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Perturbative Einstein equations

If the exact metric is ĝαβ = gαβ + hαβ , then

Cα
βγ := Γ̂α

βγ − Γα
βγ = 1

2 ĝαµ(2∇(βhγ)µ − ∇µhβγ)

⇒ ∇̂αT β
γ = ∇αT β

γ + Cβ
αµT µ

γ − Cµ
αγT β

µ

⇒ R̂α
βγδvβ = (∇̂γ∇̂δ − ∇̂δ∇̂γ)vα =

(
Rα

βγδ + 2∇[γCα
δ]β + 2Cα

µ[γCµ
δ]β

)
vβ

⇒ R̂βδ = Rβδ + 2∇[αCα
δ]β + 2Cα

µ[αCµ
δ]β
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2 ĝαµ(2∇(βhγ)µ − ∇µhβγ)

⇒ ∇̂αT β
γ = ∇αT β

γ + Cβ
αµT µ

γ − Cµ
αγT β

µ

⇒ R̂α
βγδvβ = (∇̂γ∇̂δ − ∇̂δ∇̂γ)vα =

(
Rα

βγδ + 2∇[γCα
δ]β + 2Cα

µ[γCµ
δ]β

)
vβ

⇒ R̂βδ = Rβδ + 2∇[αCα
δ]β + 2Cα

µ[αCµ
δ]β

Adam Pound Self-Force Theory and LISA Nordic Winter School, Feb 2022 2 / 31



Perturbative Einstein equations

If the exact metric is ĝαβ = gαβ + hαβ , then
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Perturbative Einstein equations continued

• expand in powers of nonlinearity: ĝαβ = gαβ − hαβ + 1
2 hα

γhγβ + . . .

⇒ R̂αβ = Rαβ + R
(1)
αβ [h] + R

(2)
αβ [h, h] + . . .

• linearized Ricci tensor:

R
(1)
αβ [h] = −1

2∇µ∇µhαβ − 1
2∇α∇β(gµνhµν) + ∇µ∇(αhβ)µ

= −1
2 (∇µ∇µhαβ + 2Rα

µ
β

νhµν) + ∇(α∇µh̄β)µ

(trace-reversed perturbation: h̄αβ = hαβ − 1
2 gαβgµνhµν)

• quadratic piece of Ricci tensor:

R
(2)
αβ [h, h] ∼ ∇h∇h + h∇∇h
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Perturbative Einstein equations continued

• now consider one-parameter family of spacetimes with metric
ĝαβ(ϵ) = gαβ + hαβ(ϵ) and stress-energy T̂αβ(ϵ)

• substitute hαβ = ϵh
(1)
αβ + ϵ2h

(2)
αβ + O(ϵ3)

⇒ R̂αβ = Rαβ + ϵR
(1)
αβ [h(1)] + ϵ2

(
R

(1)
αβ [h(2)] + R

(2)
αβ [h(1), h(1)]

)
+ O(ϵ3)

• substitute T̂αβ(ϵ) = Tαβ + ϵT
(1)
αβ + ϵ2T

(2)
αβ + O(ϵ3)

⇒ Gαβ = 8πTαβ ,

G
(1)
αβ [h(1)] = 8πT

(1)
αβ ,

G
(1)
αβ [h(2)] = 8πT

(2)
αβ − G

(2)
αβ [h(1), h(1)],

...
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Gauge freedom: infinitesimal coordinate transformations
Make a small coordinate transformation:

xµ → x′µ = xµ − ϵξµ + O(ϵ2)

Expand the metric in the two coordinate systems:
ĝµν(x, ϵ) = gµν(x) + ϵh(1)

µν (x) + O(ϵ2)
ĝ′

µν(x′, ϵ) = gµν(x′) + ϵh′(1)
µν (x′) + O(ϵ2)

How are they related? Tensor transformation law:

ĝ′
µν(x′, ϵ) = ∂xα

∂x′µ
∂xβ

∂x′ν ĝαβ(x(x′), ϵ)

Expand xµ(x′ν) and ĝαβ :

ĝ′
µν(x′) = gµν(x′) + ϵ[h(1)

µν (x′) + Lξgµν(x′)] + O(ϵ2)

So we find
h′(1)

µν = h(1)
µν + Lξgµν
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Gauge freedom: geometrical description
• expansion in powers of ϵ is expansion along flow lines through the family:

(ϕX∗
ϵ ĝ)µν(p) = ĝµν(p) + ϵLX ĝµν(p) + 1

2 ϵ2L2
X ĝµν(p) + O(ϵ3)

• h
(1)
µν = LX ĝµν |ϵ=0 and h

′(1)
µν = LY ĝµν |ϵ=0

⇒ ∆h(1)
µν (p) = LY ĝµν(p) − LX ĝµν(p) = LY −X ĝµν(p) = Lξgµν(p)
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Lorenz gauge

• gauge condition ∇βh̄αβ = 0

⇒ R
(1)
αβ [h] = −1

2 (∇µ∇µhαβ + 2Rα
µ

β
νhµν)

G
(1)
αβ [h] = −1

2
(
∇µ∇µh̄αβ + 2Rα

µ
β

ν h̄µν

)
• commonly used in self-force theory
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What is the problem we want to solve?

