Double Copy and Higher-Spin Amplitudes

Henrik Johansson
Uppsala U. \& Nordita
Feb 8, 2022
Nordic Winter School on Particle
Physics and Cosmology

Based on recent work with:
Marco Chiodaroli, Paolo Pichini [2107.14779]

Outline

- Motivation and review of the double copy
- Application to PN calculations
- Scattering amplitudes for Kerr
- EFTs underlying the low-spin Kerr amplitudes
- Higher-spin amplitudes \rightarrow see talk by Pichini!
- Conclusion

Perturbative Einstein gravity (textbook)

$$
\mathcal{L}=\frac{2}{\kappa^{2}} \sqrt{g} R, \quad g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

de Donder gauge

$$
+P_{6}\left(k_{1}, k_{2} \eta_{\mu_{1} \nu_{1}} \eta_{\mu_{2} \mu_{3}} \eta_{\nu_{2} \nu_{3}}\right)+2 P_{3}\left(k_{1 \mu_{2}} k_{1 \nu_{3}} \eta_{\mu_{1} \nu_{1}} \eta_{\nu_{2} \mu_{3}}\right)-P_{3}\left(k_{1 \nu_{2}} k_{2 \mu_{1}} \eta_{\nu_{1} \mu_{1}} \eta_{\mu_{3} \nu_{3}}\right)
$$

$$
+P_{3}\left(k_{1 \mu 3} k_{2 \nu 3} \eta_{\mu 1 \mu 2} \eta_{\nu \nu \nu 2}\right)+P_{6}\left(k_{1 \mu 3} k_{1 \nu 3} \eta_{\mu \mu \mu 2} \eta_{\nu \nu 2 a}\right)+2 P_{6}\left(k_{1 \mu 2} k_{2 \nu 9} \eta_{\nu \mu \mu 1} \eta_{\nu 1 \mu 3}\right)
$$

$$
\left.+2 P_{3}\left(k_{1 \mu_{2}} k_{2 \mu_{1}} \eta_{\nu_{2} \mu_{3}} \eta_{\nu_{3} \nu_{1}}\right)-2 P_{3}\left(k_{1} \cdot k_{2} \eta_{\nu_{1} \mu_{2}} \eta_{\nu_{2} \mu_{3}} \eta_{\nu_{3} \mu_{1}}\right)\right] \quad \text { After symmetrization }
$$

$$
\text { ~ } 100 \text { terms ! }
$$

higher order vertices...

complicated diagrams:

$\sim 10^{7}$ terms

$\sim 10^{21}$ terms

On-shell simplifications

$\approx \sim$

Graviton plane wave: $|\operatorname{spin} 2\rangle \sim|\operatorname{spin} 1\rangle \otimes|\operatorname{spin} 1\rangle$

$$
\varepsilon^{\mu}(p) \varepsilon^{\nu}(p) e^{i p \cdot x}
$$

Yang-Mills polarization

On-shell 3-graviton vertex:

Gravity scattering amplitude:

$$
M_{\text {tree }}^{\mathrm{GR}}(1,2,3,4)=\frac{s t}{u}\left[A_{\text {tree }}^{\mathrm{YM}}(1,2,3,4)\right]^{2}
$$

Gravity processes = "squares" of gauge theory ones

Kawai-Lewellen-Tye Relations ('86)

closed string \sim (left open string) \times (right open string)

$\mathcal{A}_{n}(\sigma)=\left.\int_{z_{\sigma(1)}<\cdots<z_{\sigma(n)}} \frac{d z_{1} \cdots d z_{n}}{\operatorname{vol}(\mathrm{SL}(2, \mathbb{R}))} \prod_{i<j}\left|z_{i j}\right|^{\alpha^{\prime} k_{i} \cdot k_{j}} \exp \left[\sum_{i<j} \frac{e_{i} \cdot e_{j}}{\left(z_{i}-z_{j}\right)^{2}}+\frac{k_{[i} \cdot e_{j]}}{z_{i}-z_{j}}\right]\right|_{\text {multi-linear }}$
KLT relations \rightarrow closed string amplitudes

