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We conjecture three compatible coactions on Feynman integrals:

Local coaction on multiple polylogarithms (MPLs), elliptic multiple
polylogarithms, etc.

This one is well known. [Goncharov, Brown]

Applies in the Laurent expansion of Feynman integrals in the parameter ε
of dimensional regularization.

Global coaction on generalized hypergeometric functions.

Applies to Feynman integrals in dimensional regularization without taking
the Laurent expansion.

Conjectured to exist for arbitrary Feynman integrals; examples found with
integer-based parameters; [Abreu, RB, Duhr, Gardi, Matthew]

since proven for Lauricella functions [Brown, Dupont].

Diagrammatic coaction

1st claim: the output from the other two coactions are compatible with
each other and can be repackaged as Feynman integrals.

2nd claim: the coaction output can also be obtained by applying graphical
operations before evaluating.
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Coaction is naturally compatible with discontinuities and differential
operators, so we hope it can be applied to new computations

Dimensional regularization is essential

Formally, we distinguish motivic and de Rham MPLs, hypergeometric
functions, etc. or use single-valued versions

This talk: general principles and 1- and 2-loop examples
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Example: 3 equivalent expressions, 3 compatible coactions
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∆(log z) = 1⊗ log z + log z ⊗ 1

∆(log2 z) = 1⊗ log2 z + 2 log z ⊗ log z + log2 z ⊗ 1

∆(Li2(z)) = 1⊗ Li2(z) + Li2(z)⊗ 1 + Li1(z)⊗ log z
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Preview of 2-loop example

Sunset with two massive propagators.

General formula for coaction on integrals:

∆
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ω

)
=
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γ

ωi ⊗
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ω

Ruth Britto, Trinity College Dublin Coaction for Feynman Integrals 5 / 22



General formula for coaction on integrals

∆

(∫
γ

ω

)
=
∑
i,j

cij

∫
γ

ωi ⊗
∫
γj

ω

All three coactions have this structure.

Satisfies axioms of coaction.

Claim of this formula: there exist sets {ωi}, {γj}, {cij} to make it true.

{ωi} generate cohomology

{γj} generate homology

{cij} are rational in ε, algebraic in other parameters/kinematic variables;
uniquely fixed by choices of {ωi} and {γj}
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General formula for coaction on integrals

∆

(∫
γ

ω

)
=
∑
i,j

cij

∫
γ

ωi ⊗
∫
γj

ω

Choice of bases:

{ωi}
Left entries

∫
γ
ωi related to

∫
γ
ω by standard IBP reduction. Choose them

to be pure.

{γj}
Right entries

∫
γj
ω related to

∫
γ
ω by change of contour. Can start with all

possible cuts, but there are relations among them.

An important relation for 1-loop integrals:∑
i

Ci In +
∑
i<j

Cij In = −ε In mod iπ

applies to subgraphs of multiloop graphs.

Principle: no uncut loops needed in right entries. Use only “genuine
L-loop cuts.”
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Dual bases

Compact version of master formula:

∆

(∫
γ

ω

)
=
∑
i

∫
γ

ωi ⊗
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ω

Look for bases such that ∫
γj

ωi = δij +O(ε)
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Principles of the diagrammatic coaction

∆

(∫
γ

ω

)
=
∑
i,j

cij

∫
γ

ωi ⊗
∫
γj

ω

Left entries related by IBP, only L-loop diagrams

Right entries are genuine L-loop cuts

Coefficients cij are explicit for L = 1, [Abreu, RB, Duhr, Gardi]

ad hoc for L > 1 as of now.

Can dualize bases either before or after initial choice

Consistent with degenerate limits

UV/IR pole cancellation

γ can be a cut contour. Gives coaction on cut integrals.
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First 2-loop example: 1-mass sunset

S(ν1, ν2, ν3, ν4, ν5;D; p2,m2) =

(
eγE ε

iπD/2

)2 ∫
dDk dD l

[(k + l)2]−ν4 [(l + p)2]−ν5

[k2]ν1 [l2]ν2 [(k + l + p)2 −m2]ν3

2 master integrals, normalized to 1 +O(ε).

S(1) = ε2
(
p2 −m2

)
S(1, 1, 1, 0, 0; 2− 2ε; p2,m2)

= (m2)−2ε

(
1−

p2

m2

)
e2γE εΓ(1 + 2ε)Γ(1− ε)Γ(1 + ε) 2F1

(
1 + 2ε, 1 + ε; 1− ε;

p2

m2

)
S(2) = −ε2S(1, 1, 1,−1, 0; 2− 2ε; p2,m2)

= (m2)−2εe2γE εΓ(1 + 2ε)Γ(1− ε)Γ(1 + ε) 2F1

(
2ε, ε; 1− ε;

p2

m2

)
Hence only two 2 independent integration contours, e.g. the maximal cuts.
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First 2-loop example: 1-mass sunset

Maximal cut integral:

C123S
(1) ∼

∫
dk0 k

−1−2ε
0

(
p2 −m2 + 2

√
p2k0

)−1−2ε (
p2 + 2

√
p2k0

)2ε

After taking three residues, there is one integration left, of the hypergeometric
form 2F1.
Can choose two independent contours:

Γ
(1)
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−
√

p2

2
, 0

]
Γ

(2)
123 : k0 ∈

[
m2 − p2

2
√

p2
, 0

]
Results:∫

Γ
(1)
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ω(1) = 2ε e2γE ε Γ(1 + ε)Γ(1− ε)
Γ(1− 2ε)

(p2−m2)−2ε
2F1

(
−2ε, 1 + 2ε; 1− ε; p2

p2 −m2

)
∫

Γ
(2)
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ω(1) = 4ε e2γE ε Γ2(1− ε)
Γ(1− 4ε)

(p2)2ε(p2 −m2)−4ε
2F1

(
−2ε,−ε;−4ε; 1− m2

p2

)
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First 2-loop example: 1-mass sunset

Can arrive at compact/dual form ∆
(∫

γ
ω
)

=
∑

i

∫
γ
ωi ⊗

∫
γi
ω by requiring∫

γj
ωi = δij +O(ε).

