Self-Force Theory and LISA

Adam Pound

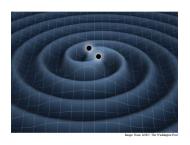
Nordic Winter School on Particle Physics and Cosmology

5-10 Feb 2022

- Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory
 - Gravitational wave astronomy: present and future Gravitational self-force theory
- 2 Lecture 2: the local problem: how to deal with small bodies
- 3 Lecture 3: the global problem: orbital dynamics in Kerr
- 4 Lecture 4: the global problem: black hole perturbation theory

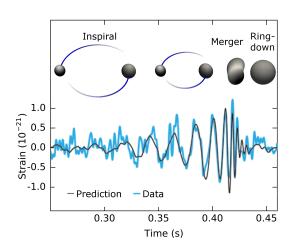
- Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory
 - Gravitational wave astronomy: present and future Gravitational self-force theory
- 2 Lecture 2: the local problem: how to deal with small bodies
- 3 Lecture 3: the global problem: orbital dynamics in Kerr
- 4 Lecture 4: the global problem: black hole perturbation theory

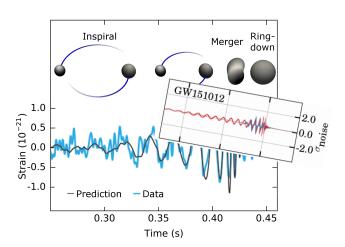
Gravitational waves and binary systems

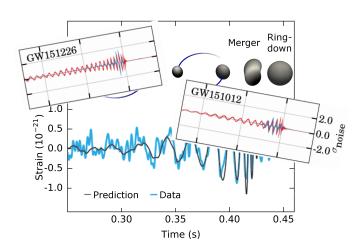


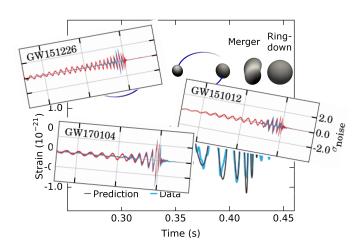
- compact objects (black holes or neutron stars) strongly curve the spacetime around them
- their motion in a binary generates gravitational waves, small ripples in spacetime

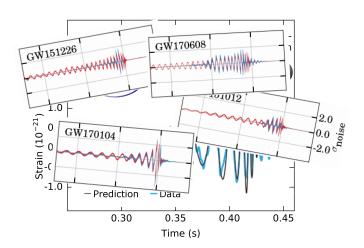
- waves propagate to detector
- to extract meaningful information from a signal, we require models that relate the waveform to the source