$$
\mathcal{M}_{n}=\sum_{\sigma, \rho}^{(n-3)!} \mathcal{A}_{n}(\sigma) \mathcal{S}_{\alpha^{\prime}}[\sigma \mid \rho] \widetilde{\mathcal{A}}_{n}(\rho)
$$

$$
S[\sigma \mid \rho] \text { poly. of } s_{i j}=\left(p_{i}+p_{j}\right)^{2}
$$

$$
\mathcal{S}_{\alpha^{\prime}}[\sigma \mid \rho] \text { poly. of } \sin \left(\pi \alpha^{\prime} s_{i j}\right)
$$

Field theory limit $\Rightarrow M_{n}=\sum_{\sigma, \rho} A_{n}(\sigma) S[\sigma \mid \rho] \widetilde{A}_{n}(\rho)$

Kawai-Lewellen-Tye Relations ('86)

closed string \sim (left open string) \times (right open string)

Field theory limit $\Rightarrow M_{n}=\sum_{\sigma, \rho}^{(n-3)!} A_{n}(\sigma) S[\sigma \mid \rho] \widetilde{A}_{n}(\rho)$
Double copy: $\quad($ gravity $)=($ gauge $) \otimes(\widetilde{\text { gauge }})$

Color-kinematics duality

Consider Yang-Mills 4p tree amplitude:

color factors: $\quad c_{s}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}$
kinematic numerators:

$$
\begin{aligned}
n_{s}= & {\left[\left(\varepsilon_{1} \cdot \varepsilon_{2}\right) p_{1}^{\mu}+2\left(\varepsilon_{1} \cdot p_{2}\right) \varepsilon_{2}^{\mu}-(1 \leftrightarrow 2)\right]\left[\left(\varepsilon_{3} \cdot \varepsilon_{4}\right) p_{3 \mu}+2\left(\varepsilon_{3} \cdot p_{4}\right) \varepsilon_{4 \mu}-(3 \leftrightarrow 4)\right] } \\
& +s\left[\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(\varepsilon_{2} \cdot \varepsilon_{4}\right)-\left(\varepsilon_{1} \cdot \varepsilon_{4}\right)\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\right],
\end{aligned}
$$

consider gauge transformation $\delta A_{\mu}=\partial_{\mu} \phi$

$$
\left.n_{s}\right|_{\varepsilon_{4} \rightarrow p_{4}}=s\left[\left(\varepsilon_{1} \cdot \varepsilon_{2}\right)\left(\left(\varepsilon_{3} \cdot p_{2}\right)-\left(\varepsilon_{3} \cdot p_{1}\right)\right)+\operatorname{cyclic}(1,2,3)\right] \equiv s \alpha(\varepsilon, p)
$$

Color-kinematics duality

Consider Yang-Mills 4p tree amplitude:

color factors: $\quad c_{s}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}$
kinematic numerators:

$$
\begin{aligned}
n_{s}= & {\left[\left(\varepsilon_{1} \cdot \varepsilon_{2}\right) p_{1}^{\mu}+2\left(\varepsilon_{1} \cdot p_{2}\right) \varepsilon_{2}^{\mu}-(1 \leftrightarrow 2)\right]\left[\left(\varepsilon_{3} \cdot \varepsilon_{4}\right) p_{3 \mu}+2\left(\varepsilon_{3} \cdot p_{4}\right) \varepsilon_{4 \mu}-(3 \leftrightarrow 4)\right] } \\
& +s\left[\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(\varepsilon_{2} \cdot \varepsilon_{4}\right)-\left(\varepsilon_{1} \cdot \varepsilon_{4}\right)\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\right]
\end{aligned}
$$

consider gauge transformation $\delta A_{\mu}=\partial_{\mu} \phi$

$$
\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\left.\frac{n_{u} c_{u}}{u}\right|_{\varepsilon_{4} \rightarrow p_{4}}=\underbrace{\left(c_{s}+c_{t}+c_{u}\right)}_{=0 \text { Jacobi identity }} \alpha(\varepsilon, p)
$$

