(!1) . . . Ĩr(!n)

Z1 . . . Zn−1
, (3)

Zj = −4E|p|
(

(!1 + !2 + · · ·+ !j) · ẑ + i0
)

,

where
∫

!
≡

∫
∏n

i=1
dD−1!i
(2π)D−1 (2π)D−1δ(

∑n
j=1 !j − q) and

we only keep the leading classical expansion in the nu-
merator of Eq. (3). Crucially, we manifest the pole struc-
ture in Zj when computing the amplitude such that the
classical part can be isolated and iterations can be safely
dropped without explicitly evaluating them, following the
path of Ref. [3]. With our prescription, we avoid track-
ing such terms, which is necessary in standard eikonal
exponentiation [48].

M
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Scalable pipeline using tools from QFT:

Classical limit is taken at the earliest stages.



Classical Limit
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“In reality classical effects are smaller than quantum.” - Aneesh Manohar
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2

Here
R
k1···kn

=
R

d3k1
(2⇡)3 · · ·

d3kn
(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0

| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k0�k00| ⌧ |k�k0

|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0

|

that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0

|. The resulting hierarchy,
|k � k0

| ⌧ |k|, |k0
|, corresponds to an expansion in large

angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1
/ k � k0

/ �1, (3)

where k,k0
/ 1 + J�1. The first relation holds because

angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0

|
2
/ J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2

�k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0

|, so [4]

V (k,k0) =


|k � k0|2
(c1 + c2|k � k0

|+ · · · ) , (4)

where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
⇣

k2+k02

2

⌘

are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1
While it may seem peculiar to integrate out massless states, the

potential modes are o↵-shell. Moreover, the EFT contains ultra-

soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2
Higher order classical terms odd in  include factors of log |k�k0|.

ward to obtain the Feynman rules,

(k0,k) =
i

k0 �
q

k2 +m2
A,B + i0

,

k k0

-k0-k

= �iV (k,k0) ,

(5)

where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
EAEB

(EA + EB)2
. (7)

Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0

/ J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so

MEFT =
1X

i=1

M (i)
EFT =

1X

L=0

ML-loop
EFT , (8)

where M (i)
EFT is at ith order in  and arises from Feynman

diagrams at i� 1 loops and below.
Since pair creation of matter particles is kinematically

forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so

ML-loop
EFT = · · ·

p

-p

k1

-k1

kL

-kL

p0

-p0

. (9)

For convenience, we merge each pair of matter lines into
an e↵ective “two-body propagator”,

�(k) = i

Z
dk0
2⇡

1

k0 �
p

k2 +m2
A

1

E � k0 �
p
k2 +m2

B

=
1

E �
p

k2 +m2
A �

p
k2 +m2

B

,

(10)
where the second line is obtained by closing the contour
in k0 either upwards or downwards in the complex plane.
The contribution at L loops is then

ML-loop
EFT = �

Z

k1···kL

V (p,k1)�(k1) · · ·�(kL)V (kL,p
0)

= �

Z

k1···kL

N
L-loop
EFT

X2
1X

2
2 · · ·X

2
L+1Y1Y2 · · ·YL

,

(11)
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simple gauge-invariant relation between the conservative
scattering amplitude and the radial action based on a re-
organization of the amplitude into classical and iteration
pieces, distinct from that of Refs. [3–5, 36]. It is well
known that the radial action is also gauge-invariant and
encodes the dynamics of both bound and unbound orbits
(see e.g. Refs. [36, 39, 45]).
Classical Dynamics from Scattering Amplitudes. We
focus on conservative two-body dynamics for spinless
compact objects, described by the four-point amplitude,
M(q), of gravitationally interacting minimally-coupled
massive scalars. The two incoming particles of momenta
p1, p2 have masses m1,m2, and we define σ ≡ p1·p2

m1m2
in

mostly minus signature. We work in the center-of-mass
(COM) frame where the momentum transfer qµ = (0, q)
is purely spatial. Following Refs. [46, 47], we decom-
pose p1, p2 into components orthogonal and along q, i.e.,
p1 = p̄1 − q/2, p2 = p̄2 + q/2 with p̄i · q = 0.
As described in Refs. [3–5], major simplifications are

obtained by taking the classical limit early at the level of
the integrand. This is achieved by an expansion in large
angular momentum J # !. We implement this by rescal-
ing q, " → λq,λ", where " is any graviton momentum, and
then expanding in small λ.
The classical limit therefore identifies the soft region,

defined by the loop momentum scaling "µ = (ω, !) ∼
(λ,λ), as encoding classical dynamics. In the spirit of
EFT [9], we simplify the analysis, especially in the pres-
ence of the tail effect at O(G4), by focusing on the po-
tential and (ultrasoft) radiation subregions defined by the
scalings ∼ (vλ,λ) and ∼ (vλ, vλ), respectively. Here and
below we use v to denote the typical velocity of the binary
constituents, corresponding to the small velocity that de-
fines the PN expansion.
In the present work, we focus on the conservative part

described by the potential contribution, and do not in-
clude radiation. This is sufficient for completely spec-
ifying the conservative dynamics through O(G3) [4, 5].
However, at O(G4), radiative effects contribute to con-
servative dynamics via the tail effect [41]. Since the po-
tential and radiation contributions overlap, this intro-
duces scheme-dependence and IR divergence [44]. We use
conventional dimensional regularization, where the am-
plitudes, including graviton polarizations, are uniformly
continued into D = 4− 2ε dimensions.
Amplitude-Action Relation. Conservative binary dynam-
ics is fully encoded in the four-point amplitude M(q),
truncated to the classical order. There exists another
scalar gauge invariant function which encodes the same
dynamics, namely the radial action, which is defined
as the integral of the radial momentum pr along the
scattering trajectory, Ir(J) ≡

∫

prdr, with appropriate
regularization of the long-distance contribution. Here
we present a simple relation between these two gauge-
invariant quantities, exposed through the EFT intro-
duced in Ref. [3].
In the classical limit, the amplitude at O(Gn) contains

a classical contribution that scales as λn−3 and iteration
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FIG. 1. Generalized unitarity cuts encoding potential-region
contributions to binary dynamics. Ovals represent tree am-
plitudes while exposed lines depict on-shell states. Thin and
thick lines denote gravitons and massive scalars, respectively.

contributions that scale as λn−2,λn−1, · · · ,λ−2. The lat-
ter correspond to iterations of lower-order amplitudes,
are IR divergent, and cancel in physical observables. Al-
though the full amplitude is invariant, the choice of pole
structure of the iterations is not unique and the classical
part is modified accordingly. Previously this was cho-
sen to align with the matter energy poles in the EFT for
direct cancellation without explicit evaluation [3]. This
choice also revealed a connection between the classical
amplitude and the local COM momentum in isotropic
gauge, first observed in [4, 5] and later proven in [32, 36].
In the present analysis, we instead expand the mat-

ter poles about the momentum component along ẑ, the
direction of the spatial component of p̄1. Inspired by
the eikonal approximation [48], this prescription reveals
a gauge-invariant “amplitude-action relation”

iM(q) =

∫

J

(

eiIr(J) − 1
)

, (1)

between the amplitude M(q) and the radial action Ir(J).
The classical part of the amplitude then corresponds to
the term linear in Ir(J), given by

Ĩr(q) =

∫

J
Ir(J) ≡ 4E|p|

∫

µ−2εdD−2b eiq·b Ir(J) , (2)

where p is the spatial momentum, E is the total energy,
|b| = J/|p| is the impact parameter in the COM frame,
and µ is the renormalization scale. As will be shown
elsewhere [49], terms higher order in Ir(J) in the relation
(1) have the following structure under our prescription

∫

J

(iIr(J))n

n!
= i

∫

!

Ĩr(!1) . . . Ĩr(!n)

Z1 . . . Zn−1
, (3)

Zj = −4E|p|
(

(!1 + !2 + · · ·+ !j) · ẑ + i0
)

,

where
∫

!
≡

∫
∏n

i=1
dD−1!i
(2π)D−1 (2π)D−1δ(

∑n
j=1 !j − q) and

we only keep the leading classical expansion in the nu-
merator of Eq. (3). Crucially, we manifest the pole struc-
ture in Zj when computing the amplitude such that the
classical part can be isolated and iterations can be safely
dropped without explicitly evaluating them, following the
path of Ref. [3]. With our prescription, we avoid track-
ing such terms, which is necessary in standard eikonal
exponentiation [48].

M
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simple gauge-invariant relation between the conservative
scattering amplitude and the radial action based on a re-
organization of the amplitude into classical and iteration
pieces, distinct from that of Refs. [3–5, 36]. It is well
known that the radial action is also gauge-invariant and
encodes the dynamics of both bound and unbound orbits
(see e.g. Refs. [36, 39, 45]).
Classical Dynamics from Scattering Amplitudes. We
focus on conservative two-body dynamics for spinless
compact objects, described by the four-point amplitude,
M(q), of gravitationally interacting minimally-coupled
massive scalars. The two incoming particles of momenta
p1, p2 have masses m1,m2, and we define σ ≡ p1·p2

m1m2
in

mostly minus signature. We work in the center-of-mass
(COM) frame where the momentum transfer qµ = (0, q)
is purely spatial. Following Refs. [46, 47], we decom-
pose p1, p2 into components orthogonal and along q, i.e.,
p1 = p̄1 − q/2, p2 = p̄2 + q/2 with p̄i · q = 0.
As described in Refs. [3–5], major simplifications are

obtained by taking the classical limit early at the level of
the integrand. This is achieved by an expansion in large
angular momentum J # !. We implement this by rescal-
ing q, " → λq,λ", where " is any graviton momentum, and
then expanding in small λ.
The classical limit therefore identifies the soft region,

defined by the loop momentum scaling "µ = (ω, !) ∼
(λ,λ), as encoding classical dynamics. In the spirit of
EFT [9], we simplify the analysis, especially in the pres-
ence of the tail effect at O(G4), by focusing on the po-
tential and (ultrasoft) radiation subregions defined by the
scalings ∼ (vλ,λ) and ∼ (vλ, vλ), respectively. Here and
below we use v to denote the typical velocity of the binary
constituents, corresponding to the small velocity that de-
fines the PN expansion.
In the present work, we focus on the conservative part

described by the potential contribution, and do not in-
clude radiation. This is sufficient for completely spec-
ifying the conservative dynamics through O(G3) [4, 5].
However, at O(G4), radiative effects contribute to con-
servative dynamics via the tail effect [41]. Since the po-
tential and radiation contributions overlap, this intro-
duces scheme-dependence and IR divergence [44]. We use
conventional dimensional regularization, where the am-
plitudes, including graviton polarizations, are uniformly
continued into D = 4− 2ε dimensions.
Amplitude-Action Relation. Conservative binary dynam-
ics is fully encoded in the four-point amplitude M(q),
truncated to the classical order. There exists another
scalar gauge invariant function which encodes the same
dynamics, namely the radial action, which is defined
as the integral of the radial momentum pr along the
scattering trajectory, Ir(J) ≡

∫

prdr, with appropriate
regularization of the long-distance contribution. Here
we present a simple relation between these two gauge-
invariant quantities, exposed through the EFT intro-
duced in Ref. [3].
In the classical limit, the amplitude at O(Gn) contains

a classical contribution that scales as λn−3 and iteration
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FIG. 1. Generalized unitarity cuts encoding potential-region
contributions to binary dynamics. Ovals represent tree am-
plitudes while exposed lines depict on-shell states. Thin and
thick lines denote gravitons and massive scalars, respectively.

contributions that scale as λn−2,λn−1, · · · ,λ−2. The lat-
ter correspond to iterations of lower-order amplitudes,
are IR divergent, and cancel in physical observables. Al-
though the full amplitude is invariant, the choice of pole
structure of the iterations is not unique and the classical
part is modified accordingly. Previously this was cho-
sen to align with the matter energy poles in the EFT for
direct cancellation without explicit evaluation [3]. This
choice also revealed a connection between the classical
amplitude and the local COM momentum in isotropic
gauge, first observed in [4, 5] and later proven in [32, 36].
In the present analysis, we instead expand the mat-

ter poles about the momentum component along ẑ, the
direction of the spatial component of p̄1. Inspired by
the eikonal approximation [48], this prescription reveals
a gauge-invariant “amplitude-action relation”

iM(q) =

∫

J

(

eiIr(J) − 1
)

, (1)

between the amplitude M(q) and the radial action Ir(J).
The classical part of the amplitude then corresponds to
the term linear in Ir(J), given by

Ĩr(q) =

∫

J
Ir(J) ≡ 4E|p|

∫

µ−2εdD−2b eiq·b Ir(J) , (2)

where p is the spatial momentum, E is the total energy,
|b| = J/|p| is the impact parameter in the COM frame,
and µ is the renormalization scale. As will be shown
elsewhere [49], terms higher order in Ir(J) in the relation
(1) have the following structure under our prescription

∫

J

(iIr(J))n

n!
= i

∫

!

