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On-shell simplifications
Graviton plane wave:
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Gravity scattering amplitude:

Yang-Mills polarization

Yang-Mills vertex

Yang-Mills amplitude

On-shell 3-graviton vertex:

Gravity processes = “squares” of gauge theory ones



Kawai-Lewellen-Tye Relations (’86)

Field theory limit ⇒

closed string ∼ (left open string) × (right open string)

KLT relations à closed string amplitudes
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Introduction: Double copy – from string to field theory

Birth of double copy: KLT relations among string amplitudes at tree-level
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Color-kinematics duality

Some Reviews that can help with writing:
Marco’s review: 1607.04129
Cheung’s review: 1708.03872
Zvi+Yu-tin: arXiv:1103.1869
JJ+Henrik: arXiv:1103.3298
JJ Tasi lectures: 1506.00974

1. Introduction

1.1. Motivation: Complexity of gravity vs. YM

Discuss gravity: How do we characterize gravity? How do we compute? Why are
Feynman rules so complicated? How many terms are there? Can we do better?

Give 3pt vertex: the bad (100 terms) and the good (62) terms.

1.2. Invitation: 4pt example

Consider the four-gluon tree amplitude in Yang-Mills theory, we can write it as a sum
over three channels

AYM
4 =

nscs
s

+
ntct
t

+
nucu
u

, (1.1)

where the Mandelstam variables are defined as s = (p1 + p2)2, t = (p2 + p3)2, u = (p1 + p3)2,
and they obey s+ t+ u = 0. The s-channel color factor is

cs = fa1a2bf ba3a4 , (1.2)

and the s-channel kinematic numerator is

ns =
[

(ε1 · ε2)pµ1 + 2(ε1 · p2)εµ2 − (1 ↔ 2)
][

(ε3 · ε4)p3µ + 2(ε3 · p4)ε4µ − (3 ↔ 4)
]

+s
[

(ε1 · ε3)(ε2 · ε4)− (ε1 · ε4)(ε2 · ε3)
]

, (1.3)

where the momenta and polarization vectors satisfy on-shell conditions p2i = εi · pi = 0. The
other color factors and numerators are given by cyclic permutations of the particle labels
(1,2,3): ctnt = csns

∣

∣

1→2→3→1
and cunu = csns

∣

∣

1→3→2→1
. Note that the kinematic numerators

are here built out of the cubic Feynman rule on the first line of eq. (1.3) plus a contact term
on the second line that corresponds to the quartic gluon vertex. Thus the quartic vertex is
democratically absorbed into the three channels.

We can check that this expression is a physical amplitude by confirming that it is gauge
invariant. That is, replace the polarization vector ε4 → p4 and the amplitude should vanish.
Upon doing this replacement for the s-channel numerator we get after some algebra the
non-zero result

ns

∣

∣

∣

ε4→p4
= s
[

(ε1 · ε2)
(

(ε3 · p2)− (ε3 · p1)
)

+ cyclic(1, 2, 3)
]

≡ sα(ε, p) , (1.4)
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consider gauge transformation

1

2 3

which is no surprise since individual diagrams should be gauge dependent. For the full
amplitude we get

nscs
s

+
ntct
t

+
nucu
u

∣

∣

∣

ε4→p4
= (cs + ct + cu)α(ε, p) , (1.5)

where α(ε, p) is the expression in eq. (1.4). Hence the amplitude is gauge invariant if the
following combination of color factors vanish

cs + ct + cu = fa1a2bf ba3a4 + fa2a3bf ba1a4 + fa3a1bf ba2a4 = 0 . (1.6)

This is the standard Jacobi identity, which indeed must be satisfied by the structure con-
stants in a gauge theory since they come from a Lie algebra.

So far there are no surprizes; however, consider the kinematic three-term expression that
is analogous to the Jacobi identity, it also vanishes

ns + nt + nu = 0 . (1.7)

It is important that the on-shell conditions are used to show this. The significance of this
identity cannot be overstated. We will refer to the existence of such kinematic identities
that are analogous to color identities as: color-kinematics duality. It turns out that they
constitute an ubiquitous, yet well-hidden, structure of gauge theories.

The fact that the kinematic factors satisfy the same relations as the color factors suggest
that they are mutually exchangeable. Indeed, we can swap color factors for kinematic factors
in the YM four-point amplitude, which gives a new amplitude of the form

AYM
4

∣

∣

∣

ci→ni

≡ MGR
4 =

n2
s

s
+

n2
t

t
+

n2
u

u
. (1.8)

The new amplitude doubles up the kinematic numerators, and so we refer to it as a double
copy. The amplitude has the following properties: the external states are captured by
symmetric polarization tensors εµν = εµεν , the interactions are of the two-derivative type,
and the amplitude is invariant under linearized diffeomorphism transformations. Assuming
that the polarization vectors are null ε2 = 0 (circular polarization), implying that εµν is
traceless, this amplitude must describe the scattering of four gravitons in General Relativity.

The diffeomorphism invariance of the amplitude requires some elaboration. Consider a
linearized diffeomorphism of the asymptotic (weak) graviton field hµν . The diffeomorphism
is parametrized by the function ξµ and take the simple form

δhµν = ∂µξν + ∂νξµ . (1.9)

Translating this to momentum space implies that a diffeomorphism invariant amplitude
should vanish upon replacing a polarization tensor as: εµν → pµεν + pνεµ. Applying this to
leg 4 of the amplitude, we get

n2
s

s
+

n2
t

t
+

n2
u

u

∣

∣

∣

εµν4 →pµ4 ε
ν
4+pν4ε

µ
4

= 2(ns + nt + nu)α(ε, p) = 0 , (1.10)

5

4

= 0   Jacobi identity
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are here built out of the cubic Feynman rule on the first line of eq. (1.3) plus a contact term
on the second line that corresponds to the quartic gluon vertex. Thus the quartic vertex is
democratically absorbed into the three channels.

We can check that this expression is a physical amplitude by confirming that it is gauge
invariant. That is, replace the polarization vector ε4 → p4 and the amplitude should vanish.
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Some Reviews that can help with writing:
Marco’s review: 1607.04129
Cheung’s review: 1708.03872
Zvi+Yu-tin: arXiv:1103.1869
JJ+Henrik: arXiv:1103.3298
JJ Tasi lectures: 1506.00974

1. Introduction

1.1. Motivation: Complexity of gravity vs. YM

Discuss gravity: How do we characterize gravity? How do we compute? Why are
Feynman rules so complicated? How many terms are there? Can we do better?