Color-kinematics duality

Consider Yang-Mills 4p tree amplitude:

color factors: $\quad c_{s}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}$
kinematic numerators:

$$
\begin{aligned}
n_{s}= & {\left[\left(\varepsilon_{1} \cdot \varepsilon_{2}\right) p_{1}^{\mu}+2\left(\varepsilon_{1} \cdot p_{2}\right) \varepsilon_{2}^{\mu}-(1 \leftrightarrow 2)\right]\left[\left(\varepsilon_{3} \cdot \varepsilon_{4}\right) p_{3 \mu}+2\left(\varepsilon_{3} \cdot p_{4}\right) \varepsilon_{4 \mu}-(3 \leftrightarrow 4)\right] } \\
& +s\left[\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(\varepsilon_{2} \cdot \varepsilon_{4}\right)-\left(\varepsilon_{1} \cdot \varepsilon_{4}\right)\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\right]
\end{aligned}
$$

$c_{s}+c_{t}+c_{u}=0 \quad$ Jacobild. (gauge invariance)

$n_{s}+n_{t}+n_{u}=0 \quad$ kinematic Jacobild. (diffeomorphism inv.)

Double copy

Color and kinematics are dual...
$c_{s}+c_{t}+c_{u}=0 \quad \Leftrightarrow \quad n_{s}+n_{t}+n_{u}=0$
...replace color by kinematics $\quad c_{i} \rightarrow n_{i} \quad \mathrm{BCJ}$ double copy

$$
\frac{n_{s}^{2}}{s}+\frac{n_{t}^{2}}{t}+\left.\frac{n_{u}^{2}}{u}\right|_{\varepsilon_{4}^{\mu \nu} \rightarrow p_{4}^{\mu} \varepsilon_{4}^{\nu}+p_{4}^{\nu} \varepsilon_{4}^{\mu}}=2\left(n_{s}+n_{t}+n_{u}\right) \alpha(\varepsilon, p)=0
$$

General multiplicity and loop order

Gauge theories are controlled by a hidden kinematic Lie algebra \rightarrow Amplitude represented by cubic graphs:

$$
\mathcal{A}_{m}^{(L)}=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}{ }^{\text {color factors }}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \leftarrow \text { propagators }
$$

Color \& kinematic numerators satisfy same relations:

General multiplicity and loop order

Gauge theories are controlled by a hidden kinematic Lie algebra \rightarrow Amplitude represented by cubic graphs:

$$
\mathcal{A}_{m}^{(L)}=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i} \curvearrowleft \text { color factors }}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \longleftarrow \text { propagators }
$$

Color \& kinematic numerators satisfy same relations:

$$
f^{d a c} f^{c b e}-f^{d b c} f^{c a e}=f^{a b c} f^{d c e}
$$

	$T^{a} T^{b}-T^{b} T^{a}=f^{a b c} T^{c}$	commutation identity
Bern, Carrasco, HJ	$n_{i}-n_{j}=n_{k}$	

Gravity as a double copy

Gravity amplitudes obtained by replacing color with kinematics

$$
\begin{aligned}
\mathcal{A}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}-}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \\
\mathcal{M}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}
\end{aligned}
$$

- (pure YM$) \otimes($ pure YM$)=\mathrm{GR}+\phi+B^{\mu \nu}$
- $\mathrm{QCD} \otimes \mathrm{QCD}=\mathrm{GR}+$ matter
- $(\mathrm{YM}) \otimes\left(\mathrm{YM}+\phi^{3}\right)=\mathrm{GR}+\mathrm{YM}$ and many more...
$\rightarrow($ gauge sym $) \otimes($ gauge sym $)=$ diffeo sym

Generality of double copy

trees:
loops:

Some generalizations:
Gauge theory
\rightarrow Theories not truncations of max SUGRA
Gravity
Bern, Carrasco, HJ ('10)
\rightarrow Theories with fundamental matter HJ, Ochirov; Chiodaroli, Gunaydin, Roiban
\rightarrow Spontaneously broken theories Chiodaroli, Gunaydin, HJ, Roiban
\rightarrow Form factors Boels, Kniehl, Tarasov, Yang
\rightarrow Gravity off-shell symmetries from YM Anastasiou, Borsten, Duff, Hughes, Nagy
\rightarrow Classical (black hole) solutions Luna, Monteiro, O'Connell, White; Ridgway, Wise; Goldberger,...
\rightarrow Amplitudes in curved background Adamo, Casali, Mason, Nekovar, Alday, Zhou, Roiban, Teng....
\rightarrow CHY scattering eqs, twistor strings Cachazo, He, Yuan, Skinner, Mason, Geyer, Adamo, Monteiro,..
\rightarrow New double copies for string theory Mafra, Schlotterer, Stieberger, Taylor, Broedel, Carrasco...
\rightarrow Conformal gravity HJ, Nohle
... Azevedo, Marco Chiodaroli, HJ, Schlotterer

Double copy and gravitational waves

Explicit PM calculations done using double copy:
Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove (‘18)
Bern, Cheung, Roiban, Shen, Solon, Zeng ('19)+ Ruf, Parra-Martinez ('21)
Brandhuber, Chen, Travaglini, Wen (21)
Some methods developed for PM calc. using double copy:
Bjerrum-Bohr, Cristofoli, Damgaard, Gomez+Brown;
Cristofoli, Gonzo, Kosower, O'Connell;
Maybee, O'Connell, Vines; Luna, Nicholson, O'Connell, White; ...

GR + non-spinning matter

$\begin{aligned} & \text { Exact formula } \\ & \text { tree-level GR: }\end{aligned} \quad M_{n}=\sum_{\Gamma} \frac{\mathcal{N}^{2}(\Gamma)}{D_{\Gamma}}$
Brandhuber, Chen, HJ, Travaglini, Wen
(all cubic graphs Γ)
Numerator function:

$$
\mathcal{N}\left(\phi_{0}, 1,2, \ldots, n-1, \phi_{n}\right)=\sum_{\tau \in \operatorname{OP}(2, \ldots, n-1)} \frac{v \cdot F_{1 \tau_{1}} \cdot V_{\tau_{2}} \cdot F_{\tau_{2}} \cdots V_{\tau_{r}} \cdot F_{\tau_{r}}}{(n-2) v \cdot p_{1} v \cdot p_{1 \tau_{1}} \cdots v \cdot p_{1 \tau_{1} \tau_{2} \cdots \tau_{r}}}
$$

$\xi \xi \cdots \xi$
comes from heavy-mass limit of non-spining particle

Schwarzschild BH ?

$$
\begin{aligned}
F_{\sigma}^{\mu \nu} & =\left(F_{\sigma_{1}} \cdot F_{\sigma_{2}} \cdots F_{\sigma_{s}}\right)^{\mu \nu} \\
V_{\tau_{i}}^{\mu \nu} & =p_{1 \tau_{1} \cdots \tau_{i-1} \cap 1 \ldots \tau_{i[1]}}^{\mu} v^{\nu}
\end{aligned}
$$

Similar formulas: Edison, Teng; Mangan, Cheung; Bjerrum-Bohr, Damgaard, Sondergaad, Vanhove

Scattering amplitudes for Kerr BH

Recap of massive spinor helicity

Following AHH we bold massive spinors, and symmetrize little group

$$
\left.\left.|\mathbf{i}\rangle \equiv\left|i^{a}\right\rangle z_{i, a}, \quad \mid \mathbf{i}\right] \equiv \mid i^{a}\right] z_{i, a}
$$

Analytic fn's of the spinors can now be constructed

$$
\langle\mathbf{1 2}\rangle^{2 s}=\text { degree- } 4 s \text { polynomial in }\left(z_{1}^{a}, z_{2}^{a}\right)
$$