Need to deal with internal 

dynamics and strong fields 

near object

A small, compact object of mass and size m ∼ l ∼ ϵ
moves through (and influences) spacetime

• Option 1: tackle the problem directly, treat the
body as finite sized, deal with its internal
composition
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What is the problem we want to solve?

Metric here must agree with 

metric outside a small 

compact object; and "here" 

moves in response to field

A small, compact object of mass and size m ∼ l ∼ ϵ
moves through (and influences) spacetime

• Option 2: restrict the problem to distances
s ≫ m from the object, treat m as source of
perturbation of external background gµν :

ĝµν = gµν + ϵh(1)
µν + ϵ2h(2)

µν + . . .

• This is a free boundary value problem
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What is the problem we want to solve?

Distributionally ill defined 

source appears here!

A small, compact object of mass and size m ∼ l ∼ ϵ
moves through (and influences) spacetime

• Option 3: treat the body as a point particle
• takes behavior of fields outside object and

extends it down to a fictitious worldline
• so h

(1)
µν ∼ 1/s (s =distance from object)

• G
(1)
µν [h(2)] ∼ G

(2)
µν [h(1)] ∼ (∇h(1))2 ∼ 1/s4

—no solution unless we restrict it to points off
worldline, which is equivalent to FBVP
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What is the problem we want to solve?

A small, compact object of mass and size m ∼ l ∼ ϵ
moves through (and influences) spacetime

• Option 4: transform the FBVP into an effective
problem using a puncture, a local approximation
to the field outside the object

• this will be the method emphasized here
[Mino, Sasaki, Tanaka 1996; Quinn & Wald 1996; Detweiler & Whiting 2002-03; Gralla &

Wald 2008-2012; Pound 2009-2017; Harte 2012]
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Matched asymptotic expansions

• outer expansion: in external
universe, treat field of M as
background

• inner expansion: in inner region,
treat field of m as background

• in buffer region m ≪ s ≪ M , feed
information between expansions
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Inner expansion: zoom in on body

• use scaled coords s̃ ∼ s/ϵ to keep size of body fixed, send other distances
to infinity as ϵ → 0

• unperturbed body defines background spacetime gbody
µν in inner expansion

• buffer region at asymptotic infinity s ≫ m
⇒ can define multipole moments without integrals over body
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Effective worldline

• Effective worldline γ in external spacetime defined by body’s
“centredness” in body’s spacetime

Concretely,
• in buffer region, write metric in

coordinates centered on γ

• make body at “center” of
coordinates, in that its mass
dipole moment vanishes
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Matching condition

• outer: ĝµν(s, ϵ) = gµν(s) + ϵh
(1)
µν (s) + ϵ2h

(2)
µν (s) + O(ϵ3)

• inner: ĝµν(s/ϵ, ϵ) = gbody
µν (s/ϵ) + ϵH

(1)
µν (s/ϵ) + ϵ2H

(2)
µν (s/ϵ) + O(ϵ3)

• matching condition:
• expand outer expansion for small s:

ĝµν =
∑
n≥0

∑
p

ϵnspĝ(n,p)
µν

• expand inner expansion for small ϵ:

ĝµν =
∑
n≥0

∑
p

ϵn(ϵ/s)pǧ(n,p)
µν

• they must agree:
ĝ(n,p)

µν = ǧ(n+p,−p)
µν
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Form of metric in buffer region

• matching conditions constrains dependence on s:
e.g., inner expansion must not have negative powers of ϵ

⇒ most singular power of s in ϵnh
(n)
µν (s) is ϵn

sn
= ϵn

ϵns̃n
= 1

s̃n

⇒ h
(n)
µν = 1

sn
h(n,−n)

µν + s−n+1h(n,−n+1)
µν + s−n+2h(n,−n+2)

µν + . . .