Give 3pt vertex: the bad (100 terms) and the good (62) terms.

1.2. Invitation: 4pt example
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Consider Yang-Mills 4p tree amplitude: 
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Double copy

Properties of ampl:

…replace color by kinematics                         BCJ double copy

1

2 3

4

Color and kinematics are dual…

spin-2 scattering

which is no surprise since individual diagrams should be gauge dependent. For the full
amplitude we get

nscs
s

+
ntct
t

+
nucu
u

∣

∣

∣

ε4→p4
= (cs + ct + cu)α(ε, p) , (1.5)

where α(ε, p) is the expression in eq. (1.4). Hence the amplitude is gauge invariant if the
following combination of color factors vanish

cs + ct + cu = fa1a2bf ba3a4 + fa2a3bf ba1a4 + fa3a1bf ba2a4 = 0 . (1.6)

This is the standard Jacobi identity, which indeed must be satisfied by the structure con-
stants in a gauge theory since they come from a Lie algebra.

So far there are no surprizes; however, consider the kinematic three-term expression that
is analogous to the Jacobi identity, it also vanishes

ns + nt + nu = 0 . (1.7)

It is important that the on-shell conditions are used to show this. The significance of this
identity cannot be overstated. We will refer to the existence of such kinematic identities
that are analogous to color identities as: color-kinematics duality. It turns out that they
constitute an ubiquitous, yet well-hidden, structure of gauge theories.

The fact that the kinematic factors satisfy the same relations as the color factors suggest
that they are mutually exchangeable. Indeed, we can swap color factors for kinematic factors
in the YM four-point amplitude, which gives a new amplitude of the form

AYM
4

∣

∣

∣

ci→ni

≡ MGR
4 =

n2
s

s
+

n2
t

t
+

n2
u

u
. (1.8)

The new amplitude doubles up the kinematic numerators, and so we refer to it as a double
copy. The amplitude has the following properties: the external states are captured by
symmetric polarization tensors εµν = εµεν , the interactions are of the two-derivative type,
and the amplitude is invariant under linearized diffeomorphism transformations. Assuming
that the polarization vectors are null ε2 = 0 (circular polarization), implying that εµν is
traceless, this amplitude must describe the scattering of four gravitons in General Relativity.

The diffeomorphism invariance of the amplitude requires some elaboration. Consider a
linearized diffeomorphism of the asymptotic (weak) graviton field hµν . The diffeomorphism
is parametrized by the function ξµ and take the simple form

δhµν = ∂µξν + ∂νξµ . (1.9)

Translating this to momentum space implies that a diffeomorphism invariant amplitude
should vanish upon replacing a polarization tensor as: εµν → pµεν + pνεµ. Applying this to
leg 4 of the amplitude, we get

n2
s

s
+

n2
t

t
+

n2
u

u

∣

∣

∣

εµν4 →pµ4 ε
ν
4+pν4ε

µ
4

= 2(ns + nt + nu)α(ε, p) = 0 , (1.10)

5

which is no surprise since individual diagrams should be gauge dependent. For the full
amplitude we get

nscs
s

+
ntct
t

+
nucu
u

∣

∣

∣

ε4→p4
= (cs + ct + cu)α(ε, p) , (1.5)

where α(ε, p) is the expression in eq. (1.4). Hence the amplitude is gauge invariant if the
following combination of color factors vanish

cs + ct + cu = fa1a2bf ba3a4 + fa2a3bf ba1a4 + fa3a1bf ba2a4 = 0 . (1.6)

This is the standard Jacobi identity, which indeed must be satisfied by the structure con-
stants in a gauge theory since they come from a Lie algebra.

So far there are no surprizes; however, consider the kinematic three-term expression that
is analogous to the Jacobi identity, it also vanishes

ns + nt + nu = 0 . (1.7)

It is important that the on-shell conditions are used to show this. The significance of this
identity cannot be overstated. We will refer to the existence of such kinematic identities
that are analogous to color identities as: color-kinematics duality. It turns out that they
constitute an ubiquitous, yet well-hidden, structure of gauge theories.

The fact that the kinematic factors satisfy the same relations as the color factors suggest
that they are mutually exchangeable. Indeed, we can swap color factors for kinematic factors
in the YM four-point amplitude, which gives a new amplitude of the form

AYM
4

∣

∣

∣

ci→ni

≡ MGR
4 =

n2
s

s
+

n2
t

t
+

n2
u

u
. (1.8)

The new amplitude doubles up the kinematic numerators, and so we refer to it as a double
copy. The amplitude has the following properties: the external states are captured by
symmetric polarization tensors εµν = εµεν , the interactions are of the two-derivative type,
and the amplitude is invariant under linearized diffeomorphism transformations. Assuming
that the polarization vectors are null ε2 = 0 (circular polarization), implying that εµν is
traceless, this amplitude must describe the scattering of four gravitons in General Relativity.

The diffeomorphism invariance of the amplitude requires some elaboration. Consider a
linearized diffeomorphism of the asymptotic (weak) graviton field hµν . The diffeomorphism
is parametrized by the function ξµ and take the simple form

δhµν = ∂µξν + ∂νξµ . (1.9)

Translating this to momentum space implies that a diffeomorphism invariant amplitude
should vanish upon replacing a polarization tensor as: εµν → pµεν + pνεµ. Applying this to
leg 4 of the amplitude, we get

n2
s

s
+

n2
t

t
+

n2
u

u

∣

∣

∣

εµν4 →pµ4 ε
ν
4+pν4ε

µ
4

= 2(ns + nt + nu)α(ε, p) = 0 , (1.10)

5

ß gravity ampl.

diffeomorphism inv.
2-derivative interactions 



General multiplicity and loop order
Gauge theories are controlled by a hidden kinematic Lie algebra
à Amplitude represented by cubic graphs:  

Color & kinematic 
numerators satisfy 
same relations:

Jacobi
identity

propagators

color factors

numerators

(b)(b)

− =

(a)

− =

Figure 2: Pictorial form of the basic color and kinematic Lie-algebraic relations: (a) the Jacobi
relations for fields in the adjoint representation, and (b) the commutation relation for fields in a
generic complex representation.