Massive polarizations are null vectors Chiodaroli, HJ, Pichini

$$
\varepsilon_{i}^{\mu}=\frac{\left.\langle\mathbf{i}| \sigma^{\mu} \mid \mathbf{i}\right]}{\sqrt{2} m_{i}}=\frac{\left[\mathbf{i}\left|\bar{\sigma}^{\mu}\right| \mathbf{i}\right\rangle}{\sqrt{2} m_{i}}=\left(z_{i}^{1}\right)^{2} \varepsilon_{i,-}^{\mu}-\sqrt{2} z_{i}^{1} z_{i}^{2} \varepsilon_{i, L}^{\mu}-\left(z_{i}^{2}\right)^{2} \varepsilon_{i,+}^{\mu}
$$

Guarantees that higher-spin states are symmetric, transverse and traceless

$$
\varepsilon_{i}^{\mu_{1} \mu_{2} \cdots \mu_{s}} \equiv \varepsilon_{i}^{\mu_{1}} \varepsilon_{i}^{\mu_{2}} \cdots \varepsilon_{i}^{\mu_{s}}=\text { degree- } 2 s \text { polynomial in } z_{i}^{a}
$$

(and gamma-traceless for fermions)

AHH amplitudes \leftrightarrow Kerr BH?

Arkani-Hamed, Huang, Huang wrote down natural higher-spin amplitudes:
Gauge th 3pt:

$$
A\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 A^{+}\right)=m x \frac{\langle\mathbf{1 2}\rangle^{2 s}}{m^{2 s}}, \quad A\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 A^{-}\right)=\frac{m}{x} \frac{[\mathbf{1 2}]^{2 s}}{m^{2 s}}
$$

Gravity 3pt:

$$
M\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 h^{+}\right)=i m^{2} x^{2} \frac{\langle\mathbf{1 2}\rangle^{2 s}}{m^{2 s}}, \quad M\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 h^{-}\right)=i \frac{m^{2}}{x^{2}} \frac{[\mathbf{1 2}]^{2 s}}{m^{2 s}}
$$

Shown to reproduce Kerr by: Guevara, Ochirov, Vines
Gravity Compton ampl. $\quad M\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 h^{+}, 4 h^{+}\right)=i \frac{\langle\mathbf{1 2}\rangle^{2 s}[34]^{4}}{m^{2 s-4} s_{12} t_{13} t_{14}}$
via BCFW recursion?

$$
M\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 h^{-}, 4 h^{+}\right)=i \frac{\left[4\left|p_{1}\right| 3\right\rangle^{4-2 s}([4 \mathbf{1}]\langle 32\rangle+[4 \mathbf{2}]\langle 3 \mathbf{1}\rangle)^{2 s}}{s_{12} t_{13} t_{14}}
$$

What EFTs give the AHH amplitudes ?

Rewrite the 3 pt AHH amplitudes on covariant form \rightarrow identify theory

1) introduce generating series, e.g.

Chiodaroli, HJ, Pichini; HJ, Ochirov

$$
\sum_{s=0}^{\infty} A\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 A^{+}\right)=\frac{m x}{1-\frac{\langle\mathbf{1 2}\rangle^{2}}{m^{2}}}
$$

2) rewrite covariantly (for both helicity sectors):

$$
\begin{aligned}
& \sum_{s=0}^{\infty} A\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 A\right)=A_{\phi \phi A}+\frac{A_{W W A}-\left(\varepsilon_{1} \cdot \varepsilon_{2}\right)^{2} A_{\phi \phi A}}{\left(1+\varepsilon_{1} \cdot \varepsilon_{2}\right)^{2}+\frac{2}{m^{2}} \varepsilon_{1} \cdot p_{2} \varepsilon_{2} \cdot p_{1}} \\
& A_{\phi \phi A} \equiv i \sqrt{2} \varepsilon_{3} \cdot p_{1}, \quad A_{W W A} \equiv i \sqrt{2}\left(\varepsilon_{1} \cdot \varepsilon_{2} \varepsilon_{3} \cdot p_{2}+\varepsilon_{2} \cdot \varepsilon_{3} \varepsilon_{1} \cdot p_{3}+\varepsilon_{3} \cdot \varepsilon_{1} \varepsilon_{2} \cdot p_{1}\right)
\end{aligned}
$$

$s=0 \quad \& \quad s=1 / 2 \quad$ minimally coupled scalar \& fermion
$s=1 \quad$ W-boson $\quad s=3 / 2$ charged/massive gravitino

EFTs for AHH 3pt gravity amplitudes?

