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Perturbative Einstein equations

If the exact metric is §og = gag + hag, then

o o o 1 ~a
Chy =1y =gy = 99 #(2Vighyyu = Viuhisy)
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Perturbative Einstein equations

If the exact metric is §og = gag + hag, then
a Ha «a 1 AUl
CB’Y = FB’Y — 1By = ig (QV(ﬁh’Y)N - thﬁry)
= Vo TP, = VTP, +C8 1", — Cl TP,
= R gs0” = (V¥ — V5Vy)o® = (R% g5 + 2V, Cff 5 + 205, Chi ) o

CU

= fi@s = Rgs + QV[QC?]B +2C¢ 516

nla
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Perturbative Einstein equations continued

® expand in powers of nonlinearity: §*# = ¢g*# — h®# + 1h* h7P 4 .
= Rap = Rag + R\)IW] + RO [h,H] + ...

® |inearized Ricci tensor:

1 1
R)h] = =5 V" Vihas = 5VaVs(9" hy) + V" NViahg),
1 )
= —5 (V"Vihag + 2Ra"5" ) + Vi V" by,

(trace-reversed perturbation: Baﬁ = has — %gaﬂg“”hw)
® quadratic piece of Ricci tensor:

RZ)[h,h] ~ VhVh + hVVh
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Perturbative Einstein equations continued

® now consider one-parameter family of spacetimes with metric
Jap(€) = gap + hap(€) and stress-energy T 3(€)

® substitute hog = ehsg + €2h(2) +0(é%)
= Rap = Rap + RO D]+ (RG] + RHRY, 1)) +O()

* substitute Thg(e) = Thp + eTélﬂ) + eszﬂ) +0(e)

= Gag = 87TTag,
1) _ (D)
GoplhV] = 87T,
1 2 2
GLa[h®) = 8r T — Golh ™, V],
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Gauge freedom: infinitesimal coordinate transformations

Make a small coordinate transformation:

= oM = ah — " + O(?)
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Gauge freedom: infinitesimal coordinate transformations

Make a small coordinate transformation:
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Gauge freedom: infinitesimal coordinate transformations

Make a small coordinate transformation:
ah = a2t = ot — e 4 O(e?)

Expand the metric in the two coordinate systems:

G (2, €) = guw (x) + €hfy) () + O(e?)

G (@' €) = g (@) + b)) (a') + O(e%)
How are they related? Tensor transformation law:

a0 = S O a0
Expand z/*(z'") and §ags:
G (@) = g (@) + e[hi)(2) + Legun (@)] + O(e)

So we find
- hit(i) = h;(}) + Leguw

v
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Gauge freedom: geometrical description

® expansion in powers of ¢ is expansion along flow lines through the family:

(62 0) v (P) = Guw () + €L x 8y (P) + 22 L% G0 (p) + O(€?)

perturbed spacetime

& background spacetime
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Gauge freedom: geometrical description

® expansion in powers of ¢ is expansion along flow lines through the family:

(62 0) v (P) = Guw () + €L x 8y (P) + 22 L% G0 (p) + O(€?)

perturbed spacetime

& background spacetime

d h;(tlu) = LXQMVLE:O and h:fll) = [-:Ygl,w|e=0

= AL (D) = Ly G (p) = Lx G (D) = Ly~ x v (P) = LG (P)
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® gauge condition Vgﬁaﬁ =0

1 1 v
= R((xﬁ)[h] ~— 5 (V¥Viuhap + 2Ra" 3" hy)

1 _ e
S 5 (V" Vuhas +2Ra*5" )

® commonly used in self-force theory
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What is the problem we want to solve?

A small, compact object of mass and size m ~ [ ~ ¢
moves through (and influences) spacetime

® Option 1: tackle the problem directly, treat the
body as finite sized, deal with its internal
composition

Need to deal with internal
dynamics and strong fields
near object
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What is the problem we want to solve?

A small, compact object of mass and size m ~ [ ~ ¢
moves through (and influences) spacetime
® Option 2: restrict the problem to distances
s > m from the object, treat m as source of
perturbation of external background g,

G = Guv + eh/gly) + ezhgu) + ...