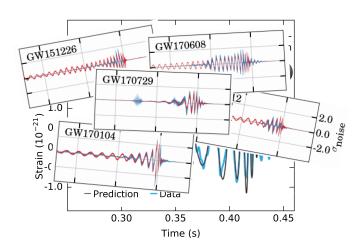


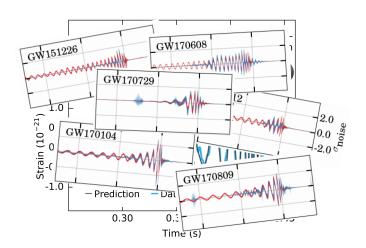


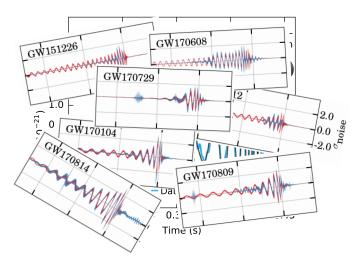


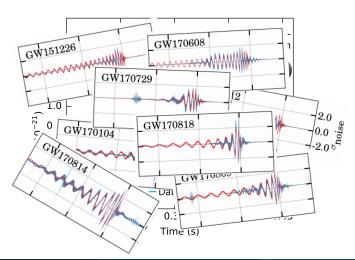


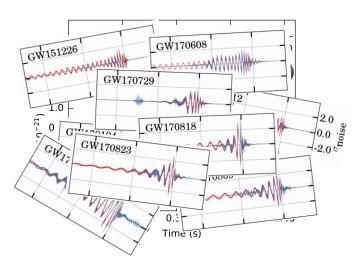






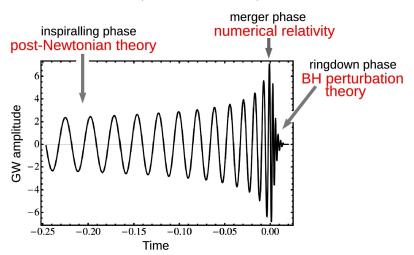






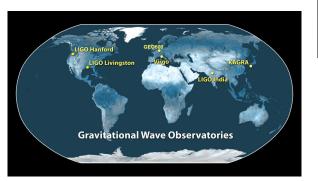
Success relies on theoretical waveforms

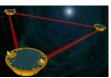
Anatomy of a typical LVK (LIGO-Virgo-KAGRA) waveform



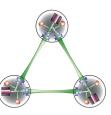
[Image credit: Luc Blanchet]

Many more detectors on the way





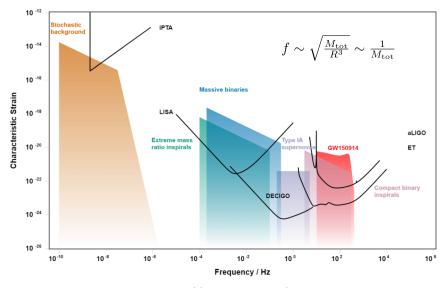
LISA



DECIGO

 \dots and TianQin/Taiji, 3G detectors (Einstein Telescope, Cosmic Explorer), \dots They'll see more types of systems, with greater precision, and further away

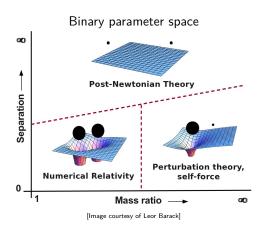
Many more types of signals



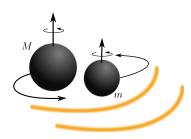
http://gwplotter.com/

The gravitational two-body problem

- modelling has focused on quasicircular, comparable-mass binaries
- already detecting mass ratios $\sim 1:25$ (GW191219_163120)
- we need new and more accurate models



Comparable-mass inspirals



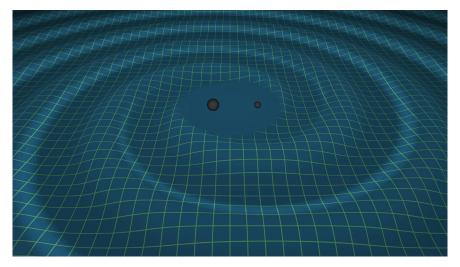
Science

- the common binaries observed by LVK
- LISA will observe earlier stages of the same binaries
- LISA will observe *massive* versions
- constrain populations and histories of BHs, NS equation of state, alternative theories of gravity

Modeling

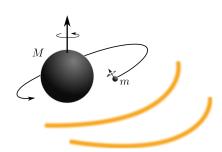
- early stages modeled by post-Newtonian (PN) theory
- late stages modeled by numerical relativity (NR)
- full evolution modeled by EOB

Typical source for ground-based detectors



[animation credit: LIGO and Virgo Collaboration]

Extreme-mass-ratio inspirals (EMRIs)

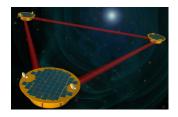


Modeling

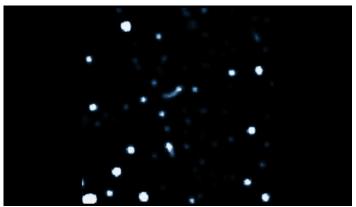
- PN and NR don't work
- use black hole perturbation theory/self-force theory

Science

- LISA will observe extreme-mass-ratio inspirals of stellar compact objects into massive BHs
- small object spends $\sim M/m \sim 10^5 \text{ orbits near BH} \\ \Rightarrow \text{unparalleled probe of} \\ \text{strong-field region around BH}$



