

AMPLITUDES 2021 AUGUST 16th-20th NIELS BOHR INSTITUTE COPENHAGEN

Lance Dixon

What we missed

[According to Weatherman Jake]

Matt von Hippel

Poul Damgaard

Michèle Levi

+ many students!

20 August 2021

Emil Bjerrum-Bohr Andrew McLeod

Apologies in advance

If I don't cover your favorite topic or speaker

Those who explore an unknown world are travelers without a map: the map is the result of the exploration. The position of their destination is not known to them, and the direct path that leads to it is not yet made.

Hideki Yukawa

Steven Weinberg May 3, 1933 – July 23, 2021

He gave us SU(2) x U(1)

A MODEL OF LEPTONS*

Steven Weinberg[†] Laboratory for Nuclear Science and Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 17 October 1967)

Leptons interact only with photons, and with the intermediate bosons that presumably mediate weak interactions. What could be more natural than to unite¹ these spin-one bosons into a multiplet of gauge fields? Standing in the way of this synthesis are the obvious differences in the masses of the photon and intermediate meson, and in their couplings. We might hope to understand these differences by imagining that the symmetries relating the weak and electromagnetic interactions are exact symmetries of the Lagrangian but are bro-

$$R \equiv \left[\frac{1}{2}(1-\gamma_5)\right]e. \tag{2}$$

The largest group that leaves invariant the kinematic terms $-\overline{L}\gamma^{\mu}\partial_{\mu}L-\overline{R}\gamma^{\mu}\partial_{\mu}R$ of the Lagrangian consists of the electronic isospin \overline{T} acting on *L*, plus the numbers N_L , N_R of left- and right-handed electron-type leptons. As far as we know, two of these symmetries are entirely unbroken: the charge $Q = T_3 - N_R - \frac{1}{2}N_L$, and the electron number $N = N_R + N_L$. But the

He also gave us EFTs

- Current algebra, soft pions phrased in S matrix language
- Weinberg \rightarrow non-linear σ model Lagrangian

"the assumptions of S-matrix theory, supplemented by chiral invariance, were indeed all that are needed at low energy, but the most convenient way of implementing these assumptions in actual calculations was by good old quantum field theory, which the S-matrix theorists had hoped to supplant"

 Now of course we like to understand it all again in terms of S matrix language talks by Shadmi, Machado, Huang, Caron Huot, Rosen,...

And soft graviton theorems

PHYSICAL REVIEW

VOLUME 140, NUMBER 2B

25 OCTOBER 1965

Infrared Photons and Gravitons*

STEVEN WEINBERG[†] Department of Physics, University of California, Berkeley, California (Received 1 June 1965)

It is shown that the infrared divergences arising in the quantum theory of gravitation can be removed by the familiar methods used in quantum electrodynamics. An additional divergence appears when infrared photons or gravitons are emitted from noninfrared external lines of zero mass, but it is proved that for infrared gravitons this divergence cancels in the sum of all such diagrams. (The cancellation does not occur in massless electrodynamics.) The formula derived for graviton bremsstrahlung is then used to estimate the gravitational radiation emitted during thermal collisions in the sun, and we find this to be a stronger source of gravitational radiation (though still very weak) than classical sources such as planetary motion. We also verify the conjecture of Dalitz that divergences in the Coulomb-scattering Born series may be summed to an innocuous phase factor, and we show how this result may be extended to processes involving arbitrary numbers of relativistic or nonrelativistic particles with arbitrary spin.

talks by Puhm, Heissenberg, Machado, ...

20 August 2021

He gave us SU(3), not once but twice

→ He would have loved the gauged biadjoint scalar theory!

Niels Bohr

wave-particle duality and classical correspondence

LIGHT IS A Mf10

Critical to "scattering amplitudes for LIGO" Damour talk

phys.org

20 August 2021

Richard Feynman

 He gave us Feynman diagrams (post Stückelberg!) which we often try hard to avoid

- But also *iε* relativistic causality [talks by Mizera, Caron Huot,...]
- You can sometimes run
 (to Euclidean regions of planar theories and positive regions of Grassmannians)
 but you can't hide from *iε* !

And Feynman Integrals!