Ĩr(!1) . . . Ĩr(!n)

Z1 . . . Zn−1
, (3)

Zj = −4E|p|
(

(!1 + !2 + · · ·+ !j) · ẑ + i0
)

,

where
∫

!
≡

∫
∏n

i=1
dD−1!i
(2π)D−1 (2π)D−1δ(

∑n
j=1 !j − q) and

we only keep the leading classical expansion in the nu-
merator of Eq. (3). Crucially, we manifest the pole struc-
ture in Zj when computing the amplitude such that the
classical part can be isolated and iterations can be safely
dropped without explicitly evaluating them, following the
path of Ref. [3]. With our prescription, we avoid track-
ing such terms, which is necessary in standard eikonal
exponentiation [48].

There are eight classical cuts:
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organization of the amplitude into classical and iteration
pieces, distinct from that of Refs. [3–5, 36]. It is well
known that the radial action is also gauge-invariant and
encodes the dynamics of both bound and unbound orbits
(see e.g. Refs. [36, 39, 45]).
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compact objects, described by the four-point amplitude,
M(q), of gravitationally interacting minimally-coupled
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As described in Refs. [3–5], major simplifications are

obtained by taking the classical limit early at the level of
the integrand. This is achieved by an expansion in large
angular momentum J # !. We implement this by rescal-
ing q, " → λq,λ", where " is any graviton momentum, and
then expanding in small λ.
The classical limit therefore identifies the soft region,

defined by the loop momentum scaling "µ = (ω, !) ∼
(λ,λ), as encoding classical dynamics. In the spirit of
EFT [9], we simplify the analysis, especially in the pres-
ence of the tail effect at O(G4), by focusing on the po-
tential and (ultrasoft) radiation subregions defined by the
scalings ∼ (vλ,λ) and ∼ (vλ, vλ), respectively. Here and
below we use v to denote the typical velocity of the binary
constituents, corresponding to the small velocity that de-
fines the PN expansion.
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described by the potential contribution, and do not in-
clude radiation. This is sufficient for completely spec-
ifying the conservative dynamics through O(G3) [4, 5].
However, at O(G4), radiative effects contribute to con-
servative dynamics via the tail effect [41]. Since the po-
tential and radiation contributions overlap, this intro-
duces scheme-dependence and IR divergence [44]. We use
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plitudes, including graviton polarizations, are uniformly
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ics is fully encoded in the four-point amplitude M(q),
truncated to the classical order. There exists another
scalar gauge invariant function which encodes the same
dynamics, namely the radial action, which is defined
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contributions to binary dynamics. Ovals represent tree am-
plitudes while exposed lines depict on-shell states. Thin and
thick lines denote gravitons and massive scalars, respectively.

contributions that scale as λn−2,λn−1, · · · ,λ−2. The lat-
ter correspond to iterations of lower-order amplitudes,
are IR divergent, and cancel in physical observables. Al-
though the full amplitude is invariant, the choice of pole
structure of the iterations is not unique and the classical
part is modified accordingly. Previously this was cho-
sen to align with the matter energy poles in the EFT for
direct cancellation without explicit evaluation [3]. This
choice also revealed a connection between the classical
amplitude and the local COM momentum in isotropic
gauge, first observed in [4, 5] and later proven in [32, 36].
In the present analysis, we instead expand the mat-

ter poles about the momentum component along ẑ, the
direction of the spatial component of p̄1. Inspired by
the eikonal approximation [48], this prescription reveals
a gauge-invariant “amplitude-action relation”

iM(q) =

∫

J

(

eiIr(J) − 1
)

, (1)

between the amplitude M(q) and the radial action Ir(J).
The classical part of the amplitude then corresponds to
the term linear in Ir(J), given by

Ĩr(q) =

∫

J
Ir(J) ≡ 4E|p|

∫

µ−2εdD−2b eiq·b Ir(J) , (2)

where p is the spatial momentum, E is the total energy,
|b| = J/|p| is the impact parameter in the COM frame,
and µ is the renormalization scale. As will be shown
elsewhere [49], terms higher order in Ir(J) in the relation
(1) have the following structure under our prescription

∫

J

(iIr(J))n

n!
= i

∫

!

Ĩr(!1) . . . Ĩr(!n)

Z1 . . . Zn−1
, (3)

Zj = −4E|p|
(
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)

,

where
∫
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≡

∫
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i=1
dD−1!i
(2π)D−1 (2π)D−1δ(

∑n
j=1 !j − q) and

we only keep the leading classical expansion in the nu-
merator of Eq. (3). Crucially, we manifest the pole struc-
ture in Zj when computing the amplitude such that the
classical part can be isolated and iterations can be safely
dropped without explicitly evaluating them, following the
path of Ref. [3]. With our prescription, we avoid track-
ing such terms, which is necessary in standard eikonal
exponentiation [48].

M
<latexit sha1_base64="8+jIyEg/EtMGV1AciCa3xupclTc=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoYD+gDWWy3bRLN5u4uxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nirIGjUWs2gFqJrhkDcONYO1EMYwCwVrB6Gbqt56Y0jyWD2acMD/CgeQhp2is1M66FAW5m/RKZbfizkCWiZeTMuSo90pf3X5M04hJQwVq3fHcxPgZKsOpYJNiN9UsQTrCAetYKjFi2s9m907IqVX6JIyVLWnITP09kWGk9TgKbGeEZqgXvan4n9dJTXjlZ1wmqWGSzheFqSAmJtPnSZ8rRo0YW4JUcXsroUNUSI2NqGhD8BZfXibNasU7r1TvL8q16zyOAhzDCZyBB5dQg1uoQwMoCHiGV3hzHp0X5935mLeuOPnMEfyB8/kDtGWPvw==</latexit>

mmmrk.u.at
t.tn m.IHmm.HmiHmHm

i f.itiiHeiHei

ftp.i.is

iftar

i i ifr ke t

t.byi e

Mio

(
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(
<latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit>

2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Obtain from differential equations
Parra-Martinez, Ruf, Zeng

I ⇠ 1 + v2 + v4 + v6 + · · ·
<latexit sha1_base64="rrf3th67n24+DKMbAKWO0LGtuIw=">AAACGXicbVBNS8MwGE7n15xfVY9egkMQlNHOoR6HXvQ2wX3AWkeaZltYmpYkHYyyv+HFv+LFgyIe9eS/Me160M0H8uThed+X5H28iFGpLOvbKCwtr6yuFddLG5tb2zvm7l5LhrHApIlDFoqOhyRhlJOmooqRTiQICjxG2t7oOq23x0RIGvJ7NYmIG6ABp32KkdJWz7QSByMGb6fQOYWOpEF62/AEjh+qGdcyPtfsYD9UsmeWrYqVAS4KOxdlkKPRMz8dP8RxQLjCDEnZta1IuQkSimJGpiUnliRCeIQGpKslRwGRbpJtNoVH2vFhPxT6cAUz9/dEggIpJ4GnOwOkhnK+lpr/1bqx6l+6CeVRrAjHs4f6MYMqhGlM0KeCYMUmWiAsqP4rxEMkEFY6zJIOwZ5feVG0qhX7rFK9q5XrV3kcRXAADsExsMEFqIMb0ABNgMEjeAav4M14Ml6Md+Nj1low8pl98AfG1w9O45wf</latexit>

Boundary condition from NR integration

Z
d!1

2⇡

d!2

2⇡

d!3

2⇡
I(!1,!2,!3) =

X
Si ResiI(!1,!2,!3)

<latexit sha1_base64="Nul2q6bwFPReuLTzN9HrTbqDL8I="></latexit>

=<latexit sha1_base64="MWbL6R2hZsQThSAdMNvF0orSXwY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2UK/XLUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP44bjMU=</latexit>

5

24
<latexit sha1_base64="QlydvZHvmhw9j5dwwbRZlSyw3Bc=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHYRo0eiF4+YyCMCIbPDLEyYnd3M9JqQDX/hxYPGePVvvPk3DrAHBSvppFLVne4uP5bCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiGW+wSEa67VPDpVC8gQIlb8ea09CXvOWPb2d+64lrIyL1gJOY90I6VCIQjKKVHruBpuwyrVSn/WLJLbtzkFXiZaQEGer94ld3ELEk5AqZpMZ0PDfGXko1Cib5tNBNDI8pG9Mh71iqaMhNL51fPCVnVhmQINK2FJK5+nsipaExk9C3nSHFkVn2ZuJ/XifB4LqXChUnyBVbLAoSSTAis/fJQGjOUE4soUwLeythI2pDQBtSwYbgLb+8SpqVsndRrtxXS7WbLI48nMApnIMHV1CDO6hDAxgoeIZXeHOM8+K8Ox+L1pyTzRzDHzifP+2VkG0=</latexit>

1

8
<latexit sha1_base64="+P2yIsKYBZMLwuw7wKtASXKQnd0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0w8VZV59UK64VXcBsk68nFQgR3NQ/uoPY5ZGKA0TVOue5ybGz6gynAmclfqpxoSyCR1hz1JJI9R+tjh3Ri6sMiRhrGxJQxbq74mMRlpPo8B2RtSM9ao3F//zeqkJ637GZZIalGy5KEwFMTGZ/06GXCEzYmoJZYrbWwkbU5uAsQmVbAje6svrpF2relfV2sN1pXGbx1GEMziHS/DgBhpwD01oAYMJPMMrvDmJ8+K8Ox/L1oKTz5zCHzifP7JljyU=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>