Due to the Lie algebra of the gauge symmetry, color factors obey simple linear relations

arising from the Jacobi identities and commutation relations,

f̃ d̂âĉf̃ ĉb̂ê − f̃ d̂b̂ĉf̃ ĉâê = f̃ âb̂ĉf̃ d̂ĉê

(tâ) k̂
ı̂ (tb̂) ȷ̂

k̂
− (tb̂) k̂

ı̂ (tâ) ȷ̂

k̂
= f̃ âb̂ĉ (tĉ) ȷ̂

ı̂

}

⇒ ci − cj = ck , (2.3)

and this is depicted diagrammatically in figure 2. The identity ci − cj = ck is understood to
hold for triplets of diagrams (i, j, k) that differ only by the subdiagrams drawn in figure 2,

but otherwise have common graph structure.

The linear relations among the color factors ci imply that the corresponding kinematic

coefficients ni/Di are in general not unique, as should be expected from the underlying gauge
dependence of individual (Feynman) graphs.

It was observed by Bern, Carrasco and one of the current authors (BCJ) [3], that within

the (gauge) freedom of redefining the numerators there exist particularly nice choices, such

that the resulting numerator factors ni obey the same general algebraic identities as the
color factors ci. That is, there is a numerator relation for every color Jacobi of commutation

relation (2.45) and a numerator sign flip for every color factor sign flip (2.2):

ni − nj = nk ⇔ ci − cj = ck , (2.4a)

ni → −ni ⇔ ci → −ci . (2.4b)

Amplitudes that satisfy these relations are said to exhibit color/kinematics duality. An

important point is that a numerator factor ni entering different kinematic relations may not

take the same functional form in all such relations; rather, momentum conservation and
changes of integration variables must be used to allign the momentum assignment between

the three graphs participating in the relation.

The relations in eq. (2.4) define a kinematic algebra of numerators, which is suggestive

of an underlying kinematic Lie algebra. While not much is known about this Lie algebra,
which should be infinite-dimensional due to the functional nature of the kinematic Jacobi

relations, in the special case of the self-dual sector of YM theory the kinematic algebra was

shown to be isomorphic to that of the area-preserving diffeomorphisms [13].
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Gravity as a double copy
Gravity amplitudes obtained by replacing color with kinematics

double copy 

(Einstein-Yang-Mills)

(Einstein-Maxwell)

and many more…

(gauge sym)⌦ (gauge sym) = di↵eo sym



Generality of double copy
GravityGauge theory

Some generalizations:
à Theories not truncations of max SUGRA
à Theories with fundamental matter
à Spontaneously broken theories
à Form factors
à Gravity off-shell symmetries from YM  
à Classical (black hole) solutions 
à Amplitudes in curved background 
à CHY scattering eqs, twistor strings
à New double copies for string theory  
à Conformal gravity

→

→

“squared”
numerators 

Bern, Carrasco, HJ (’10) 

Mafra, Schlotterer, Stieberger, Taylor, Broedel, Carrasco…
… Azevedo, Marco Chiodaroli, HJ, SchlottererHJ, Nohle

Luna, Monteiro, O’Connell, White; Ridgway, Wise; Goldberger,...  

Chiodaroli, Gunaydin, HJ, Roiban

HJ, Ochirov; Chiodaroli, Gunaydin, Roiban

trees:

loops:

HJ, Ochirov; Chiodaroli, Gunaydin, Roiban

Cachazo, He, Yuan, Skinner, Mason, Geyer, Adamo, Monteiro,..

Boels, Kniehl, Tarasov, Yang

Anastasiou, Borsten, Duff, Hughes, Nagy

Adamo, Casali, Mason, Nekovar, Alday, Zhou, Roiban, Teng,…



Binary black hole merger in three phases:

I will focus on the  
conservative potential (figure from 1610.03567)

Double copy and gravitational waves

Explicit PM calculations done using double copy:
Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove (‘18)
Bern, Cheung, Roiban, Shen, Solon, Zeng (‘19)+ Ruf, Parra-Martinez (‘21)
Brandhuber, Chen, Travaglini, Wen (21)

Some methods developed for PM calc. using double copy:
Bjerrum-Bohr, Cristofoli, Damgaard, Gomez+Brown;
Cristofoli, Gonzo, Kosower, O’Connell;
Maybee, O’Connell, Vines; Luna, Nicholson, O'Connell, White; …

See Kosower’s
lectures!



GR + non-spinning matter

Exact formula 
tree-level GR:

(all cubic graphs    )

Numerator function: 

Brandhuber, Chen, HJ, 
Travaglini, Wen 

Similar formulas: Edison, Teng; 
Mangan, Cheung;
Bjerrum-Bohr, Damgaard,
Sondergaad, Vanhove

3 Abstract tensor currents and algebraic construction

In this section, we propose a novel framework for exploring the kinematic algebra behind
the tree-level BCJ numerators in D-dimensional Yang-Mills theory.

We begin with the observation that the BCJ numerators of massless quark-gluon

amplitudes can be related to those of pure gluon amplitudes by taking (some of) the
quarks to be soft. As an inviting example, we consider the tree-level scattering of

three gluons with a quark-antiquark pair. In this simple case, the BCJ numerators
of multiperipheral diagrams always contain a piece obtained directly by the Feynman
rules for massless quarks, and an additional piece that is proportional to an inverse

propagator. This additional piece vanishes in the limit that the quark momentum
becomes soft, namely,

n

(

p4q

p3p2p1

)

= v̄/ε1(/p1 + /q)/ε2(/p12 + /q)/ε3u+
1

3
(p1 + q)2 v̄[/ε1, /ε2]/ε3u

= v̄/ε1/p1/ε2/p12/ε3u+O(q) , (3.1)

where pij = pi + pj, and on the second line we retain only the q-independent terms.

For this quark-gluon scattering process, all the BCJ numerators can be expressed in
terms of the multiperipheral ones (3.1) via commutation relations. For example, the
numerator for the following diagram is given by two consecutive commutators,

n(123; v̄u) ≡ n

(

p4

qp1

p2 p3
)

= n

(

p4q

p3

]

p2

][[

p1

)

(3.2)

= v̄/ε1/p1/ε2/p12/ε3u− v̄/ε2/p2/ε1/p12/ε3u− v̄/ε3/p3/ε1/p13/ε2u+ v̄/ε3/p3/ε2/p23/ε1u+O(q) ,

and the other independent numerator n(132; v̄u) is obtained from n(123; v̄u) by the
relabeling 2 ↔ 3.