® This is a free boundary value problem

Metric here must agree with
metric outside a small
compact object; and "here"
moves in response to field
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What is the problem we want to solve?

A small, compact object of mass and size m ~ [ ~ €
moves through (and influences) spacetime
® QOption 3: treat the body as a point particle
® takes behavior of fields outside object and
extends it down to a fictitious worldline
® so hf}y) ~ 1/s (s =distance from object)
o G~ G2 V] ~ (VAD)? ~ 1/t
—no solution unless we restrict it to points off
worldline, which is equivalent to FBVP

Distributionally ill defined
source appears here!
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What is the problem we want to solve?

A small, compact object of mass and size m ~ [ ~ €
moves through (and influences) spacetime
® QOption 4: transform the FBVP into an effective
problem using a puncture, a local approximation
to the field outside the object
® this will be the method emphasized here

[Mino, Sasaki, Tanaka 1996; Quinn & Wald 1996; Detweiler & Whiting 2002-03; Gralla &

Wald 2008-2012; Pound 2009-2017; Harte 2012]
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Matched asymptotic expansions

® outer expansion: in external

universe, treat field of M as m
background inner region
® inner expansion: in inner region, (s ~m)
treat field of m as background buffer
® in buffer region m < s < M, feed region

information between expansions

external universe (s ~ M)
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Inner expansion: zoom in on body

® use scaled coords § ~ s/e to keep size of body fixed, send other distances

to infinity as e — 0
® unperturbed body defines background spacetime gz,‘idy in inner expansion
® buffer region at asymptotic infinity s > m

= can define multipole moments without integrals over body

diffeomorphism /)
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Effective worldline

e Effective worldline v in external spacetime defined by body’s
“centredness” in body's spacetime

Concretely,
® in buffer region, write metric in
coordinates centered on «

® make body at “center” of
coordinates, in that its mass
dipole moment vanishes
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Matching condition

* outer: ju,(s,€) = gu(s) + eh'H) (s) + 2h{D (s) + O(e®)

® inner: g, (s/e€) = gzgdy(s/e) + eHW (s/e) + €2H (s/e) +0(e?)
® matching condition:

® expand outer expansion for small s

§ : § : ngpg (n P)
Juv =
n>0 p

® expand inner expansion for small €:

n
guyi§:§ E/Szn(p)
n>0 p

® they must agree:

ﬁfﬁ, ) gLn+p —p)
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Form of metric in buffer region

® matching conditions constrains dependence on s:

e.g., inner expansion must not have negative powers of ¢

n
) . . € € 1

=- most singular power of s in e"h,(f,ﬂ)(s) s —=——=—
s €nsmn sm

a1
= i) = R s TR T TR

° hﬁfj_")/én must equal a term in asymptotic expansion gbgdy(é)

= h,(ﬁ,’_n) is determined by multipole moments of isolated body

13/31
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Form of metric in buffer region

Solving the field equations:

® substitute expansion of hfﬁ,) into field equations, solve order by order in s
® expand each hfﬁ,’p) in spherical harmonics
® given a worldline ~, the solution at all orders is fully characterized by
@ body's multipole moments (and corrections thereto): ~ :;%
® smooth solutions to vacuum wave equation: ~ styem

® everything else made of (linear or nonlinear) combinations of the above

Self field and regular field

® multipole moments define h,stf,")

; interpret as bound field of body

® smooth homogeneous solutions define hE”,E"); free radiation, determined
by global boundary conditions
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General solution in buffer region

First order
o h) =t + st

S(1 m .
° hug,) ~ — + O(s") defined by mass monopole m
S
R(1) , . .
° h,ug ) is undetermined homogenous solution regular at s =0
Second order [Pound 2009, 2012, Gralla 2012]

o h) = hp? + b

; R
. pSD LM s{g 5 5m+’:h +0(s) defined by

@ monopole correction om
@ spin dipole S*
©® terms mhff,ﬁl)
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Self-field and effective field

y K 4

full metric g,,,, "self field" hfw effective metric g, + hﬁ,,

° hlS“, directly determined by object's multipole moments

® g+ h}j‘y is a smooth vacuum metric determined by global boundary
conditions
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Equations of motion

Solving EFE in buffer region yields equations of motion for object's effective
center of mass
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Equations of motion

Solving EFE in buffer region yields equations of motion for object's effective
center of mass

1st order, arbitrary compact object missTaquwa 1096

D%z

(0" )R, — HEL) w0 S RS0 4 O(m?)