- The gift that keeps giving!
- Talks by Langer, Klemm, Mizera, Badger, Volovich, Zeng, Weinzierl, Brown, Zhang, Signorile-Signorile, Duhr, Britto
- Under the hood: Mistlberger, Vita, Damour, Heissenberg, Solon
- → Feynman polytopes [Arkani-Hamed]

Algebraic geometry of [banana] integrals

	l = (n + 1)-loop banana	Calabi-Yau (CY) geometry
	integrals in $D = 2$ dimensions	
1	Maximal cut integrals	(n, 0)-form periods of CY
	in $D = 2$ dimensions	manifolds or CY motives
2	Dimensionless ratios $z_i = m_i^2/p^2$	Unobstructed complex moduli of M_n , or
		equivalently Kähler moduli of the mirror ${\cal W}_n$
3	Integrand-basis for maximal cuts of	Middle (hyper) cohomology $H^n(M_n)$ of
	master integrals in ${\cal D}=2$ dimensions	M_n
4	Quadratic relations among	Quadratic relations from
	maximal cut integrals	Griffiths transversality
5	Integration-by-parts (IBP) reduction $% \left(\mathbf{B}_{i}^{n}\right) =\left(\mathbf{B}_{i}^{n}\right) \left(B$	Griffiths reduction method
6	Complete set of differential	Homogeneous Picard-Fuchs
	operators annihilating a given	differential ideal (PFI) $/$
	maximal cut in $D = 2$ dimensions	Gauss-Manin (GM) connection
7	(Non-)maximal cut contours	(Relative) homology of CY
		geometry $H_n(M_n)$ $(H_{n+1}(F_{n+1}, \partial \sigma_{n+1}))$
8	Contributions from subtopologies	Extensions of the PFI
	to the differential equations	or the GM connection
9	Full banana integrals	Chain integrals in CY geometry or
	in $D = 2$ dimensions	extensions of Calabi-Yau motive
10	Degenerate kinematics	Critical divisors
	(e.g., $m_i^2 = 0 \text{ or } p^2/m_i^2 \to 0$)	of the moduli space
11	Large-momentum regime	Point of maximal unipotent
	$p^2 \gg m_i^2$	monodromy & Γ -classes of W_n
12	General logarithmic degenerations	Limiting mixed Hodge structure
		from monodromy weight filtration
13	Analytic structure and	Monodromy of the CY motive
	analytic continuation	and its extension
14	Special values of the integrals	Reducibility of Galois action
	for special values of the z_i	& L -function values
15	(Generalized?) modularity of	Global $\mathrm{O}(\boldsymbol{\Sigma},\mathbb{Z})\text{-monodromy, integrality}$
	Feynman integrals	of mirror map & instantons expansion

^{The Essentials} Bananarama

Klemm and Duhr talks

Because Calabi-Yau(s) associated with a multi-loop Feynman integral are often singular, better to associate them with (family of) CY motives, compatible with Hodge structure and a Galois group action.

The elliptic double box

Zhang talk

9 10 x_{10} x_1 8 2 x_8 x_3 3 x_6 x_5 6 5 10 x_1 x_{10} 9 8 x_8 . x_3 3 x_5 x_6 5

- Expressed explicitly in terms of elliptic polylogs
- Differential equation
 sourced by one-loop D=6 hexagon
 → Symbol has elliptic letters only
 in last 2 entries

Modular properties of elliptic integrals

Examples of elliptic Feynman integrals depending on one kinematic $x = \frac{-p^2}{m^2}$ (solid internal lines of mass *m*, dashed lines massless):

p^2 p^2 p^2 m^2 m^2 m^2

• For numerical purposes, handy to use modular transformations to move $q = e^{2\pi i \tau}$ into fundamental region for modular group, so |q| < 0.0043

Weinzierl talk

• Have to be careful about accompanying fibre transformations when doing this.

Unitarity carving knives

Used to only be good (in Amplitudes) for slicing up integrands. and it still is

talk by Badger

and Solon

and Langer

 $\begin{bmatrix} Prescriptive variant uses chiral traces in numerator \\ -\llbracket p_1, b, c, p_4 \rrbracket \llbracket e, f, p_6, d \rrbracket \\ \begin{bmatrix} a_1, a_2, b_1, b_2, \cdot, \cdot, c_1, c_2 \rrbracket \coloneqq \begin{bmatrix} (a_1 \cdot a_2)^{\alpha}{}_{\beta}(b_1 \cdot b_2)^{\beta}{}_{\gamma} \cdots (c_1 \cdot c_2)^{\delta}{}_{\alpha} \end{bmatrix} \\ = \operatorname{tr}_+(a_1, a_2, b_1, b_2, \dots, c_1, c_2) \end{bmatrix}$