We note that one can view v̄/εiu and v̄/piu as Lorentz contractions of εi and pi
with a vector v̄(q)γµu(p4) ∝ εµ(p4, q). Up to normalization, it behaves as a gluon
polarization vector of a fourth gluon with momentum p4. Due to the Dirac equation

of the involved spinors, it obeys ε·p4 = ε·q = 0, where q can now be interpreted as a
reference momentum. More generally, quantities of the form v̄/εi · · · /pk · · · /εj · · · /plu are

Lorentz contractions of ε’s and p’s with tensorial objects v̄γµi · · · γµk · · · γµj · · · γµlu. If
we choose to antisymmetrize them they will also obey the physical requirements of the
polarization of a antisymmetric tensor field. However, for now we are interested in

obtaining the vector contributions without antisymmetrizing the tensors. Instead we
can eliminate the tensor contractions, except for the canonically ordered one ū/ε1/ε2/ε3v,
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(

p4

qp1

p2 p3
)

= n

(

p4q

p3

]

p2

][[

p1

)

(3.2)

= v̄/ε1/p1/ε2/p12/ε3u− v̄/ε2/p2/ε1/p12/ε3u− v̄/ε3/p3/ε1/p13/ε2u+ v̄/ε3/p3/ε2/p23/ε1u+O(q) ,
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we choose to antisymmetrize them they will also obey the physical requirements of the
polarization of a antisymmetric tensor field. However, for now we are interested in

obtaining the vector contributions without antisymmetrizing the tensors. Instead we
can eliminate the tensor contractions, except for the canonically ordered one ū/ε1/ε2/ε3v,
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Recap of massive spinor helicity

2.1 Massive spinor parametrization

Consider a four-dimensional momentum pµ that obeys the on-shell condition p2 = m2.
Let us decompose it in terms of the null vectors kµ, qµ,

pµ = kµ +
m2

2p · q q
µ , (2.1)

where we take qµ to be an arbitrary reference vector, and kµ is then defined by the
decomposition. Note that the decomposition implies the identity p · q = k · q.

Using the fact that k, q are null, we may now employ the massless spinor-helicity
formalism. First, we rewrite eq. (2.1) into bi-spinors by contracting the momenta
with σµ

αα̇ matrices,

σ · p = |k⟩[k|+ m2

2p · q
|q⟩[q| ≡ |pa⟩[pa| . (2.2)

We intentionally suppress the (α, α̇) spinor indices of the Lorentz group SL(2,C) ∼
SO(1, 3). We then recognize that the two terms can be reinterpreted as the contrac-
tion of two massive spinors that carry a, b, . . . indices of the little group SU(2) ∼
SO(3). The massive spinors can be identified as

|pa⟩ =
(

|q⟩ m
⟨k q⟩

|k⟩

)

, |pa] =
(

|k]
|q] m

[k q]

)

. (2.3)

The mirrored spinors ⟨pa| and [pa| are obtained, as implied by the notation, by

transposing the massless spinors: |k⟩→⟨k|. Since the little group is SU(2), we lower
and raise those indices using the rules |pa⟩ = ϵab|pb⟩ and |pa⟩ = ϵab|pb⟩; that is, we
always multiply with the Levi-Civita symbols from the left. The antisymmetric Levi-

Civita symbols are normalized as ϵ12 = ϵ21 = 1. For real momentum p with E > 0,
m2 > 0, the angle and square spinors are complex conjugates of each other, up to

a similarity transform. More specifically, (|pa])∗ = Ω|pa⟩, (|pa⟩)∗ = ΩT |pa], where
Ω is a 2-by-2 unitary matrix. Because the massive on-shell spinors are related by

complex conjugation, one is justified to think of them as the two chiral components
of a massive Majorana spinor.

In general, we will consider amplitudes that depend on many momenta pµi , with

particle labels i = 1, . . . , n, which makes it convenient to simplify the notation by
only indicating the particle label inside the spinor

|ia⟩ ≡ |pai ⟩ , |ia] ≡ |pai ] . (2.4)

For each particle i we have the associated reference vector qµi and mass mi.

2.2 Bookkeeping of little-group indices, polarizations and projectors

It is convenient to define massive bosonic spinors that have no free little-group indices,

| i ⟩ ≡ |ia⟩zi,a , | i ] ≡ |ia]zi,a (2.5)
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where zi,a = ϵab zbi are complex Grassmann-even auxiliary variables that transform

as spinors under the little group. Because we take the z variables to be complex,
the two chiral spinors are no longer related by complex conjugation, and thus the

spinors (2.5) can be interpreted as the chiral components of a massive Dirac spinor.
The spinor products are antisymmetric under label swaps,

⟨12⟩ = −⟨21⟩ , [12] = −[21] , (2.6)

implying that spinor products with repeated indices vanish, e.g. ⟨11⟩ = 0. Many

other identities familiar from the massless spinor-helicity formalism still hold, such
as Schouten and Fierz identities:

⟨12⟩⟨34⟩+ ⟨23⟩⟨14⟩+ ⟨31⟩⟨24⟩ = 0 , ⟨1|σµ|2]⟨3|σµ|4] = 2⟨13⟩[42] . (2.7)

Because all indices are absent and the spinors are bosonic, we can now take arbitrary
powers of the spinors, e.g.

⟨12⟩2s = degree-4s polynomial in (za1 , z
a
2) , (2.8)

which makes it possible to write down analytic functions with the spinors as ar-

guments. As a first example, consider the polarization vector for a massive vector
boson, which we define as

εµi =
⟨i|σµ|i]√

2mi

=
[i|σ̄µ|i⟩√

2mi

= (z1i )
2εµi,− −

√
2z1i z

2
i ε

µ
i,L − (z2i )

2εµi,+ . (2.9)

Here εi,± = εi,±(ki, qi) are standard (massless) polarization vectors for the null mo-

menta ki, with qi as the reference vector that appeared in eq. (2.1), and εi,L is a longi-
tudinal polarization. Explicit expressions can be given, e.g.