(motion of spinning test body in g, + k%)

Adam Pound

Self-Force Theory and LISA
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Equations of motion

Solving EFE in buffer region yields equations of motion for object's effective
center of mass

2nd-order, nonspinning, spherical compact object (pound 2012:
D2+

T = 3 (g ) (0 - hEP) (205 — hEy ) uTu + O(m?)

oA aAip

(geodesic motion in g, = guv + hyy,)
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Equations of motion

Solving EFE in buffer region yields equations of motion for object's effective
center of mass

2nd-order, nonspinning, spherical compact object (pound 2012:
D2+

T = 3 (g ) (0 - hEP) (205 — hEy ) uTu + O(m?)

oA aAip

(geodesic motion in g, = guv + hyy,)

® these results are derived directly from EFE outside the object; there's no
regularization of infinities, and no assumptions about hE‘V
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P U n Ctu res [Barack et al, Detweiler, Gralla-Wald, Pound]

® replace “self-field” with “singular field”

y B 4

full metric g,,,, "self field" hfw effective metric g, + h}}v
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P U n Ctu res [Barack et al, Detweiler, Gralla-Wald, Pound]

® replace “self-field” with “singular field”

full metric g,,,, effective metric g, + hi,

singular field 1S,
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P U n Ctu res [Barack et al, Detweiler, Gralla-Wald, Pound]

® replace “self-field” with “singular field”

full metric g,,,, effective metric g, + hi,

singular field 1S,

® replace object with a puncture, a local singularity in the field, moving on
z*, equipped with the object’'s multipole moments
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Replacing an object with a puncture

® truncate local expansion of hig,"), call it the puncture hf,g")
® solve field equations for residual field
R(n) ._ _ pP(
AR = p(n) — BT

® move the puncture with eqn of motion (using 8h,7f,,(")|7 = 5‘h5§")|7)

use h%, in equation of
motion to evolve z#

out here, solve
GHRV] =0

. G ] = ~G) D]
in here, solve

GIDINR®] = ~GPO)
R(2 2 P(2
GI™] = ~GEAD) ~ GO AP
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Point particle approximation

The following problems are equivalent:
e A FBVP:

7 (1)] _
G =0 for zt # 2
1) _ ps0 R(1
hf“,) = hﬂsj) + hmg ) for z/ near 2"
® A puncture scheme:
G = —GIP W] = S5
® A point particle equation:

(™ — 2%)

dr == 87TT(,1/)
/—g 2

GE}V) (hM] = SW/UMU,,

(coupled to EOM for z* in each case).
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These are also equivalent:

1 R(1 1)1, P(1) eff
GHRRY] = —GORPV] = 5¢

GOV = 87T, — GWRTW] = gel
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ordinary derivatives

G W) = {GRIBT D))= 537

GOV = 87T, — GWRTW] = gel

Thes
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ordinary derivatives

GORRW] = {GRRPDV]):= sef
GO = 8xT,, —(GRRTW]):= sei

/

distributional derivatives

Thes
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Recovering the regular field

® |f we solve the point-particle equation for hf},,) we need to recover hff,gl

from it

)

® We could use
BEO(2) = lim [ (2) — B (@)
Ophpst (2) = lim [9,h0) (z) — D,h oM ()]

T—z

etc. But hard to implement

® |nstead, expand fields in spherical harmonics and subtract at level of
indivdual ¢ modes
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Mode-sum regularization s os et

"

z

® consider Coulomb potential:

. q
=157
|7 — xp|
AN
-1 (<> Py(cos)
USS 7 USS

® individual £ modes are finite at
particle
—divergence comes from sum over ¢
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Mode-sum regularization continued