2

simple gauge-invariant relation between the conservative
scattering amplitude and the radial action based on a re-
organization of the amplitude into classical and iteration
pieces, distinct from that of Refs. [3–5, 36]. It is well
known that the radial action is also gauge-invariant and
encodes the dynamics of both bound and unbound orbits
(see e.g. Refs. [36, 39, 45]).
Classical Dynamics from Scattering Amplitudes. We
focus on conservative two-body dynamics for spinless
compact objects, described by the four-point amplitude,
M(q), of gravitationally interacting minimally-coupled
massive scalars. The two incoming particles of momenta
p1, p2 have masses m1,m2, and we define σ ≡ p1·p2

m1m2
in

mostly minus signature. We work in the center-of-mass
(COM) frame where the momentum transfer qµ = (0, q)
is purely spatial. Following Refs. [46, 47], we decom-
pose p1, p2 into components orthogonal and along q, i.e.,
p1 = p̄1 − q/2, p2 = p̄2 + q/2 with p̄i · q = 0.
As described in Refs. [3–5], major simplifications are

obtained by taking the classical limit early at the level of
the integrand. This is achieved by an expansion in large
angular momentum J # !. We implement this by rescal-
ing q, " → λq,λ", where " is any graviton momentum, and
then expanding in small λ.
The classical limit therefore identifies the soft region,

defined by the loop momentum scaling "µ = (ω, !) ∼
(λ,λ), as encoding classical dynamics. In the spirit of
EFT [9], we simplify the analysis, especially in the pres-
ence of the tail effect at O(G4), by focusing on the po-
tential and (ultrasoft) radiation subregions defined by the
scalings ∼ (vλ,λ) and ∼ (vλ, vλ), respectively. Here and
below we use v to denote the typical velocity of the binary
constituents, corresponding to the small velocity that de-
fines the PN expansion.
In the present work, we focus on the conservative part

described by the potential contribution, and do not in-
clude radiation. This is sufficient for completely spec-
ifying the conservative dynamics through O(G3) [4, 5].
However, at O(G4), radiative effects contribute to con-
servative dynamics via the tail effect [41]. Since the po-
tential and radiation contributions overlap, this intro-
duces scheme-dependence and IR divergence [44]. We use
conventional dimensional regularization, where the am-
plitudes, including graviton polarizations, are uniformly
continued into D = 4− 2ε dimensions.
Amplitude-Action Relation. Conservative binary dynam-
ics is fully encoded in the four-point amplitude M(q),
truncated to the classical order. There exists another
scalar gauge invariant function which encodes the same
dynamics, namely the radial action, which is defined
as the integral of the radial momentum pr along the
scattering trajectory, Ir(J) ≡

∫

prdr, with appropriate
regularization of the long-distance contribution. Here
we present a simple relation between these two gauge-
invariant quantities, exposed through the EFT intro-
duced in Ref. [3].
In the classical limit, the amplitude at O(Gn) contains

a classical contribution that scales as λn−3 and iteration
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FIG. 1. Generalized unitarity cuts encoding potential-region
contributions to binary dynamics. Ovals represent tree am-
plitudes while exposed lines depict on-shell states. Thin and
thick lines denote gravitons and massive scalars, respectively.

contributions that scale as λn−2,λn−1, · · · ,λ−2. The lat-
ter correspond to iterations of lower-order amplitudes,
are IR divergent, and cancel in physical observables. Al-
though the full amplitude is invariant, the choice of pole
structure of the iterations is not unique and the classical
part is modified accordingly. Previously this was cho-
sen to align with the matter energy poles in the EFT for
direct cancellation without explicit evaluation [3]. This
choice also revealed a connection between the classical
amplitude and the local COM momentum in isotropic
gauge, first observed in [4, 5] and later proven in [32, 36].
In the present analysis, we instead expand the mat-

ter poles about the momentum component along ẑ, the
direction of the spatial component of p̄1. Inspired by
the eikonal approximation [48], this prescription reveals
a gauge-invariant “amplitude-action relation”

iM(q) =

∫

J

(

eiIr(J) − 1
)

, (1)

between the amplitude M(q) and the radial action Ir(J).
The classical part of the amplitude then corresponds to
the term linear in Ir(J), given by

Ĩr(q) =

∫

J
Ir(J) ≡ 4E|p|

∫

µ−2εdD−2b eiq·b Ir(J) , (2)

where p is the spatial momentum, E is the total energy,
|b| = J/|p| is the impact parameter in the COM frame,
and µ is the renormalization scale. As will be shown
elsewhere [49], terms higher order in Ir(J) in the relation
(1) have the following structure under our prescription

∫

J

(iIr(J))n

n!
= i

∫

!

Ĩr(!1) . . . Ĩr(!n)

Z1 . . . Zn−1
, (3)

Zj = −4E|p|
(

(!1 + !2 + · · ·+ !j) · ẑ + i0
)

,

where
∫

!
≡

∫
∏n

i=1
dD−1!i
(2π)D−1 (2π)D−1δ(

∑n
j=1 !j − q) and

we only keep the leading classical expansion in the nu-
merator of Eq. (3). Crucially, we manifest the pole struc-
ture in Zj when computing the amplitude such that the
classical part can be isolated and iterations can be safely
dropped without explicitly evaluating them, following the
path of Ref. [3]. With our prescription, we avoid track-
ing such terms, which is necessary in standard eikonal
exponentiation [48].
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We combine tools from e↵ective field theory and generalized unitarity to construct a map between
on-shell scattering amplitudes and the classical potential for interacting spinless particles. For
general relativity, we obtain analytic expressions for the classical potential of a binary black hole
system at second order in the gravitational constant and all orders in velocity. Our results exactly
match all known results up to fourth post-Newtonian order, and o↵er a simple check of future higher
order calculations. By design, these methods should extend to higher orders in perturbation theory.

I. INTRODUCTION

The theory of scattering amplitudes has revealed
unique insights into the structure of quantum field theory
(QFT) and inspired powerful new tools for calculation.
While phenomenological applications have largely cen-
tered on high-energy colliders, an e↵ort has emerged to
connect the amplitudes program to the physics of gravita-
tional waves, which were recently discovered at LIGO [1].

Unfortunately, any attempt at bridging these subjects
is immediately confounded by the fact that a binary black
hole inspiral is quite dissimilar from black hole scatter-
ing. The latter is a transient interaction of widely sep-
arated black holes which are e↵ectively free before and
after the event. The former describes objects bound in
quasi-circular orbit by a classical conservative potential,
together with the dissipative radiation-reaction force in-
duced by gravitational wave emission.

There is a long history of mapping scattering observ-
ables to the classical gravitational potential, e.g. see
the seminal work of [2, 3] as well as more recent treat-
ments [4–11]. In this paper we unify ideas from e↵ective
field theory (EFT) and generalized unitarity to system-
atize this procedure for a general QFT of spinless parti-
cles [4, 5]. To begin, we construct an EFT for two non-
relativistic (NR) scalars which interact via the classical
potential V . Since the two-particle on-shell amplitudes
in the EFT and full theory are equal, i.e. MEFT = M , we
can determine V order by order in perturbation theory.

Of course, on-shell methods like generalized unitarity
vastly simplify amplitude calculations (see Refs. [12, 13]
and references therein). In this approach, M is expressed
not in terms of Feynman diagrams but rather as a sum
of scalar integrals weighted by scalar integral coe�cients
which are rational functions of the external momenta.

Our main results are summarized in Eq. (23), which re-
casts the coe�cients c of the classical potential in terms of
the scalar integral coe�cients d in a general QFT at lead-
ing and next-to-leading order in the interaction strength.
For general relativity (GR), we obtain Eqs. (26) and (27),
which are new analytic expressions for the potential at
second post-Minkowskian (2PM) order, i.e. atO(G2) and
at all orders in velocity. These equations are physically
equivalent to all state-of-the-art results, which extend to

fourth post-Newtonian (4PN) order [14–16]. Since our
results include information at all orders in the PN ex-
pansion, they may be useful for checking future higher
order calculations. The present work goes beyond pre-
vious calculations of the 2PM amplitude [5, 8, 11] by
deriving an explicit mapping to the 2PM potential.
This work introduces several new methods. First, we

show how calculations are drastically simplified when the
classical limit is taken at the earliest possible stage of the
computation. This is implemented by a simple power
counting scheme in large angular momentum J � 1,
together with a restriction on loop momenta to the so-
called potential region of kinematics. Copious quantum
mechanical contributions are thus truncated at the inte-
grand level while complicated four-dimensional integrals
are reduced to far simpler three-dimensional ones.
Second, we introduce the method of “integrand sub-

traction” to e↵ectively eliminate three-dimensional inte-
grals which can be quite complex due to infrared singu-
larities. In this approach, the di↵erence of the integrands
in the full theory and EFT are similar to those encoun-
tered in NR GR [17, 18] and easily integrate to purely
rational functions of the external kinematics.
Third, we show how gauge-dependent quantities like

the classical potential can be compared by computing
gauge-invariant on-shell scattering amplitudes without
the need for constructing explicit coordinate transforma-
tions or wrangling with equations of motion ambiguities.

II. EFFECTIVE FIELD THEORY

Definition. An EFT for NR scalar fields A and B is
described by the action S =

R
dt (Lkin + Lint), where

Lkin =

Z

k
A†(�k)

✓
i@t �

q
k2 +m2

A

◆
A(k)

+

Z

k
B†(�k)

✓
i@t �

q
k2 +m2

B

◆
B(k) ,

(1)

is the kinetic term and the interaction term is [4]

Lint = �

Z

k,k0
V (k,k0)A†(k0)A(k)B†(�k0)B(�k) .

(2)

L =
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Lkin
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

2

Here
R
k1···kn

=
R

d3k1
(2⇡)3 · · ·

d3kn
(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0

| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k0�k00| ⌧ |k�k0

|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0

|

that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0

|. The resulting hierarchy,
|k � k0

| ⌧ |k|, |k0
|, corresponds to an expansion in large

angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1
/ k � k0

/ �1, (3)

where k,k0
/ 1 + J�1. The first relation holds because

angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0

|
2
/ J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2

�k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0

|, so [4]

V (k,k0) =


|k � k0|2
(c1 + c2|k � k0

|+ · · · ) , (4)

where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
⇣

k2+k02

2

⌘

are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1
While it may seem peculiar to integrate out massless states, the

potential modes are o↵-shell. Moreover, the EFT contains ultra-

soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2
Higher order classical terms odd in  include factors of log |k�k0|.

ward to obtain the Feynman rules,

(k0,k) =
i

k0 �
q

k2 +m2
A,B + i0

,

k k0

-k0-k

= �iV (k,k0) ,

(5)

where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
EAEB

(EA + EB)2
. (7)

Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0
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Classical Limit. The above EFT is obtained from the
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diating near-instantaneous interactions and taking the
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| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
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 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
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bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2

�k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
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Here
R
k1···kn

=
R

d3k1
(2⇡)3 · · ·

d3kn
(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0

| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k0�k00| ⌧ |k�k0

|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0

|

that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0

|. The resulting hierarchy,
|k � k0

| ⌧ |k|, |k0
|, corresponds to an expansion in large

angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1
/ k � k0

/ �1, (3)

where k,k0
/ 1 + J�1. The first relation holds because

angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0

|
2
/ J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2

�k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0

|, so [4]

V (k,k0) =


|k � k0|2
(c1 + c2|k � k0

|+ · · · ) , (4)

where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
⇣

k2+k02

2

⌘

are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1
While it may seem peculiar to integrate out massless states, the

potential modes are o↵-shell. Moreover, the EFT contains ultra-

soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2
Higher order classical terms odd in  include factors of log |k�k0|.

ward to obtain the Feynman rules,

(k0,k) =
i

k0 �
q

k2 +m2
A,B + i0

,

k k0

-k0-k

= �iV (k,k0) ,

(5)

where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
EAEB

(EA + EB)2
. (7)

Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0

/ J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so

MEFT =
1X

i=1

M (i)
EFT =

1X

L=0

ML-loop
EFT , (8)

where M (i)
EFT is at ith order in  and arises from Feynman

diagrams at i� 1 loops and below.
Since pair creation of matter particles is kinematically

forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so

ML-loop
EFT = · · ·

p

-p

k1

-k1

kL

-kL

p0

-p0

. (9)