Solution:

γ
(1)
123 =

1

4ε
Γ

(2)
123, γ

(2)
123 =

1

2ε

(
Γ

(1)
123 −

1

2
Γ

(2)
123

)
.

∆S (1) = S (1) ⊗ C(1)
123S

(1) + S (2) ⊗ C(2)
123S

(1)

∆S (2) = S (1) ⊗ C(1)
123S

(2) + S (2) ⊗ C(2)
123S

(2)

Check agreement with ∆[2F1].
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1-mass sunset: comments on cuts

γ
(1)
123 and γ

(2)
123 generate full homology, including uncut contour∫

Γ0

ω(i) = a

∫
γ

(1)
123

ω(i) + b

∫
γ

(2)
123

ω(i) mod iπ

(1)

= a

(1)

+ b

(1)

Discontinuities can be recovered

Discm2S (i) ∼ 2ε
(
C(1)

123S
(i) − C(2)

123S
(i)
)

Discp2S (i) ∼ −4ε C(1)
123S

(i)

Coaction takes the same form on cut integrals

∆


(1)

 =

(1)

⊗
(1)

+

(2)

⊗
(1)
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Diagrammatic coaction at two loops

∆(fg) = (∆f ) (∆g)
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Two-mass sunset

S (1) = −ε2e2γE ε

∫
d2−2εk

iπ1−ε

∫
d2−2εl

iπ1−ε

√
λ (p2,m2

1,m
2
2)

(k2 −m2
1)(l2 −m2

2)(k + l + p)2

S (2) = ε2e2γE ε

∫
d2−2εk

iπ1−ε

∫
d2−2εl

iπ1−ε
m2

2 − (k + p)2

(k2 −m2
1)(l2 −m2

2)(k + l + p)2

S (3) = ε2e2γE ε

∫
d2−2εk

iπ1−ε

∫
d2−2εl

iπ1−ε
m2

1 − (l + p)2

(k2 −m2
1)(l2 −m2

2)(k + l + p)2

4th master integral is the double tadpole.

Expressions involve Appell F4.

Basis of cuts: 3 maximal cuts Γ
(i)
123, and one 2-line cut Γ12 that is the max. cut

of the double tadpole.
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Two-mass sunset
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Double-edged triangle

4 master integrals:
2 in top topology, Appell F4

2 0-mass sunsets in p2
1 , p2

2
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Examples of degenerate limits

Take p2
2 → 0. Basis of master integrals collapses to 2: 1 in top topology, 1

sunset.
Need to construct new dual integration contours.

Obtain coaction by taking the limit, or directly.
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Examples of degenerate limits

In the limit p2
3 → 0, the integral is reducible to the sunsets. 4-line cuts vanish.
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Adjacent Triangles

e2γE εε

{
Γ2(1 + ε)Γ4(1− ε)
Γ(1− 2ε)Γ(2− 2ε)

p2
1 − p2

2

p2
2

(−p2
1)−2ε

2F1

(
1− ε, 1− 2ε; 2− 2ε; 1− p2

1

p2
2

)
− Γ(1 + 2ε)Γ3(1− ε)

2(1− 2ε)Γ(1− 3ε)

[
p2

1 − p2
2

p2
1

(−p2
2)−2ε

3F2

(
1− ε, 1, 1− 2ε; 1 + ε, 2− 2ε; 1− p2

2

p2
1

)
+
p2

1 − p2
2

p2
2

(−p2
1)−2ε

3F2

(
1− ε, 1, 1− 2ε; 1 + ε, 2− 2ε; 1− p2

1

p2
2

)]}
6 master integrals.
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4-point integral: Diagonal Box

p1 p2

p3p4

1

2

3

4 5 =− e2γE ε ε(s + t)

2(1− 2ε)

Γ3(1− ε)Γ(1 + 2ε)

Γ(1− 3ε)[
t−2ε

s
2F1

(
1− 2ε, 1− 2ε; 2− 2ε; 1 +

t

s

)
+
s−2ε

t
2F1

(
1− 2ε, 1− 2ε; 2− 2ε; 1 +

s

t

)]
3 master integrals, 3 natural cuts.

Ruth Britto, Trinity College Dublin Coaction for Feynman Integrals 21 / 22



Summary

Diagrammatic coaction is conjectured to exist, compatible with
I local coaction on MPLs, eMPLs, ...
I global coaction on hypergeometric functions

Explicitly known at 1-loop. Beyond 1-loop, we find representations for
various examples but lack a precise prediction.

Coaction of L-loop graph has
I L-loop master integrals in left entries
I genuine L-loop cuts in right entries

and exhibits a pairing between these objects.

Ruth Britto, Trinity College Dublin Coaction for Feynman Integrals 22 / 22