• h
(n,−n)
µν /s̃n must equal a term in asymptotic expansion gbody

µν (s̃)

⇒ h
(n,−n)
µν is determined by multipole moments of isolated body
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Form of metric in buffer region

Solving the field equations:
• substitute expansion of h

(n)
µν into field equations, solve order by order in s

• expand each h
(n,p)
µν in spherical harmonics

• given a worldline γ, the solution at all orders is fully characterized by
1 body’s multipole moments (and corrections thereto): ∼ Y ℓm

sℓ+1

2 smooth solutions to vacuum wave equation: ∼ sℓY ℓm

• everything else made of (linear or nonlinear) combinations of the above

Self field and regular field
• multipole moments define h

S(n)
µν ; interpret as bound field of body

• smooth homogeneous solutions define h
R(n)
µν ; free radiation, determined

by global boundary conditions
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General solution in buffer region

First order
• h

(1)
µν = h

S(1)
µν + h

R(1)
µν

• h
S(1)
µν ∼ m

s
+ O(s0) defined by mass monopole m

• h
R(1)
µν is undetermined homogenous solution regular at s = 0

Second order [Pound 2009, 2012, Gralla 2012]

• h
(2)
µν = h

S(2)
µν + h

R(2)
µν

• h
S(2)
µν ∼ m2 + Si

s2 + δm + mhR(1)

s
+ O(s0) defined by

1 monopole correction δm
2 spin dipole Si

3 terms ∝ mh
R(1)
µν
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Self-field and effective field

• hS
µν directly determined by object’s multipole moments

• gµν + hR
µν is a smooth vacuum metric determined by global boundary

conditions
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Equations of motion

Solving EFE in buffer region yields equations of motion for object’s effective
center of mass
1st order, arbitrary compact object [MiSaTaQuWa 1996]:

D2zµ

dτ2 = − 1
2

(
gαδ + uαuδ

)(
2hR1

δβ;γ − hR1
βγ;δ

)
uβuγ + 1

2m Rα
βγδuβSγδ + O(m2)

(motion of spinning test body in gµν + hR1
µν )

2nd-order, nonspinning, spherical compact object [Pound 2012]:
D2zµ

dτ2 = − 1
2 (gµν + uµuν)

(
gν

ρ − hR
ν

ρ
) (

2hR
ρσ;λ − hR

σλ;ρ
)

uσuλ + O(m3)

(geodesic motion in g̃µν = gµν + hR
µν)

• these results are derived directly from EFE outside the object; there’s no
regularization of infinities, and no assumptions about hR

µν
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Punctures [Barack et al, Detweiler, Gralla-Wald, Pound]

• replace “self-field” with “singular field”

• replace object with a puncture, a local singularity in the field, moving on
zµ, equipped with the object’s multipole moments
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Replacing an object with a puncture
• truncate local expansion of h

S(n)
µν , call it the puncture h

P(n)
µν

• solve field equations for residual field
hR(n)

µν := h(n)
µν − hP(n)

µν

• move the puncture with eqn of motion (using ∂h
R(n)
µν |γ = ∂h

R(n)
µν |γ)

   out here, solve
 

in here, solve      

  use        in equation of 
    motion to evolve
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Point particle approximation

The following problems are equivalent:
• A FBVP:

G(1)
µν [h(1)] = 0 for xµ ̸= zµ

h(1)
µν = hS(1)

µν + hR(1)
µν for xµ near zµ

• A puncture scheme:

G(1)
µν [hR(1)] = −G(1)

µν [hP(1)] := Seff
µν

• A point particle equation:

G(1)
µν [h(1)] = 8π

∫
uµuν

δ4(xα − zα)√
−g

dτ := 8πT (1)
µν

(coupled to EOM for zµ in each case).

Adam Pound Self-Force Theory and LISA Nordic Winter School, Feb 2022 20 / 31



An aside

These are also equivalent:

G(1)
µν [hR(1)] = −G(1)

µν [hP(1)] := Seff
µν

G(1)
µν [hR(1)] = 8πTµν − G(1)

µν [hP(1)] := Seff
µν
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G(1)
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ordinary derivatives
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Recovering the regular field

• If we solve the point-particle equation for h
(1)
µν , we need to recover h

R(1)
µν

from it
• We could use

hR(1)
µν (z) = lim

x→z
[h(1)

µν (x) − hP(1)
µν (x)]

∂ρhR(1)
µν (z) = lim

x→z
[∂ρh(1)

µν (x) − ∂ρhP(1)
µν (x)]

etc. But hard to implement
• Instead, expand fields in spherical harmonics and subtract at level of

indivdual ℓ modes
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Mode-sum regularization [Barack & Ori and others]

• consider Coulomb potential:

φ = q

|x⃗ − x⃗p|

= q

r>

∑
ℓ

(
r<

r>

)ℓ

Pℓ(cos γ)