For convenience, we merge each pair of matter lines into
an e↵ective “two-body propagator”,

�(k) = i

Z
dk0
2⇡

1

k0 �
p

k2 +m2
A

1

E � k0 �
p
k2 +m2

B

=
1

E �
p

k2 +m2
A �

p
k2 +m2

B

,

(10)
where the second line is obtained by closing the contour
in k0 either upwards or downwards in the complex plane.
The contribution at L loops is then

ML-loop
EFT = �

Z

k1···kL

V (p,k1)�(k1) · · ·�(kL)V (kL,p
0)

= �

Z

k1···kL

N
L-loop
EFT

X2
1X

2
2 · · ·X

2
L+1Y1Y2 · · ·YL

,

(11)
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Classical Limit. The above EFT is obtained from the
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diating near-instantaneous interactions and taking the
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|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0
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that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0

|. The resulting hierarchy,
|k � k0

| ⌧ |k|, |k0
|, corresponds to an expansion in large

angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1
/ k � k0

/ �1, (3)

where k,k0
/ 1 + J�1. The first relation holds because

angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0

|
2
/ J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2

�k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0

|, so [4]

V (k,k0) =
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|k � k0|2
(c1 + c2|k � k0
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where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
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are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1
While it may seem peculiar to integrate out massless states, the

potential modes are o↵-shell. Moreover, the EFT contains ultra-

soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2
Higher order classical terms odd in  include factors of log |k�k0|.
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,
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= �iV (k,k0) ,
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where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
EAEB

(EA + EB)2
. (7)

Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0

/ J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so

MEFT =
1X

i=1

M (i)
EFT =

1X

L=0

ML-loop
EFT , (8)

where M (i)
EFT is at ith order in  and arises from Feynman

diagrams at i� 1 loops and below.
Since pair creation of matter particles is kinematically

forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so

ML-loop
EFT = · · ·

p

-p

k1

-k1

kL

-kL

p0

-p0

. (9)

For convenience, we merge each pair of matter lines into
an e↵ective “two-body propagator”,

�(k) = i
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dk0
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p
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1
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p
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B

=
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E �
p
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p
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,

(10)
where the second line is obtained by closing the contour
in k0 either upwards or downwards in the complex plane.
The contribution at L loops is then

ML-loop
EFT = �
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k1···kL

V (p,k1)�(k1) · · ·�(kL)V (kL,p
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Here
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=
R

d3k1
(2⇡)3 · · ·

d3kn
(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0

| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k0�k00| ⌧ |k�k0

|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0

|

that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0

|. The resulting hierarchy,
|k � k0

| ⌧ |k|, |k0
|, corresponds to an expansion in large

angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1
/ k � k0

/ �1, (3)

where k,k0
/ 1 + J�1. The first relation holds because

angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0

|
2
/ J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2

�k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0

|, so [4]

V (k,k0) =


|k � k0|2
(c1 + c2|k � k0

|+ · · · ) , (4)

where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
⇣

k2+k02

2

⌘

are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1
While it may seem peculiar to integrate out massless states, the

potential modes are o↵-shell. Moreover, the EFT contains ultra-

soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2
Higher order classical terms odd in  include factors of log |k�k0|.

ward to obtain the Feynman rules,

(k0,k) =
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A,B + i0

,

k k0

-k0-k

= �iV (k,k0) ,

(5)

where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
EAEB

(EA + EB)2
. (7)

Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0

/ J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so
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M (i)
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ML-loop
EFT , (8)

where M (i)
EFT is at ith order in  and arises from Feynman

diagrams at i� 1 loops and below.
Since pair creation of matter particles is kinematically

forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so

ML-loop
EFT = · · ·

p
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For convenience, we merge each pair of matter lines into
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k1···kn

=
R

d3k1
(2⇡)3 · · ·

d3kn
(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0

| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k0�k00| ⌧ |k�k0

|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0

|

that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0

|. The resulting hierarchy,
|k � k0

| ⌧ |k|, |k0
|, corresponds to an expansion in large

angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1
/ k � k0

/ �1, (3)

where k,k0
/ 1 + J�1. The first relation holds because

angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0
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2
/ J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2

�k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0

|, so [4]
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tributions at ith order in the coupling constant and all
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Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
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| ⌧ mA,B . By definition, these potential
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|. The resulting hierarchy,
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where k,k0
/ 1 + J�1. The first relation holds because

angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0
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bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2

�k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0

|, so [4]

V (k,k0) =


|k � k0|2
(c1 + c2|k � k0

|+ · · · ) , (4)

where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
⇣

k2+k02

2

⌘

are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1
While it may seem peculiar to integrate out massless states, the

potential modes are o↵-shell. Moreover, the EFT contains ultra-

soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2
Higher order classical terms odd in  include factors of log |k�k0|.

ward to obtain the Feynman rules,

(k0,k) =
i

k0 �
q
k2 +m2

A,B + i0
,

k k0

-k0-k

= �iV (k,k0) ,

(5)

where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
EAEB

(EA + EB)2
. (7)

Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0

/ J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so

MEFT =
1X

i=1

M (i)
EFT =

1X

L=0

ML-loop
EFT , (8)

where M (i)
EFT is at ith order in  and arises from Feynman

diagrams at i� 1 loops and below.
Since pair creation of matter particles is kinematically

forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so

ML-loop
EFT = · · ·

p

-p

k1

-k1

kL

-kL

p0

-p0

. (9)

For convenience, we merge each pair of matter lines into
an e↵ective “two-body propagator”,

�(k) = i

Z
dk0
2⇡

1

k0 �
p
k2 +m2

A

1

E � k0 �
p
k2 +m2

B

=
1

E �
p
k2 +m2

A �
p
k2 +m2

B

,

(10)
where the second line is obtained by closing the contour
in k0 either upwards or downwards in the complex plane.
The contribution at L loops is then

ML-loop
EFT = �

Z

k1···kL

V (p,k1)�(k1) · · ·�(kL)V (kL,p
0)

= �

Z

k1···kL

N
L-loop
EFT

X2
1X

2
2 · · ·X

2
L+1Y1Y2 · · ·YL

,

(11)

+
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FIG. 1: At leading PM order, tidal corrections to the scattering amplitude arise from fan diagrams. For an operator composed
of n curvature tensors, this contribution corresponds to an (n � 1)-loop diagram. Thick and thin lines denote matter and
graviton lines while the black dots denote tidal operator insertions.

diagrams order by order in the PM expansion. On the other hand, for a Hamiltonian which is already in isotropic
gauge there exists an extraordinarily simple procedure which bypasses loop integration in favor of solving an algebraic
equation. First discovered in the 3PM calculation of [7, 8] and later proven in [26, 27], this map exploits an elegant
algebraic relation between the amplitude M and the isotropic gauge Hamiltonian H

iso. In the test-particle limit this
relation is

M(p, r) =
1

2E

�
p̄(r)2 � p

2
�
+ iterations , (11)

where p̄(r) is the local momentum at a position r dictated by the conservation of energy equation,

H
iso(p̄(r), r) = E . (12)

The iteration contributions in Eq. (11) are infrared divergent terms defined in the prescription of [6]. These contri-
butions always cancel in any e↵ective field theory matching to extract coe�cients in the Hamiltonian.

Note that in the scattering amplitude M(p, r) we should interpret the quantities E =
p
p2 +m2 and p as the

asymptotic energy and momentum of the test particle and the variable r as the Fourier transform of the three-
momentum transfer q. This di↵ers from H

iso(p, r), where p and r should be interpreted as the time-dependent phase
space coordinates of the test particle.

The upshot here is that the isotropic Hamiltonian and scattering amplitude are trivially related. In particular, we
expand the scattering amplitude as M = M0 + �M1 + O(�2) and solve Eq. (11) and Eq. (12) order by order in �.
This procedure yields the tidally corrected scattering amplitude in the test-particle limit,

M0(p, r) =
1

2E

h
m

2(1� g
iso
rr (r))� E

2
⇣
1 + giso

rr (r)
giso
tt (r)

⌘i
+ iterations

M1(p, r) =
g
iso
rr (r)

g
iso
tt (r)

H
iso
1 (

p
E2 + 2EM0 �m2, r) + iterations ,

(13)

where in the first line we have solved Eq. (12) at zeroth order in the tidal coe�cient using H
iso
0 from Eq. (10). In the

second line we have the leading tidal correction to the amplitude in terms of an abstract H iso
1 which we will compute

explicitly later on.
At leading PM order, the tidal correction to the amplitude is

M1(p, r) = �H
iso
1 (p, r) + higher order in PM , (14)

so as expected the amplitude is exactly the Feynman vertex defined by the isotropic Hamiltonian.

III. LEADING ORDER IN G

In this section we consider the dynamics at leading PM order and leading order in some additional perturbative
correction. Our aim is to compute the perturbed scattering amplitude and Hamiltonian. In such a regime the test-
particle limit encodes complete information about the dynamics at arbitrary mass ratio. This fact is obvious from
the point of view of scattering amplitudes. Consider, for example, tidal corrections at leading PM order. These
contributions are generated by the lowest order loop diagrams which induce classical scattering [7, 8] and enter at
linear order in the tidal coe�cient, corresponding to the “fan diagrams” depicted in Fig. 1. By definition, fan diagrams
do not include matter propagators of the tidally distorted particle. More generally, we will henceforth refer to any
diagram in which all matter propagators are on one side as a fan diagram. As discussed in [6–9], all fan diagrams are
free from infrared divergences or iterations of lower order contributions. In the classical limit we are thus permitted
to drop all recoil e↵ects on the other particle, which can then be represented by a static background.

Test-particle 

in Schwarzschild: …

Test-particle 

with tidal distortion:

12

FIG. 2: To all orders in PM, contributions to the scattering amplitude of a tidally distorted test particle are generated by fan
diagrams. Shown here are examples at one-, two-, and three-loop orders.

i.e. derivatives do not act on H or J .
Earlier, we solved the geodesic equation in Eq. (2) to obtain the Hamiltonian at zeroth order in the tidal coe�cients

H0(p, r, J) in Eq. (5). Since the tidal operator enters algebraically as a mass deformation, we can solve Eq. (2) at
linear order in the tidal coe�cient to obtain

H(p, r, J) =
p

�gtt(f(r))

r

m2 � �O(p, r,H0, J) +
p2� J2

r2

grr(f(r))f 0(r)2 + J2

g⌦(f(r))f(r)2 +O(�2) . (60)

Noting the implicit � dependence in f(r), we then decompose Eq. (60) as H = H0 + �H1 and expand to linear order
in �. Similar to before, any term entering with an explicit factor of � can be simplified since any appearance of
H can be replaced with the point-particle Hamiltonian in the absence of tidal e↵ects, H0. So concretely, the tidal
operator should be evaluated as O(p, r,H0, J) and the di↵eomorphism functions should be evaluated as c(r,H0, J)
and c

0(r,H0, J).
WhileH0(p, r, J) will in general have J dependence we can simplify our calculation by using the isotropic coordinates

in Eq. (9) for the initial metric before applying the di↵eomorphism. We will assume this for the remainder of this
section. By contrast, the tidal Hamiltonian H1(p, r, J) has J dependence even if the initial metric is in isotropic
coordinates. Since H1(p, r, J) is quite complicated we do not write it explicitly here, but the procedure for computing
it is completely mechanical and described above.