L. Dixon Amplitudes 2021 Summary

20 August 2021

Also carves in reverse

Vita talk

Zeng talk

$$\delta_+(p^2) \sim \lim_{\varepsilon \to 0} \left[\frac{1}{p^2 + i\varepsilon} - \frac{1}{p^2 - i\varepsilon} \right]$$

See phase space constraints as "cut" propagators

Signorile-Signorile talk

Radiated momentum from KMOC formalism

[Herrmann, Parra-Martinez, Ruf, MZ, '21 (PRL)]. Follows formalism of [Kosower, Maybee, O'Connel, '18]

Phase space integrand from cutting virtual integrand. Integration by reverse unitarity.

L. Dixon Amplitudes 2021 Summary

20 August 2021

 $[df_i] = \frac{d^d k_i}{(2\pi)^d} (2\pi) \,\delta_+(k_i^2)$

150

Now also really excellent tool (along with causality, crossing symmetry, Hankel matrices, linear programming, ...) for carving up space of EFTs $s_{\pm \psi} (e^{t} e^{y})$

&

Caron-Huot

talks by Huang

L. Dixon Amplitudes 2021 Summary

(0=4:

Beautiful proof of crossing symmetry

• Got to track those *iɛ* factors carefully!

Mizera talk

(preserves on-shell conditions and mom. cons.)

• Perturbative, large N, but otherwise very general

Double copy / color kinematics duality

• Began with KLT and a slogan:

 $Gravity = YM^2$

• Then became graphical [BCJ (2008, 2010); Vasquez-Holm talk]

- Now connects a much broader web of theories
- Underlies much of the motivation for the "scattering amplitudes for LIGO" program [Zeng, Solon talks]

Generalized frameworks

$$A_n^{\mathsf{L}\otimes\mathsf{R}} = \sum_{a,b} A_n^{\mathsf{L}}[a] S_n[a|b] A_n^{\mathsf{R}}[b]$$

What are the rules for generalizing the KLT kernel?

New solutions for higher dimension operators found by solving the KLT bootstrap equations:

FT KLT YM: $\operatorname{tr} F^2 \checkmark \operatorname{tr} F^3 \checkmark \operatorname{tr} F^4 \mathbf{1} \checkmark \operatorname{tr} D^2 F^4 \mathbf{1} \checkmark \mathbf{1} \checkmark \operatorname{tr} D^4 F^4 \mathbf{1} \checkmark \mathbf{2} \checkmark \dots$

Gen. KLT YM: $\operatorname{tr} F^2 \checkmark \operatorname{tr} F^3 \checkmark \operatorname{tr} F^4 1 \checkmark \operatorname{tr} D^2 F^4 1 \checkmark 1 \checkmark \operatorname{tr} D^4 F^4 1 \checkmark 2 \checkmark \dots$

Opens new avenues for color-kinematics / double copy

L. Dixon Amplitudes 2021 Summary

20 August 2021

Color-kinematics duality derived from field equations for field strengths Cheung talk

⊗ NLSM

- Strikingly new perspective!
- Can it be applied to loops??

L. Dixon Amplitudes 2021 Summary

20 August 2021

Double copy with vector masses

Paranjape talk

For $\mathcal{M}_n = \mathcal{A}_n[\alpha] m_n[\alpha|\beta]^{-1} \mathcal{A}_n[\beta]$ to be local,

- 1. KLT kernel has spurious poles but these are canceled by A_n in the final double-copy M_n
- 2. KLT kernel has no spurious poles when the masses are carefully tuned: the "minimal rank" condition
- Option one can give dRGT massive gravity, but not at 5 points?
- Option 2 satisfied for toroidal Kaluza-Klein compactifications, but are there other solutions?

Double copy with scalar masses

Vasquez-Holm talk

- At loop level, 5-points, motivated by BH inspiral with radiation
- Apply maximal cuts, remove dilaton-axion "by hand"
 Projective double copy at loop-level

L. Dixon Amplitudes 2021 Summary

20 August 2021

Double copy in the sky

Puhm talk CELESTIAL DIAMONDS:

Natural structure in celestial CFT that unifies the discussion of soft sector:

Appearance of *celestial double copy* and *shockwaves* in the diamond.