• individual ℓ modes are finite at
particle
—divergence comes from sum over ℓ
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Mode-sum regularization continued

hR(1)
µν (z) = lim

x→z

[
h(1)

µν (x) − hS(1)
µν (x)

]
= lim

x→z

∑
ℓm

[
hℓm

µν (t, r)Yℓm(θ, ϕ) − hS,ℓm
µν (t, r)Yℓm(θ, ϕ)

]
= lim

r→rp

∑
ℓm

[
hℓm

µν (t, r)Yℓm(θp, ϕp) − hS,ℓm
µν (t, r)Yℓm(θp, ϕp)

]
= lim

r→rp

∑
ℓ

[
hℓ

µν(t, r) − hS,ℓ
µν (t, r)

]
=

∑
ℓ

[
hℓ

µν(t, rp) − hS,ℓ
µν (t, rp)

]
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Regularization parameters

• In Lorenz gauge, hS,ℓ
µν (t, rp) = Bµν + Cµν/L + O(1/L2) at large

L = ℓ + 1/2
• So

hR(1)
µν (z) =

∑
ℓ

[
hℓ

µν(t, rp) − hS,ℓ
µν (t, rp)

]
=

∑
ℓ

[
hℓ

µν(t, rp) − Bµν − Cµν/L
]

−
∑

ℓ

[
hS,ℓ

µν (t, rp) − Bµν − Cµν/L
]

:=
∑

ℓ

[
hℓ

µν(t, rp) − Bµν − Cµν/L
]

− Dµν

• Method works for any Q[hR(1)], where Q is linear differential operator
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Detweiler-Whiting decomposition

• h
(1)
µν =

∫
Gret

µνµ′ν′(x, x′)T µ′ν′

(1)
√

−g′d4x′

• Split the Green’s function: Gret
µνµ′ν′ = GS

µνµ′ν′ + GR
µνµ′ν′

• This splits h
(1)
µν into

hS(1)
µν =

∫
GS

µνµ′ν′(x, x′)T µ′ν′

(1)

√
−g′d4x′

hR(1)
µν =

∫
GR

µνµ′ν′(x, x′)T µ′ν′

(1)

√
−g′d4x′

• What are GS
µνµ′ν′ and GR

µνµ′ν′?
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Noncausal fields

GS
µνµ′ν′ = 1

2(Gret
µνµ′ν′ + Gadv

µνµ′ν′ − Hµνµ′ν′)

GR
µνµ′ν′ = 1

2(Gret
µνµ′ν′ − Gadv

µνµ′ν′ + Hµνµ′ν′)
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Point particles at second order?

• At first order,

G(1)
µν [hR1] = −G(1)

µν [hP(1)]
⇔ G(1)

µν [h(1)] = 8πT (1)
µν

• At second order,

G(1)
µν [hR(2)] = −G(2)

µν [h(1), h(1)] − G(1)
µν [hP(2)]

⇔ G(1)
µν [h(2)] =

(((((((((((hhhhhhhhhhh
G(2)

µν [h(1), h(1)] + 8πT (2)
µν

...in most gauges
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Point particles at second order?? [Pound]

• In a class of highly regular gauges, G
(2)
µν [h(1), h(1)] is well defined as

distribution
• Idea: leading terms h

(1)
µν ∝ m/s and h

(2)
µν ∝ m2/s2 are s ≫ m expansion

of Schwarzschild metric of small object
—but Schwarzschild metric in Eddington-Finkelsten coords. is linear in m
⇒ can choose EF-like gauge in which

h(1)
µν ∼ m

s
+ . . .

h(2)
µν ∼ mhR(1)

s
+ m2s0 + . . .

and

G(2)
µν [h(1), h(1)] ∼ hR(1)

(
∂∂

m

s

)
+ m2

s2 + O(1/s)
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Point particles at second order [Upton and Pound]

• In these gauges,

G(1)
µν [hR(2)] = −G(2)

µν [h(1), h(1)] − G(1)
µν [hP(2)]

⇔ G(1)
µν [h(2)] = −G(2)

µν [h(1), h(1)] + 8πT (2)
µν

• Tµν = ϵT
(1)
µν + ϵ2T

(2)
µν + O(ϵ3) is stress-energy of point mass in

g̃µν = gµν + hR
µν :

Tµν =
∫

mũµũν
δ4(xα − zα)√

−g̃
dτ̃

—Detweiler stress-energy tensor
• can make a canonical distributional definition of G

(2)
µν to make this true in

other gauges
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Main takeaways

• Singularities introduced in a controlled way, to replace a FBVP with a
simpler, equivalent problem

• Regularization prescriptions recover specific finite quantities defined prior
to the replacement

• Picture emerges of a test mass in an effective metric
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