√
2εµi,+ = ⟨qi|σµ|ki]/⟨qiki⟩

and εi,L = ki/mi − miqi/(2pi · qi). Note that the massive polarization εµi is still a

null vector, since ε2i ∝ ⟨i i⟩ [i i], and ⟨i i⟩ = [i i] = 0. Also, since the z variables are
complex, the polarization εµi naturally describes a complex massive vector boson. In

the massless limit, the longitudinal polarization will behave as εµL ∼ pµ/m and is thus
singular, whereas the transverse polarizations ε± are well defined. It is interesting
to note that the need of an arbitrary reference vector q to describe a massless polar-

ization vector is easy to understand from the ambiguity of the parametrization (2.1)
we used for the massive spinors.

To check the completeness relation for the polarization vectors, we need to in-
troduce polarizations that are complex conjugated,

ε̄µi =

(

[i|σµ|i⟩
)∗

√
2mi

≡ −(z̄1i )
2εµi,− +

√
2z̄1i z̄

2
i ε

µ
i,L + (z̄2i )

2εµi,+ , (2.10)

where we have used (za)∗ = z̄a, (za)∗ = −z̄a and (εµi,−)
∗ = εµi,+. We then get the

following non-zero Lorentz product

εi · ε̄i = −(zai z̄i,a)
2 , (2.11)
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Massive polarizations are null vectors

Guarantees that higher-spin states are symmetric, transverse and 
traceless 

(and gamma-traceless for fermions)

where the sign can be traced to the mostly-minus metric ηµν = diag(1,−1,−1,−1).

If we contract the little-group indices using a derivative operator, we get the
completeness relation for the transverse part of the Lorentz group,

− 1

4

(

∂2

∂zi,a∂z̄ai

)2

εµi ε̄
ν
i = ηµν − pµi p

ν
i

m2
i

. (2.12)

The result should be familiar as the massive spin-1 projector, or as the tensor struc-
ture of the massive spin-1 propagator. We will see that a direct generalization of
the derivative operator introduced here will be convenient for computing state sums

that contribute to amplitude factorization residues or loop-level unitarity cuts, for
any spin states.

2.3 Bosonic higher-spin states

Polarization tensors for bosonic spin-s fields are simply products of s polarization
vectors

εµ1µ2···µs

i ≡ εµ1

i εµ2

i · · ·εµs

i = degree-2s polynomial in zai . (2.13)

Polarization tensors are automatically symmetric, traceless and transverse. Transver-
sality pi,µ1

εµ1µ2···µs

i = 0 follows from the fact that ⟨ia|pi|ib] ∝ ϵab, which vanishes after

contracting with the symmetric object zai z
b
i .

Contracting two CPT-conjugate polarizations gives the little-group completeness

relation
εµ1µ2···µs

i ε̄i,µ1µ2···µs = (−1)s(zai z̄i,a)
2s , (2.14)

where again the sign is needed due to our mostly-minus signature. For spin 2, we
get the following completeness relation for the Lorentz structure:

1

(4!)2

(

∂2

∂zi,a∂z̄ai

)4

εµνi ε̄ρσi =
1

2

(

η̃µρη̃νσ + η̃µση̃νρ − 2

3
η̃µν η̃σρ

)

, (2.15)

where η̃µν ≡ ηµν− pµi p
ν
i

m2
i

is a shorthand notation for the spin-1 projector that appeared

in eq. (2.12). The above eq. (2.15) is the expected state projector for the five physical
degrees of freedom of a massive spin-2 field (e.g. massive graviton).

For general bosonic spin s, we have the following state sum to evaluate:

(−1)s

(2s)! 2

(

∂2

∂zi,a∂z̄ai

)2s

εµ1µ2···µs

i ε̄ν1ν2···νsi =
1

s!
(η̃µ1ν1 η̃µ2ν2. . .η̃µsνs + perms) + . . . ≡ P µ⃗ν⃗

(s)

(2.16)
Here P µ⃗ν⃗

(s) is a compact notation for the state projector of an on-shell symmetric and

traceless spin-s state. (See, e.g., ref. [143] for early work on projectors.) Considered
as a matrix, the projector should satisfy

P(s)P(s) = P(s) , P T
(s) = P(s) , trP(s) = 2s+1 , pµi

P(s) = 0 ,

P(s)

∣

∣

µi↔µj
= P(s) , ηµiµj

P(s) = 0 , ηµsνsP(s) =
2s+1

2s−1
P(s−1) , (2.17)
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AHH amplitudes   ↔  Kerr BH?
Arkani-Hamed, Huang, Huang wrote down natural higher-spin amplitudes:

where in general there are additional terms of O(p2−m2) in the numerator that

contribute off shell. These terms depend on the details of the Lagrangian formulation
of the theory.

For the case of spin-1/2 and spin-3/2, additional terms are not expected, and
the propagators are

∆(1/2)(ϵ, ϵ̄) = i
/p+m

p2 −m2
,

∆(3/2)(ϵ, ϵ̄) = i
(/p +m) ϵ.ϵ̄+ 1

3(/ϵ+
p·ϵ
m )(/p−m)(/̄ϵ+ p·ϵ̄

m )

p2 −m2
, (2.37)

with ϵ.ϵ̄ = ϵµ(ηµν− pµpν
m2 )ϵ̄ν . The propagators with free Lorentz indices can be obtained

by taking an appropriate number of derivatives ∂
∂ϵµ and ∂

∂ϵ̄ν that act on ∆(s+1/2)(ϵ, ϵ̄).
This will automatically symmetrize the Lorentz indices on each side of the propagator

matrix.

3 Higher-spin three-point amplitudes

We now consider amplitudes for a pair of spin-s particles using the massive spinor-
helicity formalism. To avoid displaying unimportant overall normalization factors in

the spinor-helicity formulae, we denote amplitudes with either straight or calligraphic
symbols. The calligraphic ones, A(1, 2, . . . , n) for gauge theory andM(1, 2, . . . , n) for
gravity, are more suitable for covariant formulae that use polarization vectors. The

straight ones, A(1, 2, . . . , n) and M(1, 2, . . . , n), are more suitable for spinor-helicity
expressions. Their relative normalizations are

A(1, 2, . . . , n) = (−1)⌈s⌉
(√

2e
)n−2

A(1, 2, . . . , n),

M(1, 2, . . . , n) = (−1)⌈s⌉
(κ

2

)n−2
M(1, 2, . . . , n).