Soft behavior also analyzed in 2d "sky" in Kalyanapuram talk and in massive case in Machado talk

String amplitudes from FT?

Geyer talk

 \Rightarrow proposal for 4-pt 3-loop superstring amplitude

- Works through 2 loops.
- Would be incredibly fascinating if FT contains enough information to reconstruct ST!

On-shell SMEFTing

Shadmi talk

- New arena where Amplitudes meets experiment!
- Both massless and massive versions of EFT; latter leverages Arkani-Hamed, Huang, Huang massive spinor technology

bolding as higgsing

Geometry of amplitudes

• Talks by Parisi, Trnka, Arkani-Hamed

Parisi talk

the Hypersimplex

the Amplituhedron

- tr[φ³] now looks like string theory (but with more, infinite-dimensional, polytopes)!
- Arkani-Hamed lecture

Turn a positive into a negative (geometry)

Trnka talk

$$\Omega(\mathcal{A}_L) = \left\{ \begin{array}{c} & & \\ &$$

This is IR finite function of one cross ratio

$$\mathcal{F}(g,z) \qquad \qquad z = \frac{\langle AB_0 12 \rangle \langle AB_0 34 \rangle}{\langle AB_0 14 \rangle \langle AB_0 23 \rangle}$$

This object is also natural from the dual Wilson loop picture

(Alday, Buchbinder, Tseytlin, 2011) (Englund, Roiban, 2011)

$$\frac{\langle W_F(x_1, x_2, x_3, x_4) \mathcal{L}(x_0) \rangle}{\langle W_F(x_1, x_2, x_3, x_4) \rangle} = \frac{1}{\pi^2} \frac{x_{13}^2 x_{24}^2}{x_{10}^2 x_{20}^2 x_{30}^2 x_{40}^2} F(g; z)$$

$$\frac{\sqrt{W_F(x_1, x_2, x_3, x_4)}}{Wilson loop with Lagrangian insertion at point x_0}$$

$$F = -g^2 \mathcal{F}$$

 $\Box_{x_0} \bigotimes_{x_0} x_1 x_5 x_4 = \bigotimes_{x_1}$

World's Higgs factory (among other things)

Testing the Standard Model

Higgs talks to almost everyone

20 August 2021

Profiling the Higgs boson

- Since Higgs is so different from any other particle, need to test whether it is exactly as predicted by SM
- Higgs could be portal to new physics
- Measure its properties
 - mass (not predicted by SM)
 - spin (0, got that right!)
 - how often it's produced (σ)
 - branching fractions (Br_i) to all final states, a.k.a. its couplings

But at LHC can only measure $\sigma \times \mathrm{Br}_i$

 \rightarrow Extreme importance of σ

$gg \rightarrow H$ total cross section at N3LO

Mistlberger talk

New: "Parton luminosity monitor" now at same order

- Remarkable sub-% precision!
- Here N3LO PDF evolution may also be important, and definitely including experimental cuts (see below)

Collinear expansions of cross sections

All partons radiated collinear to beam.

- Many applications, including energy-energy-correlator in back-to-back region
- But also: Make N3LO more differential (i.e. implement actual experimental cuts)
- Enabling the next steps in the N3LO revolution

Vita talk

39

20 August 2021

"The black holes of nature are the most perfect macroscopic objects there are in the universe: the only elements in their construction are our concepts of space and time."

- S. Chandrasekhar (1979)

Scattering amplitudes are in many ways the most perfect microscopic objects we can imagine, smooth functions of the external data and little else. Remarkable that we can use them to glean insight about BH's. talks by Zeng, Goldberger, Damour, Heissenberg, Solon

Binary inspiral

Black hole scattering vs. inspiral

- Related by "analytic continuation around $r = \infty$ "
- Accomplish with effective Hamiltonian, e.g. Cheung, Rothstein, Solon, 1808.02489
- Or more directly in terms of trajectories Kälin, Porto, 1910.03008, 1911.09130
- Extremely useful for understanding issues in the bound state too Damour

Remarkable confluence of different approaches at high orders

Novel Approach to Binary Dynamics: Application to the Fifth Post-Newtonian Level

Damour talk

Donato Bini[•],^{1,2} Thibault Damour,³ and Andrea Geralico¹ Tutti Frutti: combine several efficient, complementary tools:

Step 1: Use MPM + EFT to separate off the nonlocal part

EOB - PM

+ worldline approaches

Porto et al.

