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@ Feynman integrals e

® Feynman integrals are the building blocks for multi-loop
scattering amplitudes.

= [mportant both for collider and gravitational wave
phenomenology:.

[See talks by S. Weinzierl,

® They exhibit a rich mathematical structure. E. Brown, R. Britto, ]

= (Connections to algebraic geometry, modular forms,...

® The understanding of the case of polylogarithms and elliptic
curves 1s now relatively well advanced.  [See talks by S. Weinzierl & C. Zhang]

= The spaces of special functions are (relatively) well
understood.



@ Feynman integrals e

® We know that elliptic curves are not the end of the story!

| Brown, Schnetz; Bloch, Kerr, Vanhove;
Bourjaily, He, MclLeod, von Hippel,

= Also Calabi-Yau varieties appear. ~ Wilhelm; Bourjaily, McLeod, von Hippel,
Wilhelm; Bourjaily, Mcleod, Vergu, Volk,
[See talk by A. Klemm] von Hippel; Klemm, Nega, Safari; Bénisch,

Fischbach, Klemm, Nega; ... ]

® ThlS case iS Stﬂl pOOI’ly explored and understood.

® Goals of this talk:

= Study the simplest examples of an infinite family of [-loop
integrals associated to Calabi-Yau (I — 1)-folds.

= Show how the geometric concepts generalise from the known
elliptic cases to Calabi-Yau cases.

= Present an all-loop generalisation of known results for [ < 3.



Banana integrals in 2D L
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hy, = ‘modular form of weight n for I'1(6)’
[See talk by S. Weinzierl]
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@ Modular forms L

o I CSLy(z)={(2}) abedeZ and det(2}) =1}
H={reC:Im 7> 0}

® Modular function for I' : meromorphic function f : H — C s.t.

() = oo

cT + d

® Modular of weight £ for I': holomorphic function by, : H — C s.t.

B (‘” i b) — (er + d)F h(7)

ct +d

[+ holomorphicity at the cusps]

[See talk by S. Weinzierl]



74\ ’ . .
®  Differential equations 28

® Master integrals for [ -loop equal-mass bananas (D =2 — 2¢) :

Ji1(z5€) ~ ©— Jik(z€) ~ 05 1T 1 (25 ) 2<k<lI

® The vector of MlIs satishes a system of differential equations:

0:J)(2; €) = Bi(z;€) J,(z; €) + Ny(2, €)

Rational matrix Inhomogeneity from integrals

with fewer propagators

[
BZ(Z; 6) — Bly()(z) Z Bl,k(z)ek
k=1

Ny(z,€) = (0,...,07 (—1)l+1(l—|—1)! z I'(1+ €)l>



74\ ’ . .
®  Differential equations 28

® Step I: Solve the homogeneous system at € = 0 :

0.0 (2) = Bio(2) I (z)  «—  LiJly =0

[ Tancredi, Primo;

= Solution space spanned by maximal cuts:
Wi(z) = (L (2)- L) (2)

® Step 2: Change basis: J,(z,¢) = W;(2)L,(2, ¢)

Frellesvig, Papadopoulos;
Bosma, Larsen, Zhang]

ale(Zv 6) — ﬁl(za G)Ll(z7 E) _l_&l(zv 6)

Bi(z,¢) = W;(2) }[By(z,€) — B o(2)]W;(2) = Ofe)

Ml (Z, 6) — Wl (Z)_lﬂl (27 E) Polynoroial ofdeg.ree [ —1land [
in the entries of W (Z)



74\ ’ . .
®  Differential equations 28

® Step 3: The new system can easily be solved order by order in €.

- Example: e =0

Z
. N / Integrand involves polynomials of
Ll (Z’ O) R Ll (O’ O) T /O dz Ml (Z 7 O) degree | — 1 in the entries of W;(2)

_ 1,(0,0) + / 42 Wi(') "N, (<, 0)
0

® (Questions:

= What are the entries of W;(2)?

= What are their properties, relations, etc.?

= Why do we get modular forms for 2 (and 3) loops?

= What about the integrals we get?