(3.1)

where e is the gauge theory (electric) coupling, κ is the gravitational coupling, with
κ2 = 32πGN . The ceiling function ⌈s⌉ takes into account phases that depend on the
spin of the massive particle, which appear due to our mostly-minus metric signature

choice. Furthermore, sometimes it is convenient to set e = 1 or κ = 1, in which case
the two normalizations simply differ by powers of

√
2 and signs.

3.1 Spinor-helicity three-point amplitudes

It was proposed by Arkani-Hamed, Huang and Huang [99] that the most natural
three-point amplitudes between two massive higher-spin particles and a gauge boson
should be the following maximally-chiral objects:

A(1φs, 2φ̄s, 3A+) = mx
⟨12⟩2s

m2s
, A(1φs, 2φ̄s, 3A−) =

m

x

[12]2s

m2s
(3.2)
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spin-1/2 and spin-3/2, the covariant amplitudes are unique as will be discussed in

Section 5.1.2.
Let us now switch the discussion to gravitational higher-spin amplitudes. Arkani-

Hamed, Huang and Huang [99] gave the following three-point amplitudes:

M(1φs, 2φ̄s, 3h+) = im2x2 ⟨12⟩2s
m2s

,

M(1φs, 2φ̄s, 3h−) = i
m2

x2

[12]2s

m2s
, (3.12)

It is clear from the spinor-helicity expressions that they are related to the gauge-
theory amplitudes by the double copy [61],

M(1φs, 2φ̄s, 3h±) = iA(1φsL, 2φ̄sL, 3A±)A(1φsR, 2φ̄sR, 3A±) , (3.13)

where s = sL + sR, and equivalent formulae are obtained for any sL, sR ≥ 0. Since
this relation is insensitive to the helicity of the massless state, it follows that the

covariant gravitational amplitudes are also given by a double copy of the covariant
gauge-theory amplitudes.

Using the double copy, it is a small step to show that a generating function for
the covariant gravitational amplitudes can be constructed out of the gauge-theory

generating functions. However, because the spin s can be decomposed into sL + sR
in multiple different ways, there is some ambiguity on how to write it. We find that
it is convenient to write a combined generating function for bosonic and fermionic

covariant gravitational amplitudes, which has the form

∞
∑

2s=0

M(1φs, 2φ̄s, 3h) = M0⊕1/2 + AWWA

(

A0⊕1/2 +
A1⊕ 3/2 − (ε1 · ε2)2A0⊕1/2

(1 + ε1 · ε2)2 + 2
m2ε1 · p2 ε2 · p1

)

,

(3.14)

where the sum runs over both integer and half-integer spin s. Here we use the short-
hands A0⊕1/2 = AφφA + AλλA, A1⊕ 3/2 = AWWA + AψψA and M0⊕1/2 = AφφAA0⊕1/2,
which combine the independent low-spin amplitudes that appeared in the bosonic

(3.7) and fermionic (3.11) generating functions. The reason for multiplying the gauge-
theory generating function by AWWA, rather than by AφφA, is that this way of writing

it exposes the correct maximal momentum power counting of the gravity amplitudes.
As an aside, it is interesting to note that we have already identified the gauge-

theory amplitudes AWWA andAψψA, as well-known three-point amplitudes in theories
with spontaneously-broken gauge symmetry (s = 1) and supersymmetry (s = 3/2),
respectively. From this we should expect that some of the low-spin gravitational

amplitudes also have an interesting physical interpretation. Indeed, it is known from
previous work on the double copy [144, 145] that these massive spin-1 and spin-

3/2 gravitational amplitudes, AφφA ×AWWA and AλλA ×AWWA, are precisely those
that appear in R-symmetry gauged supergravity, and the massive spin-2 amplitude
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Let us check if the two contributions responsible for the quantum mismatch

between eq. (3.24) and eq. (3.26) are perhaps related. We find the relation

εs2 ·
( i

m2
p1 ·M · k

)

· εs1 = s(ε1 · ε2)s−1ε2 ·
( 1

m2
(k · Ŝ)2

)

· ε1 , (3.28)

and for s = 1 the two expressions indeed conspire in eq. (3.26) with numerical
coefficients 1/2− 1. However, this still does not add up to the unit coefficient of this
term in eq. (3.24), which through s ≤ 5/2 should give the unique theories that satisfy

tree-level unitarity. That said, the terms proportional to p1 ·M ·k or to ε2 · (k · Ŝ)2 ·ε1
are subleading in the classical limit and thus the quantum difference is irrelevant

for the purpose of describing astrophysical black holes. In conclusion, this analysis
confirms that eq. (3.26) and eq. (3.24) are classically equivalent and match the Kerr

black-hole dynamics.

4 Spinor-helicity Compton amplitudes for s ≤ 5/2

In ref. [99], three-point higher-spin amplitudes, which we discussed in Section 3, were

used together with BCFW recursion [56, 152] to construct candidates for the the
Compton amplitudes with opposite-helicity photons/gravitons. In a later reference
the equal-helicity Compton amplitudes were obtained in the same way [117]. Let us

start by inspecting the photon amplitudes

A(1φs, 2φ̄s, 3A+, 4A+) = i
⟨12⟩2s[34]2

m2s−2t13t14
, (4.1a)

A(1φs, 2φ̄s, 3A−, 4A+) = i
[4|p1|3⟩2−2s([41]⟨32⟩+ [42]⟨31⟩)2s

t13t14
, (4.1b)

where s12 = (p1 + p2)2 and tij = (pi + pj)2 − m2. As was discussed in ref. [99],
the opposite-helicity amplitude is well behaved for s ≤ 1, and starting at s = 3/2

it develops a spurious pole corresponding to the factor [4|p1|3⟩2−2s. This pole is
unphysical, and must be canceled by adding a contact interaction to the Compton

amplitude, such that it has a compensating spurious pole. Exactly how to do this
in a unique way has not yet been firmly established. In contrast, we see that the
equal-helicity Compton amplitude does not have a spurious pole for any spin. And

this suggests that it should not be corrected by contact terms, although a priori it
cannot be ruled out that it receives corrections that are manifestly free of momentum

poles.
Next, let us quote the corresponding candidate Compton amplitudes for gravity,
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M(1φs, 2φ̄s, 3h+, 4h+) = i
⟨12⟩2s[34]4

m2s−4s12t13t14
, (4.2a)

M(1φs, 2φ̄s, 3h−, 4h+) = i
[4|p1|3⟩4−2s([41]⟨32⟩+ [42]⟨31⟩)2s

s12t13t14
. (4.2b)
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Gravity Compton ampl.
via BCFW recursion ? 