+ on-shell approaches L. Dixon Amplitudes 2021 Summary

20 August 2021

talks by Zeng, Solon

only 2

First contributions of "amplitudes" to LIGO physics

4PM new state of art for PM

Zeng, Solon talks

$$\mathcal{M}_4(\boldsymbol{q}) = G^4 M^7 \nu^2 |\boldsymbol{q}| \left(\frac{\boldsymbol{q}^2}{4^{\frac{1}{3}}\tilde{\mu}^2}\right)^{-3\epsilon} \pi^2 \left[\mathcal{M}_4^{\mathrm{p}} + \nu \left(\frac{\mathcal{M}_4^{\mathrm{t}}}{\epsilon} + \mathcal{M}_4^{\mathrm{f}}\right)\right]$$

$$\mathcal{M}_{4}^{p} = -\frac{35\left(1 - 18\sigma^{2} + 33\sigma^{4}\right)}{8\left(\sigma^{2} - 1\right)} \qquad \qquad \mathcal{M}_{4}^{t} = h_{1} + h_{2}\log\left(\frac{\sigma + 1}{2}\right) + h_{3}\frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2} - 1}}$$

$$\begin{split} \mathcal{M}_{4}^{\mathrm{f}} &= h_{4} + h_{5} \log\left(\frac{\sigma+1}{2}\right) + h_{6} \frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}} + h_{7} \log(\sigma) - h_{2} \frac{2\pi^{2}}{3} + h_{8} \frac{\operatorname{arccosh}^{2}(\sigma)}{\sigma^{2}-1} + h_{9} \left[\operatorname{Li}_{2}\left(\frac{1-\sigma}{2}\right) + \frac{1}{2} \log^{2}\left(\frac{\sigma+1}{2}\right)\right] \\ &+ h_{10} \left[\operatorname{Li}_{2}\left(\frac{1-\sigma}{2}\right) - \frac{\pi^{2}}{6}\right] + h_{11} \left[\operatorname{Li}_{2}\left(\frac{1-\sigma}{1+\sigma}\right) - \operatorname{Li}_{2}\left(\frac{\sigma-1}{\sigma+1}\right) + \frac{\pi^{2}}{3}\right] + h_{2} \frac{2\sigma(2\sigma^{2}-3)}{(\sigma^{2}-1)^{3/2}} \left[\operatorname{Li}_{2}\left(\sqrt{\frac{\sigma-1}{\sigma+1}}\right) - \operatorname{Li}_{2}\left(-\sqrt{\frac{\sigma-1}{\sigma+1}}\right)\right] \\ &+ \frac{2h_{3}}{\sqrt{\sigma^{2}-1}} \left[\operatorname{Li}_{2}\left(1-\sigma-\sqrt{\sigma^{2}-1}\right) - \operatorname{Li}_{2}\left(1-\sigma+\sqrt{\sigma^{2}-1}\right) + 5\operatorname{Li}_{2}\left(\sqrt{\frac{\sigma-1}{\sigma+1}}\right) - 5\operatorname{Li}_{2}\left(-\sqrt{\frac{\sigma-1}{\sigma+1}}\right) + 2\log\left(\frac{\sigma+1}{2}\right)\operatorname{arccosh}(\sigma)\right] \\ &+ h_{12}\operatorname{K}^{2}\left(\frac{\sigma-1}{\sigma+1}\right) + h_{13}\operatorname{K}\left(\frac{\sigma-1}{\sigma+1}\right) \operatorname{E}\left(\frac{\sigma-1}{\sigma+1}\right) + h_{14}\operatorname{E}^{2}\left(\frac{\sigma-1}{\sigma+1}\right), \end{split}$$

elliptic integrals!

non-local "tail" still missing

Effective one-body approach

Inspired by properties of bound states in QFT.

Interpolates information from various sources, including PN and PM expansions, test particle limit $m_1 \ll m_2$, and numerical relativity results.

Provides accurate gravitational wave templates very close in, faster than NR, allowing many combinations of initial masses and spins.

Buonanno, Damour, 9811091

4PM (sans tail) now competes with previous EOB!