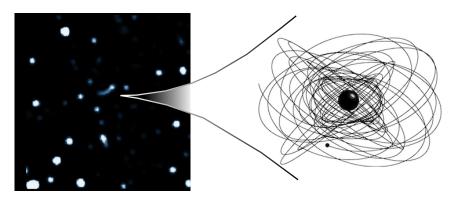
Massive BHs in galactic nuclei



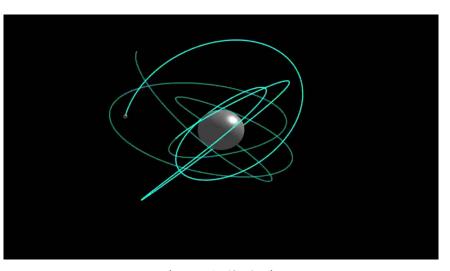
[animation credit: ESO]

closest known star $\sim 400M$ at periapsis, reaching $v\approx 0.1c$

EMRIs: probes of black hole geometry



companion spends $\sim 10^4 \text{--} 10^5$ orbits within LISA band, mostly within 10M of BH



[animation credit: of Steve Drasco]

More on EMRI science

Fundamental physics

- measure central BH parameters: mass and spin to $\sim .01\%$ error, quadrupole moment to $\sim .1\%$
 - \Rightarrow measure deviations from the Kerr relationship $M_l + iS_l = M(ia)^l$
 - ⇒ test no-hair theorem
- measure deviations from Kerr QNMs, presence or absence of event horizon, additional wave polarizations, changes to power spectrum
- constraints on modified gravity will be one or more orders of magnitude better than any other planned experiment

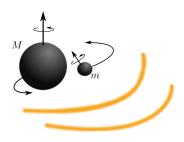
Astrophysics

- ullet constrain mass function n(M) (number of black holes with given mass)
- provide information about stellar environment around massive BHs

Cosmology

• measure Hubble constant to $\sim 1\%$

Intermediate-mass-ratio inspirals (IMRIs)



Science

- intermediate-mass BH merging with either a stellar BH or a massive BH; mass ratios $\sim 10^2 10^4$
- observable by ground-based and space-based detectors

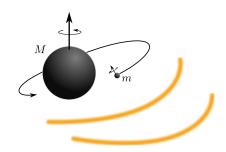
Modeling

- current NR mostly limited to mass ratios $\lesssim 1:10$
- pushes the limits of self-force? (No!)

Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory

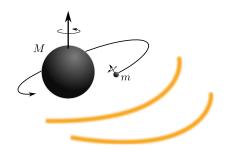
Gravitational wave astronomy: present and future Gravitational self-force theory

- 2 Lecture 2: the local problem: how to deal with small bodies
- 3 Lecture 3: the global problem: orbital dynamics in Kerr
- 4 Lecture 4: the global problem: black hole perturbation theory



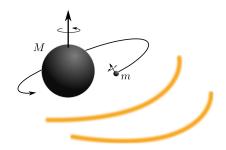
- highly relativistic, strong fields: $R \lesssim 10M$
- ullet disparate lengthscale: m and M

- long timescale: inspiral occurs at a rate $\sim \dot{E}/E \sim m/M^2$
 - \Rightarrow evolution on timescale M^2/m
 - \Rightarrow produces $\sim \frac{M}{m} \sim 10^5$ wave cycles



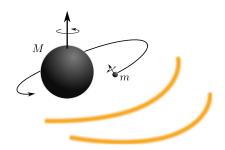
- highly relativistic, strong fields: $R \lesssim 10M$ \Rightarrow can't use post-Newtonian theory
- ullet disparate lengthscale: m and M

• long timescale: inspiral occurs at a rate $\sim \dot{E}/E \sim m/M^2$ \Rightarrow evolution on timescale M^2/m \Rightarrow produces $\sim \frac{M}{m} \sim 10^5$ wave cycles



- highly relativistic, strong fields: $R \lesssim 10M$ \Rightarrow can't use post-Newtonian theory
- disparate lengthscale: m and M
 ⇒ can't use numerical relativity