In the final step, we solve for the coe�cients cab(r) of the di↵eomorphism to exactly cancel all J dependence in
H1(p, r, J). We immediately find that H1(p, r, J) is a polynomial in J of finite degree, so only a finite number of
terms are needed in the di↵eomorphism in Eq. (58). Demanding that the coe�cient of every positive power of J is
zero then produces a set of di↵erential equations for the coe�cients cab(r) in Eq. (58). These equations can be solved
analytically, yielding closed form expressions for cab(r), which turn out to be rational functions of the radius r.1

Inserting the solved-for di↵eomorphism back into H1(p, r, J) yields the tidal Hamiltonian in isotropic coordinates,

H
iso
1 (p, r) =

g
iso
tt (r)

2H iso
0

O(p, r,H iso
0 , 0) +

"
H

iso
0 g

iso
tt

0
(r)

2gisott (r)
+

p
2
g
iso
tt (r)gisorr

0
(r)

2H iso
0 gisorr (r)

2

#
c(r,H iso

0 , 0) +
p
2
g
iso
tt (r)

H
iso
0 gisorr (r)

c
0(r,H iso

0 , 0) , (61)

where c(r, E, J) and c
0(r, E, J) are defined in Eq. (58) and Eq. (59), and must be solved for to eliminate all J

dependence in H1(p, r, J). Explicit expressions for these quantities will be presented in the examples given below. We
again emphasize that all components of the initial metric are evaluated in isotropic coordinates. Importantly, every
step of this procedure can be performed at all PM orders.

Following the procedure described in Sec. II B, we obtain the scattering amplitude in the test-particle limit,

M1(p, r) =
1

2E

h
g
iso
rr (r)O(

p
E2 + 2EM0 �m2, r, E, 0)� g

iso
rr

0
(r)

⇣
m

2 + E2

giso
tt (r)

⇣
1� giso

rr (r)giso
tt

0
(r)

giso
tt (r)giso

rr
0(r)

⌘⌘
c(r, E, 0)

�2gisorr (r)
⇣
m

2 + E2

giso
tt (r)

⌘
c
0(r, E, 0)

i
+ iteration ,

(62)

together with M0(p, r) as defined in Eq. (13). These results are in the test-particle limit and at all orders in PM, and
are equivalent to the resummation of the Feynman diagrams shown in Fig. 2.

It is straightforward to compute the scattering angle to arbitrarily high PM order from either the Hamiltonian or
the scattering amplitude (see for example [8, 22, 26, 57]). We define the scattering angle as � = �0 + ��1, where �0

arises from minimal gravitational coupling and �1 is the tidal correction at linear order. For �0 we find

�0 =
mR

�
2u2 + 1

�

Ju
+

3⇡m2
R

2
�
5u2 + 4

�

16J2
+

m
3
R

3
�
64u6 + 72u4 + 12u2

� 1
�

12J3u3
+O(R4) , (63)

1 The constants of integration are fixed so that the coe�cients cab(r) do not blow up at large r.
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TABLE IV: Contribution to the scattering amplitude M1 from tidal operators at all PM orders.
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TABLE V: Contribution to the scattering angle �1 from tidal operators at several PM orders.
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Here
R
k1···kn

=
R

d3k1
(2⇡)3 · · ·

d3kn
(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0

| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k0�k00| ⌧ |k�k0

|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0

|

that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0

|. The resulting hierarchy,
|k � k0

| ⌧ |k|, |k0
|, corresponds to an expansion in large

angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1
/ k � k0

/ �1, (3)

where k,k0
/ 1 + J�1. The first relation holds because

angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0

|
2
/ J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2

�k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0

|, so [4]

V (k,k0) =


|k � k0|2
(c1 + c2|k � k0

|+ · · · ) , (4)

where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
⇣

k2+k02

2

⌘

are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1
While it may seem peculiar to integrate out massless states, the

potential modes are o↵-shell. Moreover, the EFT contains ultra-

soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2
Higher order classical terms odd in  include factors of log |k�k0|.

ward to obtain the Feynman rules,

(k0,k) =
i

k0 �
q

k2 +m2
A,B + i0

,

k k0

-k0-k

= �iV (k,k0) ,

(5)

where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
EAEB

(EA + EB)2
. (7)

Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0

/ J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so

MEFT =
1X

i=1

M (i)
EFT =

1X

L=0

ML-loop
EFT , (8)

where M (i)
EFT is at ith order in  and arises from Feynman

diagrams at i� 1 loops and below.
Since pair creation of matter particles is kinematically

forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so

ML-loop
EFT = · · ·
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where the second line is obtained by closing the contour
in k0 either upwards or downwards in the complex plane.
The contribution at L loops is then
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= �
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N
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(11)
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the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
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bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2

�k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
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ants k2, k02, and k ·k0. However, since k2

�k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
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tributions at ith order in the coupling constant and all
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that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1
While it may seem peculiar to integrate out massless states, the

potential modes are o↵-shell. Moreover, the EFT contains ultra-
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are the energies of the incoming particles,
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V (k,k0) is the potential in the center of mass frame.
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full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
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| ⌧ mA,B . By definition, these potential
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|.1 For a classical system, the
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|. The resulting hierarchy,
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Damour [7, 10] . The classical component of any quan-
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where k,k0
/ 1 + J�1. The first relation holds because

angular momentum scales linearly with distance while
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 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0
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ants k2, k02, and k ·k0. However, since k2

�k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
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where M = m1 +m2 is the total mass, ν = m1m2/M2 is
the symmetric mass ratio, µ̃2 = 4πµ2e−γE is the renor-
malization scale in MS scheme. Li2 is the dilogarithm,
and K and E are the complete elliptic integrals of the first
and second kind, respectively. The coefficient functions
hi are collected in Table I.
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TABLE I. Functions specifying the amplitude in Eq. (6).

We emphasize that Eq. (6) uses dimensional regular-
ization with D = 4−2ε and that Ĩr,1, Ĩr,2 and Ĩr,3 are ex-
panded to the classical limit. The tail effect manifests as
a 1/ε IR divergence in the classical term, due to the over-
lap between potential and radiation contributions [42].
Including the latter would cancel this divergence and the
associated scheme dependence, replace µ̃ with a physical
scale, and also add finite terms. Note that the scheme
dependence starts at 4PN and enters only through the
coefficient functions h4, h5, and h6.
The amplitude naturally exposes the simple depen-

dence in the symmetric mass ratio ν, consistent with
Ref. [35]. The leading term Mp

4 agrees with the result
obtained using the Schwarzschild solution [56, 57]. The
next-to-leading terms Mt

4 and Mf
4 overlap with first-

order self-force [35].
As for the O(G3) case, the ultrarelativistic limit of

the conservative result in Eq. (6) does not smoothly
match onto the massless case. The amplitude has a
leading power discontinuity of the form ∼ G4p8|q|(m1 +
m2)/(m1m2), consistent with dimensional analysis. One
can expect this to cancel with radiative effects [54, 58].
Given the relation in Eq. (1), it is straightforward to

derive the radial action from the classical term in Eq. (6)
via inverting Eq. (2)
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which inherits the simple mass dependence from the am-
plitude [19, 35]. Moreover, we have checked that Ir,1, Ir,2
and Ir,3 obtained from the iteration terms in Eq. (6) are
consistent with known results.
The scattering angle is then given by χ = −∂Ir/∂J .

We compare to the O(G4) scattering angle obtained from
potential contributions to the Hamiltonian up to 5PN,
given in Eqs. (21)–(26) of [59] and Eq. (5) of [60]. We find

4

M4(q) = G4M7ν2|q|
(

q2

4
1

3 µ̃2

)−3ε

π2

[

Mp
4 + ν

(

Mt
4

ε
+Mf

4

)]

+

∫

!
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TABLE I. Functions specifying the amplitude in Eq. (6).

We emphasize that Eq. (6) uses dimensional regular-
ization with D = 4−2ε and that Ĩr,1, Ĩr,2 and Ĩr,3 are ex-
panded to the classical limit. The tail effect manifests as
a 1/ε IR divergence in the classical term, due to the over-
lap between potential and radiation contributions [42].
Including the latter would cancel this divergence and the
associated scheme dependence, replace µ̃ with a physical
scale, and also add finite terms. Note that the scheme
dependence starts at 4PN and enters only through the
coefficient functions h4, h5, and h6.
The amplitude naturally exposes the simple depen-

dence in the symmetric mass ratio ν, consistent with
Ref. [35]. The leading term Mp

4 agrees with the result
obtained using the Schwarzschild solution [56, 57]. The
next-to-leading terms Mt

4 and Mf
4 overlap with first-

order self-force [35].
As for the O(G3) case, the ultrarelativistic limit of

the conservative result in Eq. (6) does not smoothly
match onto the massless case. The amplitude has a
leading power discontinuity of the form ∼ G4p8|q|(m1 +
m2)/(m1m2), consistent with dimensional analysis. One
can expect this to cancel with radiative effects [54, 58].
Given the relation in Eq. (1), it is straightforward to

derive the radial action from the classical term in Eq. (6)
via inverting Eq. (2)
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which inherits the simple mass dependence from the am-
plitude [19, 35]. Moreover, we have checked that Ir,1, Ir,2
and Ir,3 obtained from the iteration terms in Eq. (6) are
consistent with known results.
The scattering angle is then given by χ = −∂Ir/∂J .

We compare to the O(G4) scattering angle obtained from
potential contributions to the Hamiltonian up to 5PN,
given in Eqs. (21)–(26) of [59] and Eq. (5) of [60]. We find
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where M = m1 +m2 is the total mass, ν = m1m2/M2 is
the symmetric mass ratio, µ̃2 = 4πµ2e−γE is the renor-
malization scale in MS scheme. Li2 is the dilogarithm,
and K and E are the complete elliptic integrals of the first
and second kind, respectively. The coefficient functions
hi are collected in Table I.
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)
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h12 =
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2(σ2 − 1)
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TABLE I. Functions specifying the amplitude in Eq. (6).

We emphasize that Eq. (6) uses dimensional regular-
ization with D = 4−2ε and that Ĩr,1, Ĩr,2 and Ĩr,3 are ex-
panded to the classical limit. The tail effect manifests as
a 1/ε IR divergence in the classical term, due to the over-
lap between potential and radiation contributions [42].
Including the latter would cancel this divergence and the
associated scheme dependence, replace µ̃ with a physical
scale, and also add finite terms. Note that the scheme
dependence starts at 4PN and enters only through the
coefficient functions h4, h5, and h6.
The amplitude naturally exposes the simple depen-

dence in the symmetric mass ratio ν, consistent with
Ref. [35]. The leading term Mp

4 agrees with the result
obtained using the Schwarzschild solution [56, 57]. The
next-to-leading terms Mt

4 and Mf
4 overlap with first-

order self-force [35].
As for the O(G3) case, the ultrarelativistic limit of

the conservative result in Eq. (6) does not smoothly
match onto the massless case. The amplitude has a
leading power discontinuity of the form ∼ G4p8|q|(m1 +
m2)/(m1m2), consistent with dimensional analysis. One
can expect this to cancel with radiative effects [54, 58].
Given the relation in Eq. (1), it is straightforward to

derive the radial action from the classical term in Eq. (6)
via inverting Eq. (2)
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(
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, (7)

which inherits the simple mass dependence from the am-
plitude [19, 35]. Moreover, we have checked that Ir,1, Ir,2
and Ir,3 obtained from the iteration terms in Eq. (6) are
consistent with known results.
The scattering angle is then given by χ = −∂Ir/∂J .