Shown to reproduce Kerr by: Guevara, Ochirov, Vines 
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εs2 ·
( i

m2
p1 ·M · k

)

· εs1 = s(ε1 · ε2)s−1ε2 ·
( 1

m2
(k · Ŝ)2

)

· ε1 , (3.28)
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term in eq. (3.24), which through s ≤ 5/2 should give the unique theories that satisfy

tree-level unitarity. That said, the terms proportional to p1 ·M ·k or to ε2 · (k · Ŝ)2 ·ε1
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What EFTs give the AHH amplitudes ?

angle spinors, and letting x → 1/x). The factor with square brackets cancels out

between the denominator and numerator, and the generating function simplifies to

∞
∑

s=0

A(1φs, 2φ̄s, 3A+) =
mx

1− ⟨12⟩2
m2

, (3.10)

which is indeed the geometric series that describes A(1φs, 2φ̄s, 3A+) in eq. (3.2). The

negative helicity amplitudes A(1φs, 2φ̄s, 3A−) are obtained analogously. This proves
the assertion that eq. (3.7) gives the covariant bosonic amplitudes.

Let us address the question of uniqueness of eq. (3.7). It is straightforward to
check at low spin that there exist no other covariant and parity-even formulae with
lower number of momentum powers (i.e. derivatives in the Lagrangian). Also, one

can confirm that it is not possible to write down Gram-determinant expressions for
the five independent vectors {ε1, ε2, ε3, p1, p2}, since such terms would necessarily be

quadratic in the massless polarization vector ε3 and hence describe interactions of
a graviton rather than a gauge boson. Finally, we note that, given that we assume
parity-even and gauge-invariant interactions, there are only four independent dimen-

sionless variables that can be used to construct the amplitude: two of them involve
ε3, and can be chosen to be the amplitudes AφφA/m and AWWA/m, and the other

two can be chosen as ε1 · ε2 and ε1 · p2 ε2 · p1/m2. The spinor-helicity expressions
appear to only involve three dimensionless variables: ⟨12⟩/m, [12]/m, and x. How-

ever, because the amplitudes in eq. (3.2) give two equations in these variables, there
is a unique covariantization of the spinor-helicity amplitudes.

It turns out that the generalization to fermionic gauge-theory amplitudes is al-

most identical to the bosonic case. We only need to identify two low-spin amplitudes,
say, spin-1/2 and spin-3/2, and then the other fermionic amplitudes are linear com-

binations of these. In fact, we observe that it is exactly the same linear combinations
that appeared in the bosonic generating function (3.7). Hence, the fermionic ampli-

tudes can be formally resummed as

∞
∑

s=0

A(1φs+1/2, 2φ̄s+1/2, 3A) = AλλA +
AψψA − (ε1 · ε2)2AλλA

(1 + ε1 · ε2)2 + 2
m2ε1 · p2 ε2 · p1

, (3.11)

where AλλA = i√
2
ū2/ε3v1 is the standard electron-photon three-point amplitude in

quantum electrodynamics, and AψψA is a well-known gravitino-photon amplitude

that is unique in supergravity with spontaneously-broken supersymmetry. The de-
tails of this spin-3/2 amplitude are given in Section 5.1.2; for the current purpose
we only need to know that AψψA comes from parity-even interaction terms that

are linear in the momenta. That the covariant formula eq. (3.11) is correct follows
from analogous arguments to the ones used below eq. (3.9). The uniqueness is less

clear since Gram-determinant expressions can be constructed using the vectors and
higher-rank forms that come from the fermion bilinears ū2γµ1...µnv1. Nevertheless, at
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Rewrite the 3pt AHH amplitudes on covariant form à identify theory

1) introduce generating series, e.g. 

2) rewrite covariantly (for both helicity sectors): 

Jµ, associated to a massive higher-spin field, that appropriately vanishes as m → 0

when contracted with one power of its momentum,

pµJ
µ
∣

∣

traceless
= O(m) . (3.6)

We restrict the condition to hold for the traceless part (gamma-traceless part for
fermions) of the contracted current. Since the current constraint holds off-shell, it

is a powerful tool for constraining the higher-spin Lagrangian that gives the three-
point amplitudes (3.2). See Section 5 for Lagrangian constructions based on this

constraint, here we only focus on the current and amplitudes. Naively, the property
(3.6) is somewhat surprising, since the higher-spin amplitudes (3.2) have arbitrarily
high powers of the mass in the denominator, and the massless limits are expected to

be singular rather than soft, at least beyond spin 2.
We will not give the complete details of the off-shell currents here, since they are

quite lengthy objects and contain ambiguities due to their off-shell nature. We will
however show a few steps and then quote the final results for the three-point case.

In Section 5, more details are given using Lagrangians up to spin-5/2.
As a first step, we will find a covariant on-shell formula for the amplitudes (3.2).

This formula will reveal the number of derivatives that are present in the three-

point interactions, and also make manifest that all interactions are parity even. We
will quote the formula now without further delay, and then prove it later. To give

the covariant formula for all bosonic spin-s amplitudes, it is easiest to construct a
generating series,

∞
∑

s=0

A(1φs, 2φ̄s, 3A) = AφφA +
AWWA − (ε1 · ε2)2AφφA

(1 + ε1 · ε2)2 + 2
m2ε1 · p2 ε2 · p1

, (3.7)

where the spin-0 and spin-1 amplitudes appear abbreviated on the right hand side,

their explicit covariant forms are

AφφA ≡ i
√
2 ε3 ·p1 , AWWA ≡ i

√
2 (ε1 ·ε2 ε3 ·p2+ε2 ·ε3 ε1 ·p3+ε3 ·ε1 ε2 ·p1) . (3.8)

Note that the massive polarization vectors are polynomials of zai and hence the
generating function is a rational function in these variables. Series expansion around

zai = 0 will return the amplitudes for different spins.
To prove that eq. (3.7) is the covariant formula for the resummed amplitudes (3.2),

we simply evaluate the polarization vectors in terms of the spinor-helicity variables.
The denominator evaluates to