• long timescale: inspiral occurs at a rate $\sim \dot{E}/E \sim m/M^2$ \Rightarrow evolution on timescale M^2/m \Rightarrow produces $\sim \frac{M}{m} \sim 10^5$ wave cycles



- highly relativistic, strong fields: $R \lesssim 10M$
- \Rightarrow can't use post-Newtonian theory
- ullet disparate lengthscale: m and M
- ⇒ can't use numerical relativity

- long timescale: inspiral occurs at a rate $\sim \dot{E}/E \sim m/M^2$
 - \Rightarrow evolution on timescale M^2/m
 - \Rightarrow produces $\sim \frac{M}{m} \sim 10^5$ wave cycles
 - \Rightarrow need a model that is accurate to $\ll 1$ radian over those $\sim 10^5$ cycles

Gravitational self-force theory

- equivalence principle: a sufficiently small and light object moves on a geodesic of the surrounding spacetime
- but that's an approximation. A small body perturbs the spacetime:

$$g_{\mu\nu} = g_{\mu\nu} + \epsilon h_{\mu\nu}^{(1)} + \epsilon^2 h_{\mu\nu}^{(2)} + \dots$$

where $\epsilon = m/M$

this deformation of the geometry affects m's motion
 ⇒ exerts a self-force

$$\frac{D^2 z^{\mu}}{d\tau^2} = \epsilon F^{\mu}_{(1)} + \epsilon^2 F^{\mu}_{(2)} + \dots$$

- finite-size effects also contribute to the RHS
- reduces to (and proves!) geodesic motion at zeroth order

How high order?

$$\frac{D^2 z^{\mu}}{d\tau^2} = \epsilon F_1^{\mu} + \epsilon^2 F_2^{\mu} + \dots$$

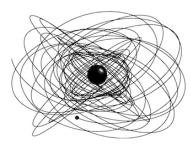
- force is small; inspiral occurs very slowly, on time scale $\tau \sim 1/\epsilon$
- suppose we neglect F_2^μ . Leads to error $\delta\Big(\frac{D^2z^\mu}{d\tau^2}\Big)\sim\epsilon^2$ \Rightarrow error in position $\delta z^\mu\sim\epsilon^2\tau^2$
 - \Rightarrow after time $\tau \sim 1/\epsilon$, error $\delta z^{\mu} \sim 1$
- : accurately describing orbital evolution requires second order

How high order?

$$\frac{D^2 z^{\mu}}{d\tau^2} = \epsilon F_1^{\mu} + \epsilon^2 F_2^{\mu} + \dots$$

- force is small; inspiral occurs very slowly, on time scale $au \sim 1/\epsilon$
- suppose we neglect F_2^μ . Leads to error $\delta\Big(\frac{D^2z^\mu}{d\tau^2}\Big)\sim\epsilon^2$ \Rightarrow error in position $\delta z^\mu\sim\epsilon^2\tau^2$
 - \Rightarrow after time $\tau \sim 1/\epsilon$, error $\delta z^{\mu} \sim 1$
- , and a man of the second
- ∴ accurately describing orbital evolution requires second order

Zeroth order: test mass on a geodesic in Kerr



[image courtesy of Steve Drasco]

- geodesic characterized by three constants $J_A = (E, L_z, Q)$:
 - $oldsymbol{0}$ energy E
 - $oldsymbol{2}$ angular momentum L_z
 - **3** Carter constant Q, related to orbital inclination

- if spin isn't aligned with orbital angular momentum, then orbital plane precesses
 - \Rightarrow orbits are tri-periodic, with distinct radial, polar, and azimuthal periods
- phases $\varphi_A=(\varphi_r,\varphi_\theta,\varphi_\phi)$ with constant frequencies $\frac{d\varphi_A}{dt}=\Omega_A(J_B)$

Hierarchy of self-force models [Hinderer & Flanagan]