7 L
@ Elliptic curves
® The 2-100p (equal-mass) banana @ &

family 1s associated to a (I1-parameter)

family of elliptic curves

= For every z € CP' there is
a (possibly degenerate) elliptic

- 823
curve &, . <\

® [Elliptic curve: Riemann surface of genus 1 = Torus

= There 1s a unique holomorphic

o dz
. ditterential 1-form -
(( < )) = (Characterised by its periods:
3
- [ = [

a Y ﬂy



7 . .
@ Picard-Fuchs equation vV

® Here: Periods will be functions of z:

= z-dependence governed by Picard-Fuchs equation (6 = 20,):

Lo11,(2) =0 Lo=(1—2)(1—-92)0% —2(1 —52)0 + (1 — 3z)

= Same differential operator that annihilates maximal cuts!

= Maximal cuts at two-loop can be associated to the periods of
the family of elliptic curves.

= Singular points of £2: 0,1/9,1,00.

® We get multi-valued functions on Xy = CP'\ {0,1/9,1,00}.

1
Ma(z) = 2mi 2 + O(2)  Tg(z) = [ (2) gi;’ - oo 2+ O(2%)




@ Monodromy group e

® Analytic continuation around 0:

D -6 NG

® We can compute such a matrix for every small loop around a

singular point (N.B. ToT1,T1Too =1):

11 1 0 T2
To= (0 1> 1= (—6 1) T19 = (—18 —5>

= These matrices generate the monodromy group of L, :

[1(6) = { (24) € SLa(Z) : a,d =1 mod 6,c = 0 mod 6



@ Monodromy group e

® Define: 7= — q=e""" =z +42° + O(z°)
= Can be inverted: 2(7) = q — 46]2 + O(qg)

® Action of the monodromy group:

allg(z) +bll,(2) aT+0b
T — =

" cllg(z) +dlly(2)  er+d

at + b
cT + d

Z2(1) — Z( ) = 2(T)  Modular function for I'; (6)

Modular form of

hi(7) =a(2(7)) — (em + d) hy(T) weight 1 for T'; (6)



2-loop banana integral L

m - d,]_/ / / Z d / '
@ ~ hl(T)/i ——h3(7) T NE(Z)TZQ/ Z—ZE(Z)

o 271 o6
= I1,(2) ~ I, (2)°

. | I1(z) = (114 (2), ()"
=maximal cut of the sunrise

B zdz 3, —( 0 1
I = 11 = 21 = 92) T (2)? 2= (10)

= Matches structure from differential equations:

J;(2,0) ~ W;(2) /OZ dz' Wi(2)"' N,(z,0)

= Also valid at 1-loop (and also 3-loop, but this 1s special...)

P /z dz’
vV1—4z Jo 21— 42

Maximal cut; Monodromy group = Z,




Summary: 2 loops v

® Maximal cuts of J; 1 «— periods of the elliptic curve.

® Maximal cuts are annihilated by Picard-Fuchs operator L, .
= Monodromy group: I'{(6)

® Close to 2 =0 : 1 holomorphic and 1 single-log solution:

I
[y(2) =2miz + O0(z%) Tlg(z) = I, (2) ;ij Fep 2”4 O(27)

® General structure of the full Feynman integral:

(2~ [ )

O

® For 2 loops: Period 1s a modular form.






@ Calabi-Yau varieties L

® The [-loop (cqual-mass) banana family 1s characterised by a (1-
parameter) famﬂy Of Calabl Yau (l — 1) fOldS

. 8 -
.a

® Calabi-Yau n-told: n-dim. Kihler mamfold with a unique
holomorphic ditferential n-form (z

= Characterised by its periods: H(z) = (II1(2), ..., I.(2))"

IL;(z) = /r (2) I'; = Basis of independent cycles.

= [or the equal-mass banana: r =1 = #MIs



7 . .
@ Picard-Fuchs equation vV

® The periods provide a basis for the maximal cuts in 2 dimensions.

® They are annihilated by the PF-operator £; of degree [ .

. . [Bonisch, Fischbach
d They can be constructed exphcltly for all . Klemm, Nega, Safari]

Eoxd

® Set of singular points: AW = | | {(l +1- 2]')2}
=0

® Structure of the solutions: close to z = 0:

M 1(2) = O(2) I (2) ~ Ty (2) ——

(k= 1)
= Point of maximal unipotent monodromy (MUM-point).

' log" 2z + O(2?)

= Not true for other singular points!

= (Expected to be) genuinely new transcendental functions.