Are related to the gauge th. ones via KLT
$M\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 h^{ \pm}\right)=i A\left(1 \phi^{s_{\mathrm{L}}}, 2 \bar{\phi}^{s_{\mathrm{L}}}, 3 A^{ \pm}\right) A\left(1 \phi^{s_{\mathrm{R}}}, 2 \bar{\phi}^{s_{\mathrm{R}}}, 3 A^{ \pm}\right)$
Works for any decomposition: $s=s_{\mathrm{L}}+s_{\mathrm{R}}$
Preferred decomposition $s=1+(s-1)$ give fewest derivatives:
$\sum_{2 s=0}^{\infty} M\left(1 \phi^{s}, 2 \bar{\phi}^{s}, 3 h\right)=M_{0 \oplus 1 / 2}+A_{W W A}\left(A_{0 \oplus 1 / 2}+\frac{A_{1 \oplus 3 / 2}-\left(\varepsilon_{1} \cdot \varepsilon_{2}\right)^{2} A_{0 \oplus 1 / 2}}{\left(1+\varepsilon_{1} \cdot \varepsilon_{2}\right)^{2}+\frac{2}{m^{2}} \varepsilon_{1} \cdot p_{2} \varepsilon_{2} \cdot p_{1}}\right)$
From double-copy structure, we can infer:
$s=0, s=1 / 2, s=1, s=3 / 2$ minimally-coupled matter
$s=2 \quad$ Kaluza-Klein graviton
(Proca th, massive gravitino)

Also works for Compton, and higher-point amplitudes (Lagrangians known)

Summary of EFTs

The AHH amplitudes for $s \leq 2$ admit double copies to any multiplicity $(\mathrm{YM}+$ scalar $) \otimes(\mathrm{YM}+$ scalar $)=(\mathrm{GR}+$ scalar $)$ $(\mathrm{YM}+$ scalar $) \otimes(\mathrm{YM}+$ fermion $)=(\mathrm{GR}+$ fermion $)$
$(\mathrm{YM}+$ scalar $) \otimes(\mathrm{YM}+\mathrm{W}$-boson $)=(\mathrm{GR}+$ Proca $)$
$(\mathrm{YM}+\mathrm{W}$-boson $) \otimes(\mathrm{YM}+$ fermion $)=(\mathrm{GR}+$ massive gravitino $)$
$(\mathrm{YM}+\mathrm{W}$-boson $) \otimes(\mathrm{YM}+\mathrm{W}$-boson $)=(\mathrm{GR}+$ massive KK graviton $)$
Lagrangians unique: have no non-minimal terms beyond cubic order in fields Can be used for $\left(S^{\mu}\right) \leq 4$ PM/PN calculations. see Levi's lectures Compton $\left(S^{\mu}\right)^{4}$ yet to be confirmed via other methods (BHPT, worldline).

What special about the EFTs ?

The $s \leq 1$ gauge theories and $s \leq 2$ gravities admit a massless limit and all states that carries vector indices acquires a gauge symmetry
$s=1 \quad(\mathrm{YM}+\mathrm{W}$-boson) \rightarrow non-abelian gauge symmetry
$s=3 / 2 \quad(\mathrm{GR}+$ massive gravitino $) \rightarrow$ supersymmetry
$s=2 \quad(\mathrm{GR}+$ massive KK graviton $) \rightarrow$ General covariance

See Pichini's talk for the higher-spin continuation!
(Note: we only study amplitudes with 2 massive states, and $n-2$ massless in which case the enlarged theories consistently truncate)

Conclusions

- Studied double copies for massive $s \leq 2$ states coupled to GR
- All can be written in terms gauge theories with massive spin $s \leq 1$
- For Compton amplitudes with $s=5 / 2$ things are more complicated
- Obtained EFT Lagrangians to all order in the fields.
- Do the amplitudes match Kerr black holes?
- Further work is needed for spin-3 and higher amplitudes.
- Outlook: results should be useful for simplifying PN/PM calculations!