We compare to the O(G4) scattering angle obtained from
potential contributions to the Hamiltonian up to 5PN,
given in Eqs. (21)–(26) of [59] and Eq. (5) of [60]. We find
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where M = m1 +m2 is the total mass, ν = m1m2/M2 is
the symmetric mass ratio, µ̃2 = 4πµ2e−γE is the renor-
malization scale in MS scheme. Li2 is the dilogarithm,
and K and E are the complete elliptic integrals of the first
and second kind, respectively. The coefficient functions
hi are collected in Table I.

h1 =
1151 − 3336σ + 3148σ2

− 912σ3 + 339σ4
− 552σ5 + 210σ6

12(σ2 − 1)

h2 =
1
2
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)
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1759− 4768σ + 3407σ2
− 1316σ3 + 957σ4

− 672σ5 + 341σ6 + 100σ7
)
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1

24(σ2 − 1)2
(

1237 + 7959σ − 25183σ2 + 12915σ3 + 18102σ4

− 12105σ5
− 9572σ6 + 2973σ7 + 5816σ8

− 2046σ9
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)
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− 140σ9

)

h9 =
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− 420σ3 + 30σ4

− 25σ6
)

h10 = 2
(

27 + 90σ2 + 35σ4
)

h11 = 20 + 111σ2 + 30σ4
− 25σ6

h12 =
834 + 2095σ + 1200σ2
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h13 = −
1183 + 2929σ + 2660σ2 + 1200σ3
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TABLE I. Functions specifying the amplitude in Eq. (6).

We emphasize that Eq. (6) uses dimensional regular-
ization with D = 4−2ε and that Ĩr,1, Ĩr,2 and Ĩr,3 are ex-
panded to the classical limit. The tail effect manifests as
a 1/ε IR divergence in the classical term, due to the over-
lap between potential and radiation contributions [42].
Including the latter would cancel this divergence and the
associated scheme dependence, replace µ̃ with a physical
scale, and also add finite terms. Note that the scheme
dependence starts at 4PN and enters only through the
coefficient functions h4, h5, and h6.
The amplitude naturally exposes the simple depen-

dence in the symmetric mass ratio ν, consistent with
Ref. [35]. The leading term Mp

4 agrees with the result
obtained using the Schwarzschild solution [56, 57]. The
next-to-leading terms Mt

4 and Mf
4 overlap with first-

order self-force [35].
As for the O(G3) case, the ultrarelativistic limit of

the conservative result in Eq. (6) does not smoothly
match onto the massless case. The amplitude has a
leading power discontinuity of the form ∼ G4p8|q|(m1 +
m2)/(m1m2), consistent with dimensional analysis. One
can expect this to cancel with radiative effects [54, 58].
Given the relation in Eq. (1), it is straightforward to

derive the radial action from the classical term in Eq. (6)
via inverting Eq. (2)

Ir,4(J) =−
G4M7ν2πp2

8EJ3

(

4µ̃2e2γEJ2

p2

)4ε

×
[

Mp
4 + ν

(

Mt
4

ε
+Mf

4 − 14Mt
4

)]

, (7)

which inherits the simple mass dependence from the am-
plitude [19, 35]. Moreover, we have checked that Ir,1, Ir,2
and Ir,3 obtained from the iteration terms in Eq. (6) are
consistent with known results.
The scattering angle is then given by χ = −∂Ir/∂J .

We compare to the O(G4) scattering angle obtained from
potential contributions to the Hamiltonian up to 5PN,
given in Eqs. (21)–(26) of [59] and Eq. (5) of [60]. We find

M ⇠ G4p8|q| (m1 +m2)
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Ĩ4r,1
Z1Z2Z3

+

∫

!
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where M = m1 +m2 is the total mass, ν = m1m2/M2 is
the symmetric mass ratio, µ̃2 = 4πµ2e−γE is the renor-
malization scale in MS scheme. Li2 is the dilogarithm,
and K and E are the complete elliptic integrals of the first
and second kind, respectively. The coefficient functions
hi are collected in Table I.
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TABLE I. Functions specifying the amplitude in Eq. (6).

We emphasize that Eq. (6) uses dimensional regular-
ization with D = 4−2ε and that Ĩr,1, Ĩr,2 and Ĩr,3 are ex-
panded to the classical limit. The tail effect manifests as
a 1/ε IR divergence in the classical term, due to the over-
lap between potential and radiation contributions [42].
Including the latter would cancel this divergence and the
associated scheme dependence, replace µ̃ with a physical
scale, and also add finite terms. Note that the scheme
dependence starts at 4PN and enters only through the
coefficient functions h4, h5, and h6.
The amplitude naturally exposes the simple depen-

dence in the symmetric mass ratio ν, consistent with
Ref. [35]. The leading term Mp

4 agrees with the result
obtained using the Schwarzschild solution [56, 57]. The
next-to-leading terms Mt

4 and Mf
4 overlap with first-

order self-force [35].
As for the O(G3) case, the ultrarelativistic limit of

the conservative result in Eq. (6) does not smoothly
match onto the massless case. The amplitude has a
leading power discontinuity of the form ∼ G4p8|q|(m1 +
m2)/(m1m2), consistent with dimensional analysis. One
can expect this to cancel with radiative effects [54, 58].
Given the relation in Eq. (1), it is straightforward to

derive the radial action from the classical term in Eq. (6)
via inverting Eq. (2)
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which inherits the simple mass dependence from the am-
plitude [19, 35]. Moreover, we have checked that Ir,1, Ir,2
and Ir,3 obtained from the iteration terms in Eq. (6) are
consistent with known results.
The scattering angle is then given by χ = −∂Ir/∂J .

We compare to the O(G4) scattering angle obtained from
potential contributions to the Hamiltonian up to 5PN,
given in Eqs. (21)–(26) of [59] and Eq. (5) of [60]. We find
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where M = m1 +m2 is the total mass, ν = m1m2/M2 is
the symmetric mass ratio, µ̃2 = 4πµ2e−γE is the renor-
malization scale in MS scheme. Li2 is the dilogarithm,
and K and E are the complete elliptic integrals of the first
and second kind, respectively. The coefficient functions
hi are collected in Table I.

h1 =
1151 − 3336σ + 3148σ2

− 912σ3 + 339σ4
− 552σ5 + 210σ6

12(σ2 − 1)

h2 =
1
2

(

5− 76σ + 150σ2
− 60σ3

− 35σ4
)

h3 = σ

(

−3 + 2σ2
)

4(σ2 − 1)

(

11− 30σ2 + 35σ4
)

h4 =
1

144
(

σ2 − 1)2σ7
(−45 + 207σ2

− 1471σ4 + 13349σ6

− 37566σ7 + 104753σ8
− 12312σ9

− 102759σ10
− 105498σ11

+ 134745σ12 + 83844σ13
− 101979σ14 + 13644σ15 + 10800σ16

)

h5 =
1

4(σ2 − 1)

(

1759− 4768σ + 3407σ2
− 1316σ3 + 957σ4

− 672σ5 + 341σ6 + 100σ7
)

h6 =
1

24(σ2 − 1)2
(

1237 + 7959σ − 25183σ2 + 12915σ3 + 18102σ4

− 12105σ5
− 9572σ6 + 2973σ7 + 5816σ8

− 2046σ9
)

h7 = 2σ

(

−852− 283σ2
− 140σ4 + 75σ6

)

3(σ2 − 1)

h8 =
σ

8(σ2 − 1)2
(

−304− 99σ + 672σ2 + 402σ3
− 192σ4

− 719σ5

− 416σ6 + 540σ7 + 240σ8
− 140σ9

)

h9 =
1
2

(

52− 532σ + 351σ2
− 420σ3 + 30σ4

− 25σ6
)

h10 = 2
(

27 + 90σ2 + 35σ4
)

h11 = 20 + 111σ2 + 30σ4
− 25σ6

h12 =
834 + 2095σ + 1200σ2

2(σ2 − 1)

h13 = −
1183 + 2929σ + 2660σ2 + 1200σ3

2(σ2 − 1)

h14 =
7
(

169 + 380σ2
)

4(σ − 1)

TABLE I. Functions specifying the amplitude in Eq. (6).

We emphasize that Eq. (6) uses dimensional regular-
ization with D = 4−2ε and that Ĩr,1, Ĩr,2 and Ĩr,3 are ex-
panded to the classical limit. The tail effect manifests as
a 1/ε IR divergence in the classical term, due to the over-
lap between potential and radiation contributions [42].
Including the latter would cancel this divergence and the
associated scheme dependence, replace µ̃ with a physical
scale, and also add finite terms. Note that the scheme
dependence starts at 4PN and enters only through the
coefficient functions h4, h5, and h6.
The amplitude naturally exposes the simple depen-

dence in the symmetric mass ratio ν, consistent with
Ref. [35]. The leading term Mp

4 agrees with the result
obtained using the Schwarzschild solution [56, 57]. The
next-to-leading terms Mt

4 and Mf
4 overlap with first-

order self-force [35].
As for the O(G3) case, the ultrarelativistic limit of

the conservative result in Eq. (6) does not smoothly
match onto the massless case. The amplitude has a
leading power discontinuity of the form ∼ G4p8|q|(m1 +
m2)/(m1m2), consistent with dimensional analysis. One
can expect this to cancel with radiative effects [54, 58].
Given the relation in Eq. (1), it is straightforward to

derive the radial action from the classical term in Eq. (6)
via inverting Eq. (2)

Ir,4(J) =−
G4M7ν2πp2

8EJ3

(

4µ̃2e2γEJ2

p2

)4ε

×
[

Mp
4 + ν

(

Mt
4

ε
+Mf

4 − 14Mt
4

)]

, (7)

which inherits the simple mass dependence from the am-
plitude [19, 35]. Moreover, we have checked that Ir,1, Ir,2
and Ir,3 obtained from the iteration terms in Eq. (6) are
consistent with known results.
The scattering angle is then given by χ = −∂Ir/∂J .

We compare to the O(G4) scattering angle obtained from
potential contributions to the Hamiltonian up to 5PN,
given in Eqs. (21)–(26) of [59] and Eq. (5) of [60]. We find
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where for convenience, the expressions for c1 and c2 in
Ref. [20] are reproduced here with slightly di↵erent nor-
malization and in our current notation. As emphasized
in Ref. [20], the cancellation of IR divergences between

M
(EFT)

3PM
and M3PM depends critically on c1 and c2 and

thus provides a nontrivial check of our calculation.

Consistency checks. Our results pass several highly non-
trivial consistency checks (see Ref. [23] for more details).
First and foremost, we have verified that the 4PN terms
in our Hamiltonian are physically equivalent to known
results up to a canonical coordinate transformation,

(r,p) ! (R,P ) = (A r +B p, C p+D r)

A = 1�
Gm⌫

2|r|
+ · · · , B =

G(1� 2/⌫)

4m|r|
p · r + · · · ,

C = 1 +
Gm⌫

2|r|
+ · · · , D = �

Gm⌫

2|r|3
p · r + · · · ,

(12)
with ellipses denoting higher order corrections entering
as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [35, 36]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, {r,p} =
{R,P } = 1 and other vanishing ones , in the spirit of
Ref. [37]. We verify that within this space of canonical
transformations exists a subspace which maps our Hamil-
tonian in Eq. (11) to the one in the literature, e.g. as sum-
marized in Eq.(8.41) of Ref. [9], up to the intersection of
3PM and 4PN accuracy.