= (Can be evaluated 1n a fast and ethcient way for all z.



@ General expectation o

® General expected form:

~ TI (z)TE ) d_zl T (Z/) Linear 1n
= l 0 12 1= the periods

Maximal cuts
= 3 1s uniquely determined from the geometry (must be
invariant under action of the monodromy group):

( 1)
~1

= . [e.g., MT3,M = 3, for all M € SLy(Z)]

\- /

® But it does not yet match what we (seem to) get from the

ditferential equations....

N oy —1 Polynomial of degree
1(2,0) ~ Wi(2) /O 4= Wa(z) ™ Ny(2,0) [ — 1 in the periods

Maximal cuts



@ Quadratic relations L

® Are there relations among the periods? [See talk by A. Klemm]

T, (2)TS,00 (2) = /M Q(2) AQ(z) = 0!

= This 1s a quadratic relation among maximal cuts!
® Are there more of these relations?
I, (2)1' 30,11, (2) = / Q(z) N0, (z) =0

M
= Thisis a quadratic relation among maximal cuts of

ditterent MIs.

® What is their origin? How can we find these relations?



7 N\ . .
@ Grithiths transversality L

® The cohomology group H, (M) comes with a Hodge hltration
(n=101-1).

Q 0.0 9%*Q 0720 0.0

FP — 69 gp—1  HP? = cohomology class of (p, q)-forms

p<g<l—1 e.g. dzg A--- ANdzp Adzy A --- ANdz,

® Gnthths transversality: 0,F? C Fr—1

dx dx r dx

- . . . : 82:/ . — A e —|_ B -
cf. for the elhptlc case Y 0 Y o Y

c F! c F! c FY



Quadratic relations

() B () = [ 9(2) A () =0
M0,0) A (n, 0)
I, (2)1' 30,11, (2) = / Q(z) N0, (z) =0
M ‘(n,0) AN (n—1,1)

I, (=) 75,0421, (=) = / Q(2) A 8L20(2) = 0
M ‘(n,0) A (1,n— 1)
I,(:) T80 () = [ 0(:) n 0100 = i)
M
‘(n,0) A (0,n)’
1

Ci(z) = A3 Teenm (1 — kz)




@ Quadratic relations vV

® We obtain a matrix of quadratic relations among maximal cuts!

()" 2 IL(2) - I(2)" 200 ()
Zl(z): : :

\ LML, (2)T B 0 (2) -+ 0L (2)T 2, 0L ML (2)

— WZ(Z)EZWZ(Z)T

= All entries are explicitly calculable rational functions, e.g.,

=5 —10+64z 1 —20z 4 6427
Z3(z) "t = —10+642z —1+ 20z — 6422 0
1 — 20z + 6422 0 0

= We have searched for more quadratic relations, but we
could not find any (for generic z).

= We conjecture that these are the only quadratic relations.



@ Banana integrals L

® [t is now easy to show that
Wl(z)_l — EZWZ(Z)TZZ(Z)_l

= The inverse 1s linear 1n the periods!

® Putting 1t all together, solution of the differential equation takes
the form:

* dw
@ — 1)L + (4 LTS [ S
1o

[Bonisch, CD, Fischbach
Klemm, Nega]

= Compact formula valid for arbitrary loops!

= We still need the initial condition (related to z — 0):

0 0 0
LY = (L), )"



Banana integrals L

“ dw
O -neL e nmes [
1o

® The imitial condition can be obtained as a generating series using

techniques from mirror symmetry: [Bonisch, Fischbach Klemm, Nega, Safari]
O
I'(1 —x)
0) ko
L( :(l—l—l)!’l“k ZTkQJ —
Lk — (1+ )

® Compact analytic formula for arbitrary number of loops!

g Integrals that appear 1n 1t are the natural generalisation of
the integrals for [ < 3.

o Ingredients are of geometric origin (periods, intersection pairing,

initial condition from mirror symmetry).



Banana integrals in 2D L

. z © dz'
Riemann sphere ~ A1) v dr

m

/—\ o T d+’ N
m Elliptic curve ~ hq (7') o h3 (T )T

oo 2T

K3 surtace T dr!
4@— ~ “elliptic x elliptic” ~ ha(T) / - hy (') 7"
. 2T
(only herel) b0

“ dw
Calabi-Yau Nﬂl(z)Tzl/ —Hl(w)

- 2
(I —1)-told Lo W



@ 3-loop banana integral L

® The three-loop case 1s special!