Extra Slides

Which gauge theories obey C-K duality

- Pure $\mathcal{N}=0,1,2,4$ super-Yang-Mills (any dimension) $\{$
- Self-dual Yang-Mills theory O'Connell, Monteiro ('11)
- Heterotic string theory Stieberger, Taylor ('14)
- Yang-Mills $+F^{3}$ theory Broedel, Dixon ('12)
- QCD, super-QCD, higher-dim QCD HJ, Ochirov ('15); Kälin, Mogull ('17)
- Generic matter coupled to $\mathcal{N}=\mathbf{0 , 1 , 2 , 4}$ super-Yang-Mills $\left\{\begin{array}{l}\text { Chiodaroli, Gunaydin, } \\ \text { Roiban; HJ, Ochirov ('14) }\end{array}\right.$
- Spontaneously broken $\mathcal{N}=\mathbf{0 , 2 , 4} \mathbf{S Y M}$ Chiodaroli, Gunaydin, HJ, Roiban ('15)
- Yang-Mills + scalar ϕ^{3} theory Chiodaroli, Gunaydin, HJ, Roiban ('14)
- Bi-adjoint scalar ϕ^{3} theory $\left\{\begin{array}{l}\text { Bern, de Freitas, Wong ('99), Bern, Dennen, Huang; } \\ \text { Du, Feng, Fu; Bjerrum-Bohr, Damgaard, Monteiro, O'Connell }\end{array}\right.$
- NLSM/Chiral Lagrangian Chen, Du ('13)
- $D=3$ BLG theory (Chern-Simons-matter) $\left\{\begin{array}{l}\text { Bargheer, He, McLoughlin; } \\ \text { Huang, HJ, Lee ('12-13) }\end{array}\right.$
- (Non-)Abelian Z-theory Carrasco, Mafra, Schlotterer ('16)
- Dim-6 gauge theories: $(D F)^{2}+F^{3}+\ldots$ HJ, Nohle ('17)

Which gravity theories are double copies

- Pure $\mathcal{N}=4,5,6,8$ supergravity ($2<\mathrm{D}<11$) KLT ('86), Bern, Carrasco, HJ ('08-'10)
- Einstein gravity and pure $\mathcal{N}=1,2,3$ supergravity HJ, Ochirov ('14)
- $D=6$ pure $\mathcal{N}=(1,1)$ and $\mathcal{N}=(2,0)$ supergravity $H J$, Kälin, Mogull ('17)
- Self-dual gravity 0'Connell, Monteiro ('11)
- Closed string theories Mafra, Schlotterer, Stieberger ('11); Stieberger, Taylor ('14)
- Einstein $+R^{3}$ theory Broedel, Dixon ('12)
- Abelian matter coupled to supergravity $\left\{\begin{array}{l}\text { Carrasco, Chiodaroli, Gunaydin, Roiban ('12) } \\ H J, O c h i r o v ~(' 14-15) ~\end{array}\right.$
- Magical sugra, homogeneous sugra Chiodaroli, Gunaydin, HJ, Roiban ('15)
- (S)YM coupled to (super)gravity Chiodaroli, Gunaydin, HJ, Roiban ('14)
- Spontaneously broken YM-Einstein gravity Chiodaroli, Gunaydin, HJ, Roiban ('15)
- $D=3$ supergravity (BLG Chern-Simons-matter theory) ${ }^{2}\left\{\begin{array}{l}\text { Bargheer, He, McLoughlin; } \\ \text { Huans HJ, }\end{array}\right.$
- Born-Infeld, DBI, Galileon theories (CHY form) Cachazo, He, Yuan ('14)
- $\mathcal{N}=0,1,2,4$ conformal supergravity HJ, Nohle ('17)