Second, applying the methods of Ref. [20] we have
checked that the full-theory amplitude M3PM in Eq. (8)

is identical to the amplitude M
(EFT)

3PM
computed from the

conservative Hamiltonian in Ref. [9] up to 4PN accuracy.
Third, we have extracted from our Hamiltonian the

coordinate invariant energy of a circular orbit as a func-
tion of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].

Fourth, we have extracted from our Hamiltonian the
3PM-accurate scattering angle for an unbound orbit in
center of mass frame:

� = �
m�⇠fM1

2⇡L|p|
�

m�⇠fM2

2⇡L2
+

2m�⇠|p|fM3

⇡L3

�
m

2
�
2
⇠
2fM1

fM2

2⇡3L3|p|
+

m
3
�
3
⇠
3fM3

1

96⇡3L3|p|3
, (13)

where the angular momentum L = b|p|, b is the im-

pact parameter and the fMi are the IR finite pieces of
the PM amplitudes with their q dependence removed:
fM1 = q2

M
0

1PM
, fM2 = |q|M

0

2PM
, fM3 = M

0

3PM
/ log q2.

Here the prime denotes that these are the IR finite pieces
defined in our subtraction, e.g. for 3PM this is given by
the log q2 term in Eq. (8); for 1PM and 2PM see Ref. [20].
Truncated to 4PN order, this expression is in agreement
with known results [38].
Last but not least, in the probe limit m1 ⌧ m2, our

result exactly coincides with the Hamiltonian for a point
particle in a Schwarzschild background to O(G3) and all
orders in velocity, e.g. as given in Eq.(8) of Ref. [39].

Conclusions. We have presented the first computation
of the 3PM amplitude for classical scattering of gravita-
tionally interacting massive spinless particles. From this
amplitude we have extracted the corresponding conser-
vative Hamiltonian for binary dynamics at 3PM order.
Our results leave many avenues for future work, e.g. ex-

tending to higher orders in the PM expansion, incorpo-
rating important phenomena like spin, radiation, finite-
size e↵ects, and connecting our results to the e↵ective
one-body formalism [3, 11, 34, 40].
The remarkable simplicity of the 3PM amplitude in

Eq. (8) and potential in Eq. (11) bodes well for future
progress. Moreover, since the amplitude and EFT meth-
ods employed in this paper are far from exhausted, we
believe that the progress we have reported marks only
the beginning.
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Here we use center of mass coordinates where the incom-
ing and outgoing particle momenta are ±p and ±(p�q),
respectively, and have included the nonrelativistic nor-

malization factor, 1/4E1E2, where E1,2 =
q

p2 +m
2

1,2.

We also define the total mass m = m1 + m2, the
symmetric mass ratio ⌫ = m1m2/m

2, the total energy
E = E1 +E2, the symmetric energy ratio ⇠ = E1E2/E

2,
the energy-mass ratio � = E/m, and the relativistic
kinematic invariant � = p1·p2

m1m2
. Note that the sinh�1

factor is proportional to the sum of particle rapidities,
tanh�1

|p|/E1,2.

Eq. (8) only includes q-dependent terms which persist
in the classical limit. In particular, the log q2 term ulti-
mately feeds into the conservative Hamiltonian through
the Fourier transform

⇥
log q2

⇤
FT

= �
1

2⇡|r|3 , while the re-
maining IR divergent piece cancels in the EFT matching.
For completeness, we present expressions for the latter in
dimensional regularization, keeping only the classically

relevant terms in the small-|q| expansion,
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dropping terms at O(|q|0) or higher and expressing the
integrands in the notation of Ref. [20]. While the O(✏)
contributions to the coe�cients of these integrals are
needed to obtain the full amplitude in dimensional reg-
ularization, our integrand-level IR subtraction bypasses
this issue.
The Hamiltonian is extracted from the amplitude us-

ing the EFT method developed in Refs. [20, 21, 33] (see
Ref. [34] for another approach). In particular, consider
massive spinless particles interacting via the center of
mass Hamiltonian

H(p, r) =
q
p2 +m

2

1
+
q

p2 +m
2

2
+ V (p, r),

V (p, r) =
1X

i=1

ci(p
2)

✓
G

|r|

◆i

,

(10)

where r is the distance vector between particles and i

runs over the PM expansion. Note that the form of
the above Hamiltonian implicitly fixes a gauge in which
terms involving p · r or time derivatives of p are absent.
We then compute the scattering amplitude of massive

scalars, M (EFT) =
P1

i=1
M

(EFT)

iPM
, where M (EFT)

3PM
receives

contributions from diagrams with two or fewer loops de-
pending on c1, c2, and c3. In Ref. [20], the coe�cients c1
and c2 were extracted analytically to all orders in veloc-

ity. Inserting these into M
(EFT)

3PM
e↵ectively implements

the subtraction of iterated contributions. By equating

M
(EFT)

3PM
= M3PM, we solve for the 3PM coe�cient c3.

The main result of the present work is the 3PM poten-
tial, encapsulated by the coe�cients
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mass coordinates where the incoming and outgoing par-
ticle momenta are ±p and ±(p − q), respectively. We
emphasize that M3 includes the nonrelativistic normal-

ization factor, 1/4E1E2, where E1,2 =
√

p2 +m2
1,2. We

also define the total mass m = m1 +m2, the symmetric
mass ratio ν = m1m2/m2, the total energy E = E1+E2,
the symmetric energy ratio ξ = E1E2/E2, the energy-
mass ratio γ = E/m, and the relativistic kinematic in-
variant σ = p1·p2

m1m2
. We emphasize that Eq. (8) is not

valid for m1,2 → 0 since quantum terms of order |q|/m1,2

are dropped, as will be elaborated on in Ref. [25]. Also,
note that the arcsinh factor is proportional to the sum of
particle rapidities, arctanh |p|/E1,2.

Eq. (8) only includes q-dependent terms which persist
in the classical limit. The log q2 term ultimately feeds
into the conservative Hamiltonian through the Fourier
transform

[
log q2

]
FT

= − 1
2π|r|3 . The IR-divergent con-

tributions, parameterized by F1 =
∫
k1

1
X2

1
Y1X2

and F2 =
∫
k1,k2

1
X2

1
Y1X

2
2
Y2X

2
3

in the notation described in Eq.(12)

of Ref. [22], will cancel in the EFT matching.
The Hamiltonian is extracted from the amplitude via

EFT methods developed in Refs. [22, 23, 35] (see Ref. [13]
for another approach). Consider massive spinless parti-
cles interacting via the center-of-mass Hamiltonian

H(p, r) =
√

p2 +m2
1 +

√
p2 +m2

2 + V (p, r),

V (p, r) =
∞∑

i=1

ci(p
2)

(
G

|r|

)i

,
(9)

where r is the distance vector between particles and i la-
bels PM orders. The above Hamiltonian is in a gauge in
which terms involving p·r or time derivatives of p are ab-
sent. We then compute the scattering amplitude of mas-

sive scalars, M(EFT) =
∑∞

i=1 M
(EFT)
i , where M(EFT)

3
comes from diagrams with two or fewer loops that de-
pend on c1, c2, and c3. In Ref. [22], the coefficients c1
and c2 were extracted analytically to all orders in veloc-

ity. Inserting these into M(EFT)
3 effectively implements

the subtraction of iterated contributions. By equating

M(EFT)
3 = M3, we solve for the 3PM coefficient c3.
The main result of the present work is the 3PM poten-

tial, encapsulated in the coefficients

c1 =
ν2m2

γ2ξ

(
1− 2σ2

)
, c2 =
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γ2ξ
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,
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1

12
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2γ6ξ4
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,

(10)

where for convenience, the expressions for c1 and c2 in
Ref. [22] are reproduced here with slightly different nor-
malization and in our current notation. As emphasized
in Ref. [22], the cancellation of IR divergences between

M(EFT)
3 and M3 depends critically on c1 and c2 and thus

provides a nontrivial check of our calculation.
Consistency checks. Our results pass several nontrivial
albeit overlapping consistency checks (see Ref. [25] for
details). First and foremost, we have verified that the
4PN terms in our Hamiltonian are equivalent to known
results up to a canonical coordinate transformation,

(r,p) → (R,P ) = (A r +B p, C p+D r)

A = 1− Gmν

2|r| + · · · , B =
G(1− 2/ν)

4m|r| p · r + · · · ,

C = 1 +
Gmν

2|r| + · · · , D = −Gmν

2|r|3 p · r + · · · ,

(11)

with ellipses denoting higher order corrections entering
as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [36, 37]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, i.e. {r,p} =
{R,P } = 1 with all other brackets vanishing, in the
spirit of Ref. [38]. We verify that within this space of
canonical transformations exists a subspace which maps
our Hamiltonian in Eq. (10) to the one in the literature,
e.g. as summarized in Eq.(8.41) of Ref. [10], up to the
intersection of 3PM and 4PN accuracy.

Second, applying the methods of Ref. [22] we have
checked that the full-theory amplitude M3 in Eq. (8)

is identical to the amplitude M(EFT)
3 computed from the

conservative Hamiltonian in Ref. [10] up to 4PN accu-
racy.

Third, we have extracted from our Hamiltonian the
coordinate invariant energy of a circular orbit as a func-

Hamiltonian
5

agreement including terms that depend on conventional
dimensional regularization, which first enter at 4PN. We
also compare the regularization-scheme-independent π3

terms with the 6PN result in Eq. (8.4) of Ref. [20], and
find agreement. A full comparison would require radia-
tion contributions, which we have not pursued here.
As discussed in Refs. [26, 37, 38], the tail term Mt

4 is
related to the energy loss ∆E from radiation emission,
and we thus identify

∆E =
G3M7ν3πp2

4E2J3
Mt

4 , (8)

in the COM frame. We have compared this to the direct
calculation of the energy loss in Ref. [61] using the for-
malism of Ref. [32], finding agreement. Additional checks

of ∆E are discussed in Ref. [61]. We can also obtain
other observables for bound orbits via analytic continu-
ation [34]; details will be presented elsewhere [47].
Hamiltonian. Following the approach in Ref. [3], we can
construct the two-body Hamiltonian in isotropic gauge

H iso = E1 + E2 +
∞
∑

n=1

Gn(r2µ̃2e2γE )nε

rn
cn(p

2) , (9)

where r is the distance between bodies, and Ei =
√

p2 +m2
i are the energies of the incoming particles.

The O(ε) corrections are relevant when cn(p2) has di-
vergence, which first occurs at O(G4) in isotropic gauge.
The coefficients cn(p2) are determined by matching as
in Refs. [3–5], but using the new pole choice in Eq. (3).
Upon accounting for this we find,

c4 =
M7ν2

4ξE2

[

Mp
4 + ν

(

Mt
4

ε
+Mf

4 − 10Mt
4

)]

+D3

[

E3ξ3

3
c41

]

+D2

[(

E3ξ3

p2
+

Eξ(3ξ − 1)

2

)

c41 − 2E2ξ2c21c2

]

+

(

D +
1

p2

)[

Eξ(2c1c3 + c22) +

(

4ξ − 1

4E
+

2E3ξ3

p4
+

Eξ(3ξ − 1)

p2

)

c41 +

(

(1− 3ξ)−
4E2ξ2

p2

)

c21c2

]

,

(10)

where ξ = E1E2/E2, andD = d
dp2 denotes differentiation

with respect to p2. The lower-order coefficients c1, c2,
and c3 can be found in Eq. (10) of Ref. [4]. The final
explicit result for c4 is included in the ancillary file [62].
Note that the iteration terms in Eq. (6) cancel in this
matching, providing another nontrivial check.
Conclusions. In this letter we applied and extended am-
plitudes and EFT based methods to determine the poten-
tial contribution to binary dynamics at O(G4), offering a
first look at the PM tail effect. It would be interesting to
study closed-orbit observables at O(G4), as was done for
O(G3) [51], and via analytic continuation [34]. The inter-
play with gravitational self-force [23, 24, 35, 36, 50, 63],
the structure of long-distance logarithms at higher or-
ders via renormalization group techniques [38, 40, 64],
and the complete tail contribution in the PM framework
also deserve further study.
Aside from the obvious application to gravitational-

wave physics, our calculation elucidates emerging struc-
tures and identifies new tools. The amplitude-action re-
lation in Eq. (1) greatly clarifies the link between scat-
tering amplitudes and classical mechanics. It is natu-
ral to expect that this structure holds more generally.