PO (2) = lim [AD)(@) — 5P ()]
= lim [A0 (t,7)Yem (6, 0) — B (8,7) Yo (6, 6)]
Im
= Tlinrl Z [hﬁg(ta 7)Y (Op, ¢p) — hifm(t,T)ng(@p, ¢p)]
P m
= lim > [ (tr) = Bt )]
14

A

14
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Regularization parameters

. In Lorenz gauge, h5;!(t,7p) = By, + Cpy/L + O(1/L?) at large
— 01 1)2
* So

B (2) =3 [ (t7) = i (1)
= > [Mu(ts75) = Buw = Gy /L]
ZZ (15 (8:75) = By = C/ 1]
= 2 [ (&, 75) = Byus = /L] = Dy,
7

® Method works for any Q[hR(l)], where Q is linear differential operator
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Detweiler-Whiting decomposition

W) = [ G o T
* Split the Green's function: G5}/, = Guuu o+ qu o

This splits h,(w) into

S(1) 4
hS /GWW ThY N/ —gds
h}}ﬁl :/GEDM/D/(JI,ZE/)TG)V V—g'd*a’

What are qu ., and G&

[ 1/’
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Noncausal fields

1
S re adv
G ryl = §(G,uut,u/u’ + G — Hl“,#/l,/)

gy prp'v!
1
R ret adv
Gy = §(Guvu’v/ -Gl + Hywpr)

Gret GS GR

uvp'v! pvp v pvp v
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Noncausal fields

1
S re adv
G ryl = §(G,uut,u/u’ + G — H,uu;t’u’)

gy prp'v!
1
R t d
GP‘VH/V/ == §(GLeVH/V/ - GZVLIV/ + H/»“/H/V/)
1 S1 R1
hl, hS}, KRl
Xz Xz Xz
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@ Lecture 1: gravitational wave astronomy, the two-body problem, and
self-force theory
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Point particles beyond linear order
© Lecture 3: the global problem: orbital dynamics in Kerr

@ Lecture 4: the global problem: black hole perturbation theory
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Point particles at second order?

® At first order,

G[(_Lll/) [h’Rl] _ _G,Etlu) [h'F’(l)]

o GURO=8rTY

nv

® At second order,
GLLINRE] = G D, h D) = G
& GUmYI=¢ W—rgr7®

v
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Point particles at second order?

® At first order,

G[(_Lll/) [h’Rl] _ _G,Etlu) [h'F’(l)]

o GURO=8rTY

nv

® At second order,
GLLINRE] = G D, h D) = G
& GUmYI=¢ W—rgr7®

v

...in most gauges
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Point particles at second order?? pu.

® In a class of highly regular gauges, G( )[h(l hM] is well defined as
distribution

® |dea: leading terms h,(},,) x m/s and h,(f,,) x mz/s2 are s > m expansion
of Schwarzschild metric of small object
—but Schwarzschild metric in Eddington-Finkelsten coords. is linear in m

= can choose EF-like gauge in which
A C) L
p +
R(1)
2 mh 2.0
W~ T

and

2)1p (1 1 R(1 m m
GR[AM, D] ~ pRO) (aa?) + 2+ 0(1/s)
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Point particles at second order s s rowa

® |n these gauges,
GRIR®) = ~GER A0 K] - G
17,271 _ 2) 13 (1) 1 (1 2
& GNP =-GA Y, V] + 8T

o T, =T\ + TS + O(e%) is stress-energy of point mass in
Juv = Guv + hEy:
(x> — 2%)
T, = /mﬂ Uy ———=—dT
—Detweiler stress-energy tensor
® can make a canonical distributional definition of G,(f,,) to make this true in
other gauges
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Main takeaways

® Singularities introduced in a controlled way, to replace a FBVP with a
simpler, equivalent problem

® Regularization prescriptions recover specific finite quantities defined prior
to the replacement

® Picture emerges of a test mass in an effective metric
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Outline

© Lecture 3: the global problem: orbital dynamics in Kerr
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Outline

@ Lecture 4: the global problem: black hole perturbation theory
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