- self-force causes $\{E, L_z, Q\}$ to slowly evolve \Rightarrow two time scales: radiation-reaction time $\sim 1/\epsilon$ and orbital time $\sim \epsilon^0$
- on radiation-reaction time, the orbital phases have an expansion

$$\varphi_A = \epsilon^{-1} \varphi_A^{(0)}(\epsilon t) + \epsilon^0 \varphi_A^{(1)}(\epsilon t) + O(\epsilon)$$

• a model that gets $\varphi_A^{(0)}$ and $\varphi_A^{(1)}$ right should be enough for precise parameter extraction

Hierarchy of self-force models [Hinderer & Flanagan]

Adiabatic order

determined by

- \bullet averaged dissipative piece of F_1^μ
 - self-force causes $\{E, L_z, Q\}$ to slowly evolve \Rightarrow two time scales: radiation-reaction time $\sim 1/\epsilon$ and orbital time $\sim \epsilon^0$
- on radiation-reaction time, the orbital phases have an expansion

$$\varphi_A = \epsilon^{-1} \varphi_A^{(0)}(\epsilon t) + \epsilon^0 \varphi_A^{(1)}(\epsilon t) + O(\epsilon)$$

• a model that gets $\varphi_A^{(0)}$ and $\varphi_A^{(1)}$ right should be enough for precise parameter extraction

Hierarchy of self-force models [Hinderer & Flanagan]

Adiabatic order

determined by

- averaged dissipative piece of F_1^μ
- self-force causes $\{E, L_z, Q\}$ to slow \Rightarrow two time scales: radiation-react

First post-adiabatic order

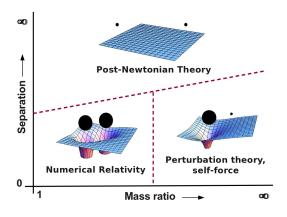
determined by

- averaged dissipative piece of F₂^µ
- rest of F₁^µ
- on radiation-reaction time, the orbital phases have an expansion

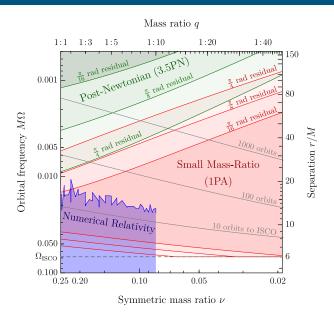
$$\varphi_A = \epsilon^{-1} \varphi_A^{(0)}(\epsilon t) + \epsilon^{0} \varphi_A^{(1)}(\epsilon t) + O(\epsilon)$$

• a model that gets $\varphi_A^{(0)}$ and $\varphi_A^{(1)}$ right should be enough for precise parameter extraction

Domain of validity [van de Meent and Pfeiffer]

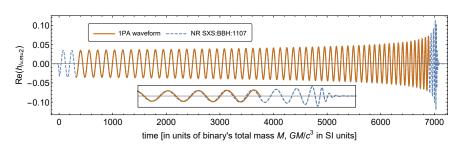


Domain of validity [van de Meent and Pfeiffer]



Quasicircular 1PA waveforms

Comparison with numerical relativity for quasicircular, nonspinning binary with mass ratio $\epsilon=1/10$



- Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory
 - Gravitational wave astronomy: present and future Gravitational self-force theory
- 2 Lecture 2: the local problem: how to deal with small bodies
- 3 Lecture 3: the global problem: orbital dynamics in Kerr
- 4 Lecture 4: the global problem: black hole perturbation theory

- Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory
 - Gravitational wave astronomy: present and future Gravitational self-force theory
- 2 Lecture 2: the local problem: how to deal with small bodies
- 3 Lecture 3: the global problem: orbital dynamics in Kerr
- 4 Lecture 4: the global problem: black hole perturbation theory

- Lecture 1: gravitational wave astronomy, the two-body problem, and self-force theory
 - Gravitational wave astronomy: present and future Gravitational self-force theory
- 2 Lecture 2: the local problem: how to deal with small bodies
- 3 Lecture 3: the global problem: orbital dynamics in Kerr
- 4 Lecture 4: the global problem: black hole perturbation theory