Obvious extensions within the PM framework include
spin [50, 52, 65], tidal [53, 57, 66], and radiation [67, 68]
effects. Most excitingly, the methods applied here are
not close to being exhausted.
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agreement including terms that depend on conventional
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terms with the 6PN result in Eq. (8.4) of Ref. [20], and
find agreement. A full comparison would require radia-
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calculation of the energy loss in Ref. [61] using the for-
malism of Ref. [32], finding agreement. Additional checks

of ∆E are discussed in Ref. [61]. We can also obtain
other observables for bound orbits via analytic continu-
ation [34]; details will be presented elsewhere [47].
Hamiltonian. Following the approach in Ref. [3], we can
construct the two-body Hamiltonian in isotropic gauge

H iso = E1 + E2 +
∞
∑

n=1

Gn(r2µ̃2e2γE )nε

rn
cn(p

2) , (9)

where r is the distance between bodies, and Ei =
√

p2 +m2
i are the energies of the incoming particles.

The O(ε) corrections are relevant when cn(p2) has di-
vergence, which first occurs at O(G4) in isotropic gauge.
The coefficients cn(p2) are determined by matching as
in Refs. [3–5], but using the new pole choice in Eq. (3).
Upon accounting for this we find,

c4 =
M7ν2

4ξE2

[

Mp
4 + ν

(

Mt
4

ε
+Mf

4 − 10Mt
4

)]

+D3

[

E3ξ3

3
c41

]

+D2

[(

E3ξ3

p2
+

Eξ(3ξ − 1)

2

)

c41 − 2E2ξ2c21c2

]

+

(

D +
1

p2

)[

Eξ(2c1c3 + c22) +

(

4ξ − 1

4E
+

2E3ξ3

p4
+

Eξ(3ξ − 1)

p2

)

c41 +

(

(1− 3ξ)−
4E2ξ2

p2

)

c21c2

]

,

(10)

where ξ = E1E2/E2, andD = d
dp2 denotes differentiation

with respect to p2. The lower-order coefficients c1, c2,
and c3 can be found in Eq. (10) of Ref. [4]. The final
explicit result for c4 is included in the ancillary file [62].
Note that the iteration terms in Eq. (6) cancel in this
matching, providing another nontrivial check.
Conclusions. In this letter we applied and extended am-
plitudes and EFT based methods to determine the poten-
tial contribution to binary dynamics at O(G4), offering a
first look at the PM tail effect. It would be interesting to
study closed-orbit observables at O(G4), as was done for
O(G3) [51], and via analytic continuation [34]. The inter-
play with gravitational self-force [23, 24, 35, 36, 50, 63],
the structure of long-distance logarithms at higher or-
ders via renormalization group techniques [38, 40, 64],
and the complete tail contribution in the PM framework
also deserve further study.
Aside from the obvious application to gravitational-

wave physics, our calculation elucidates emerging struc-
tures and identifies new tools. The amplitude-action re-
lation in Eq. (1) greatly clarifies the link between scat-
tering amplitudes and classical mechanics. It is natu-
ral to expect that this structure holds more generally.

Obvious extensions within the PM framework include
spin [50, 52, 65], tidal [53, 57, 66], and radiation [67, 68]
effects. Most excitingly, the methods applied here are
not close to being exhausted.
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where for convenience, the expressions for c1 and c2 in
Ref. [20] are reproduced here with slightly di↵erent nor-
malization and in our current notation. As emphasized
in Ref. [20], the cancellation of IR divergences between

M
(EFT)

3PM
and M3PM depends critically on c1 and c2 and

thus provides a nontrivial check of our calculation.

Consistency checks. Our results pass several highly non-
trivial consistency checks (see Ref. [23] for more details).
First and foremost, we have verified that the 4PN terms
in our Hamiltonian are physically equivalent to known
results up to a canonical coordinate transformation,

(r,p) ! (R,P ) = (A r +B p, C p+D r)

A = 1�
Gm⌫

2|r|
+ · · · , B =

G(1� 2/⌫)

4m|r|
p · r + · · · ,

C = 1 +
Gm⌫

2|r|
+ · · · , D = �

Gm⌫

2|r|3
p · r + · · · ,

(12)
with ellipses denoting higher order corrections entering
as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [35, 36]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, {r,p} =
{R,P } = 1 and other vanishing ones , in the spirit of
Ref. [37]. We verify that within this space of canonical
transformations exists a subspace which maps our Hamil-
tonian in Eq. (11) to the one in the literature, e.g. as sum-
marized in Eq.(8.41) of Ref. [9], up to the intersection of
3PM and 4PN accuracy.

Second, applying the methods of Ref. [20] we have
checked that the full-theory amplitude M3PM in Eq. (8)

is identical to the amplitude M
(EFT)

3PM
computed from the

conservative Hamiltonian in Ref. [9] up to 4PN accuracy.
Third, we have extracted from our Hamiltonian the

coordinate invariant energy of a circular orbit as a func-
tion of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].

Fourth, we have extracted from our Hamiltonian the
3PM-accurate scattering angle for an unbound orbit in
center of mass frame:

� = �
m�⇠fM1

2⇡L|p|
�

m�⇠fM2

2⇡L2
+

2m�⇠|p|fM3

⇡L3
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2
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2fM1

fM2

2⇡3L3|p|
+

m
3
�
3
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3fM3

1

96⇡3L3|p|3
, (13)

where the angular momentum L = b|p|, b is the im-

pact parameter and the fMi are the IR finite pieces of
the PM amplitudes with their q dependence removed:
fM1 = q2

M
0

1PM
, fM2 = |q|M

0

2PM
, fM3 = M

0

3PM
/ log q2.

Here the prime denotes that these are the IR finite pieces
defined in our subtraction, e.g. for 3PM this is given by
the log q2 term in Eq. (8); for 1PM and 2PM see Ref. [20].
Truncated to 4PN order, this expression is in agreement
with known results [38].
Last but not least, in the probe limit m1 ⌧ m2, our

result exactly coincides with the Hamiltonian for a point
particle in a Schwarzschild background to O(G3) and all
orders in velocity, e.g. as given in Eq.(8) of Ref. [39].

Conclusions. We have presented the first computation
of the 3PM amplitude for classical scattering of gravita-
tionally interacting massive spinless particles. From this
amplitude we have extracted the corresponding conser-
vative Hamiltonian for binary dynamics at 3PM order.
Our results leave many avenues for future work, e.g. ex-

tending to higher orders in the PM expansion, incorpo-
rating important phenomena like spin, radiation, finite-
size e↵ects, and connecting our results to the e↵ective
one-body formalism [3, 11, 34, 40].
The remarkable simplicity of the 3PM amplitude in

Eq. (8) and potential in Eq. (11) bodes well for future
progress. Moreover, since the amplitude and EFT meth-
ods employed in this paper are far from exhausted, we
believe that the progress we have reported marks only
the beginning.
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agreement including terms that depend on conventional
dimensional regularization, which first enter at 4PN. We
also compare the regularization-scheme-independent π3

terms with the 6PN result in Eq. (8.4) of Ref. [20], and
find agreement. A full comparison would require radia-
tion contributions, which we have not pursued here.
As discussed in Refs. [26, 37, 38], the tail term Mt

4 is
related to the energy loss ∆E from radiation emission,
and we thus identify

∆E =
G3M7ν3πp2

4E2J3
Mt

4 , (8)

in the COM frame. We have compared this to the direct
calculation of the energy loss in Ref. [61] using the for-
malism of Ref. [32], finding agreement. Additional checks

of ∆E are discussed in Ref. [61]. We can also obtain
other observables for bound orbits via analytic continu-
ation [34]; details will be presented elsewhere [47].
Hamiltonian. Following the approach in Ref. [3], we can
construct the two-body Hamiltonian in isotropic gauge

H iso = E1 + E2 +
∞
∑

n=1

Gn(r2µ̃2e2γE )nε

rn
cn(p

2) , (9)

where r is the distance between bodies, and Ei =
√

p2 +m2
i are the energies of the incoming particles.

The O(ε) corrections are relevant when cn(p2) has di-
vergence, which first occurs at O(G4) in isotropic gauge.
The coefficients cn(p2) are determined by matching as
in Refs. [3–5], but using the new pole choice in Eq. (3).
Upon accounting for this we find,

c4 =
M7ν2

4ξE2

[
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where ξ = E1E2/E2, andD = d
dp2 denotes differentiation

with respect to p2. The lower-order coefficients c1, c2,
and c3 can be found in Eq. (10) of Ref. [4]. The final
explicit result for c4 is included in the ancillary file [62].
Note that the iteration terms in Eq. (6) cancel in this
matching, providing another nontrivial check.
Conclusions. In this letter we applied and extended am-
plitudes and EFT based methods to determine the poten-
tial contribution to binary dynamics at O(G4), offering a
first look at the PM tail effect. It would be interesting to
study closed-orbit observables at O(G4), as was done for
O(G3) [51], and via analytic continuation [34]. The inter-
play with gravitational self-force [23, 24, 35, 36, 50, 63],
the structure of long-distance logarithms at higher or-
ders via renormalization group techniques [38, 40, 64],
and the complete tail contribution in the PM framework
also deserve further study.
Aside from the obvious application to gravitational-

wave physics, our calculation elucidates emerging struc-
tures and identifies new tools. The amplitude-action re-
lation in Eq. (1) greatly clarifies the link between scat-
tering amplitudes and classical mechanics. It is natu-
ral to expect that this structure holds more generally.

Obvious extensions within the PM framework include
spin [50, 52, 65], tidal [53, 57, 66], and radiation [67, 68]
effects. Most excitingly, the methods applied here are
not close to being exhausted.
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NEW! from Alessandra Buonanno’s recent talk at GGI

Comparison between PMs and NR binding energies

•2-body non-spinning (local-in-time) Hamiltonian at 4PM order computed using scattering-amplitude methods.
(Cheung et al. 18, Bern et al. 19,  Bern et al. 21)

•Crucial to push PM calculations at higher order, and resum them in EOB formalism.
(Damour 19, Antonelli,  AB, Steinhoff, van de Meent & Vines 19, Khalil,  AB, Steinhoff & Vines in prep 21)

current (uncalibrated) Hamiltonian
used to build EOBNR waveform 
models for LIGO/Virgo

binding energy
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Encouraging (local-in-time) 4PM results!

checks:
Bini, Damour, Geralico 2020
Blümlein, Maier, Marquard, Schäfer 2020

Blümlein, Maier, Marquard, Schäfer 2021
Dlapa, Kälin, Liu, Porto 2021



Gravitational wave science has opened up a new direction in 
theoretical high energy physics.

Classical binary dynamics has the hallmarks of a great 
problem in theoretical high energy physics.

This program is in a nascent stage.