NEW! from Alessandra Buonanno's recent talk at GGI

Crucial to push PM calculations at higher order, and resum them in EOB formalism.

(Damour 19, Antonelli, AB, Steinhoff, van de Meent & Vines 19, Khalil, AB, Steinhoff & Vines in prep 21)

L. Dixon Amplitudes 2021 Summary

20 August 2021

Planar N=4 SYM symbol letters from plabic graphs & tensor diagrams

- Almost arborizable TDs can be "resummed" to give square root letters seen in \overline{Q} computations
- Anastasia was also "rapporteur" for 3 new orbits of n=8 letters found at 3 loops
 Zhang poster

Bootstrapping "Higgs" amplitudes and planar N=4 SYM form factors

• As $m_{top} \rightarrow \infty$, integrate out top quark to get operator $HG^{a}_{\mu\nu}G^{\mu\nu a}$ (stress tensor supermultiplet in N=4)

- Higgs amplitudes equivalent to matrix elements of this operator with multiple gluons: "form factors"
- *Hgg* Sudakov form factor is "too simple", no kinematic dependence beyond overall $(-s_{12})^{-L\epsilon}$
- *Hggg* is "just right", depends on
 2 dimensionless ratios

Hggg kinematics is two-dimensional

2d HPLs

Gehrmann, Remiddi, hep-ph/0008287

Space graded by weight *n*. Every function *F* obeys:

$$\frac{\partial F(u,v)}{\partial u} = \frac{F^u}{u} - \frac{F^w}{1-u-v} - \frac{F^{1-u}}{1-u} + \frac{F^{1-w}}{u+v}$$
$$w = 1 - u - v$$
$$\frac{\partial F(u,v)}{\partial v} = \frac{F^v}{v} - \frac{F^w}{1-u-v} - \frac{F^{1-v}}{1-v} + \frac{F^{1-w}}{u+v}$$

where $F^{u}, F^{v}, F^{w}, F^{1-u}, F^{1-v}, F^{1-w}$ are weight *n*-1 2d HPLs.

Symbol alphabet: $\{u, v, w, 1 - u, 1 - v, 1 - w\}$

To bootstrap *Hggg* amplitude, find as small a subspace of 2d HPLs as possible, construct it to high weight.

Works like magic!

3,4,5 loops 6,7,8 loops

4 hours of MITP Amplitude Games lectures:

https://indico.mitp.uni-mainz.de/event/204/timetable/#20210726

Short Segue: statistics of anomalous dimensions

Spiering talk

Integrability and chaos in SYM theories

Statistics of the *Hggg* planar amplitude: log₁₀ of HPL coefficients (all integers)

Predictions for the future

- Totally magical and highly nontrivial results will be found, rivaling even the ones presented this year!
- There will be 3 new -hedra discovered by 2022, to go along with the amplitu-, cluster-, surface-, binary-, and halohedra discussed this week
- Zvi will finally lose a bottle of wine
- The "loss function" for total magicality will be discovered, enabling deep learning to put us all out of business.

Some more thank yous

To first responders & medical personnel

Public health officials

manufacturers

Vaccine

To all of you and (almost) everyone else for taking vaccines and other precautions for over 17 months

Thank you (again) from Greta

Thank you for not flying to Amplitudes also this year! We'll talk again next year in Prague.

Prague 2022!

Thanks in advance, Jara and Karol!

L. Dixon Amplitudes 2021 Summary

20 August 2021

Extra Slides

Thanks for your attention!

Solving for Planar N=4 SYM Amplitudes

Images: A. Sever, N. Arkani-Hamed

Different routes to perturbative amplitudes

L. Dixon Amplitudes 2021 Summary

20 August 2021

Dual conformal invariance from AdS/CFT + T-duality

T-duality symmetry of string theory

Alday, Maldacena, 0705.0303

- Exchanges string world-sheet variables σ, τ
- $X^{\mu}(\tau, \sigma) = x^{\mu} + k^{\mu}\tau$ + oscillators

$$\rightarrow X^{\mu}(\tau, \sigma) = x^{\mu} + k^{\mu}\sigma + \text{oscillators}$$

- Strong coupling limit of planar N=4 SYM is semi-classical limit of string theory:
 world-sheet stretches tight around
 minimal area surface in AdS.
- Boundary determined by momenta of external states: light-like polygon with null edges = momenta k^μ

► kµ

kμ