® The geometry is a 1-parameter family of K3 surfaces (-Cv 2-folds).
® The Picard-Fuchs operator L3 has degree 3, but it 1s the

symmetric square of Lo (after a suitable change of variables).
[ Verrill; Bloch, Kerr, Vanhove; Amadeo, Primo]

= Solution of L3 are products of 2 solutions of Ls:

2 2
(H3,17 H3,27 H3,3) ™~ (H2,17 H271H272’ H2,2)
Modular forms

= We get the same class of functions as at 2 loops!

® This 1s only true at 3 loops in 2D for equal masses!

= One can check this exphatly for | = 4,5, ...



7 N . .
@ Interesting questions v

® Question 1: What about D =2 — 2¢?

= We can get the differential equations and the initial
conditions for arbitrary loops. [Bonisch, CD, Fischbach Klemm, Nega]

= We can write down similar all-loop formulas for higher
terms 1n the expansion.

= We get iterated integrals involving Calabi-Yau periods,

and their derivatives.

ale(Za 6) — ﬁl(za G)Ll(zv E) T &l(zv 6)
&Z(Z, 6) — Wl (Z)_lﬂl (Z, E) linear in periods

Bi(z,¢) = W;(2) 1 [By(z,€) — By o(2)]Wi(2) = O(e)

bilinear in periods



7 N . .
@ Interesting questions A

® The resulting integrals may even be structurally different.

Example:

= At 2 loops we get iterated integrals of Eisensteln series
for I'1(6), to all orders 1n €. [Adams, Weinzierl]

= At 3 loops in 2D we get iterated integrals of Eisenstein
SerieS f()r Fl (6) . [Bloch, Kerr, Vanhove; Brédel, CD, Dulat, Penante, Tancredi]

= At 3 loops we get iterated integrals of meromorphic

modular forms for T’y (6), to all order 1n €. [Brsdel, CD, Matthes, to appear]

® lterated integrals of meromorphic modular forms for SLo(Z)
were very recently (2021!) introduced by Nils Matthes.

= The theory can be generalised to subgroups I' C SL4(Z)

(where I' has genus O) [ Brédel, CD, Matthes, to appear]



7 N . .
@ Interesting questions v

® Question 2: Is there a unique Calabi-Yau variety attached to a
Feynman integral, and what 1s 1t?

= There are different families of Calabi-Yau varieties that
describe the banana integrals: | Bonisch, Fischbach Klemm, Nega, Safari]

M ZIESl = {z € P! F(1,z;2) =0} F-polynomial from Feynman parameter integral

MY = { (wg&) ; wg’)) S IP’%Z-),W

[+1 | T S -
Py = Z a(i)wy) + b(’)wg) = Z C(Z)wY’) + d(z)wg) =: Py = O}
i=1 i=1

= For | = 2 they are the same, but for higher [ they are
distinct (e.g., they have distinct Euler characteristic).

= But they do define the same Calabi-Yau motive!

= (Calabi-Yau motive ~ linear subspace of a cohomology
group (+other conditions).



7 N . .
@ Interesting questions v

® Question 3: Which Feynman integrals can be attached to families
of Calabi-Yau varieties/motives? All of them?

= There are examples of Feynman integrals whose maximal

cuts give rise to Riemann surfaces of genus g > 1.
|[Huang, Zhang; Hauenstein, Huang, Mehta, Zhang]

= They cannot be Calabi-Yau varieties! (because they have g > 1
holomorphic differentials)

= There are examples of Calabi-Yau motives that describe
Riemann surfaces of higher genus.

® Interesting question for the future: Are the examples of higher-
genus curves from Feynman integrals associated to Calabi-Yau
motives”?



@ Conclusions L

® After elliptic curves Calabi-Yau varieties are the next frontier.

® We have shown how results from the elliptic case generalise
nicely to all loops for equal-mass banana integrals.

= Compact analytic formula valid for arbitrary number of loops!

® Interesting questions for the tuture:

= What about other integrals (e.g., with more scales)?
= Which integrals are associated to Calabi-Yau motives?

= What are the properties of the (iterated) integrals of
Calabi-Yau periods?