(1 + ε1 · ε2)2 +
2

m2
ε1 · p2 ε2 · p1 =

(

1− ⟨12⟩2

m2

)(

1− [12]2

m2

)

, (3.9)

and the numerator becomes AWWA − (ε1 · ε2)2AφφA = x⟨12⟩2(m2 − [12]2)/m3 for
positive helicity ε+3 (the negative helicity case is obtained by swapping square and
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minimally coupled scalar & fermion

W-boson charged/massive gravitino

Chiodaroli, HJ, Pichini;
HJ, Ochirov



EFTs for AHH 3pt gravity amplitudes?

spin-1/2 and spin-3/2, the covariant amplitudes are unique as will be discussed in

Section 5.1.2.
Let us now switch the discussion to gravitational higher-spin amplitudes. Arkani-

Hamed, Huang and Huang [99] gave the following three-point amplitudes:

M(1φs, 2φ̄s, 3h+) = im2x2 ⟨12⟩2s
m2s

,

M(1φs, 2φ̄s, 3h−) = i
m2

x2

[12]2s

m2s
, (3.12)

It is clear from the spinor-helicity expressions that they are related to the gauge-
theory amplitudes by the double copy [61],

M(1φs, 2φ̄s, 3h±) = iA(1φsL, 2φ̄sL, 3A±)A(1φsR, 2φ̄sR, 3A±) , (3.13)

where s = sL + sR, and equivalent formulae are obtained for any sL, sR ≥ 0. Since
this relation is insensitive to the helicity of the massless state, it follows that the

covariant gravitational amplitudes are also given by a double copy of the covariant
gauge-theory amplitudes.

Using the double copy, it is a small step to show that a generating function for
the covariant gravitational amplitudes can be constructed out of the gauge-theory

generating functions. However, because the spin s can be decomposed into sL + sR
in multiple different ways, there is some ambiguity on how to write it. We find that
it is convenient to write a combined generating function for bosonic and fermionic

covariant gravitational amplitudes, which has the form

∞
∑

2s=0

M(1φs, 2φ̄s, 3h) = M0⊕1/2 + AWWA

(

A0⊕1/2 +
A1⊕ 3/2 − (ε1 · ε2)2A0⊕1/2

(1 + ε1 · ε2)2 + 2
m2ε1 · p2 ε2 · p1

)

,

(3.14)

where the sum runs over both integer and half-integer spin s. Here we use the short-
hands A0⊕1/2 = AφφA + AλλA, A1⊕ 3/2 = AWWA + AψψA and M0⊕1/2 = AφφAA0⊕1/2,
which combine the independent low-spin amplitudes that appeared in the bosonic

(3.7) and fermionic (3.11) generating functions. The reason for multiplying the gauge-
theory generating function by AWWA, rather than by AφφA, is that this way of writing

it exposes the correct maximal momentum power counting of the gravity amplitudes.
As an aside, it is interesting to note that we have already identified the gauge-

theory amplitudes AWWA andAψψA, as well-known three-point amplitudes in theories
with spontaneously-broken gauge symmetry (s = 1) and supersymmetry (s = 3/2),
respectively. From this we should expect that some of the low-spin gravitational

amplitudes also have an interesting physical interpretation. Indeed, it is known from
previous work on the double copy [144, 145] that these massive spin-1 and spin-

3/2 gravitational amplitudes, AφφA ×AWWA and AλλA ×AWWA, are precisely those
that appear in R-symmetry gauged supergravity, and the massive spin-2 amplitude
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Are related to the gauge th. ones via KLT
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Works for any decomposition:
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Preferred decomposition                                 give fewest derivatives :

minimally-coupled matter
(Proca th, massive gravitino)

From double-copy structure, we can infer: 

Kaluza-Klein graviton

Also works for Compton, and higher-point amplitudes (Lagrangians known)



Summary of EFTs
The AHH amplitudes for                  admit double copies to any multiplicity

Lagrangians unique: have no non-minimal terms beyond cubic order in fields 

Can be used for                 PM/PN calculations.
Compton             yet to be confirmed via other methods (BHPT, worldline).

see Levi’s lectures



What special about the EFTs ?

The                 gauge theories and                gravities admit a massless limit

and all states that carries vector indices acquires a gauge symmetry

(Note: we only study amplitudes with 2 massive states, and n-2 massless
in which case the enlarged theories consistently truncate)

See Pichini’s talk for the higher-spin continuation !



Conclusions
Studied double copies for massive                   states coupled to GR  

All can be written in terms gauge theories with massive spin 

For Compton amplitudes with                       things are more complicated

Obtained EFT Lagrangians to all order in the fields. 

Do the amplitudes match Kerr black holes ? 

Further work is needed for spin-3 and higher amplitudes. 

Outlook: results should be useful for simplifying PN/PM calculations!



Extra Slides



Which gauge theories obey C-K duality

Pure N=0,1,2,4 super-Yang-Mills (any dimension) 

Self-dual Yang-Mills theory O’Connell, Monteiro (’11)

Heterotic string theory Stieberger, Taylor (’14)

Yang-Mills + F 3 theory  Broedel, Dixon (’12)

QCD, super-QCD, higher-dim QCD HJ, Ochirov (’15); Kälin, Mogull (‘17)

Generic matter coupled to N = 0,1,2,4 super-Yang-Mills

Spontaneously broken N = 0,2,4 SYM

Yang-Mills + scalar ϕ3 theory
Bi-adjoint scalar ϕ3 theory
NLSM/Chiral Lagrangian
D=3 BLG theory (Chern-Simons-matter)
(Non-)Abelian Z-theory
Dim-6 gauge theories:

Bern, Carrasco, HJ (’08)
Bjerrum-Bohr, Damgaard, 
Vanhove; Stieberger; Feng et al.
Mafra, Schlotterer, etc (’08-’11)

Chiodaroli, Gunaydin, 
Roiban; HJ, Ochirov (’14)

Chiodaroli, Gunaydin, HJ, Roiban (’14)
Bern, de Freitas, Wong (’99), Bern, Dennen, Huang; 
Du, Feng, Fu; Bjerrum-Bohr, Damgaard, Monteiro, O’Connell   

Chen, Du (’13)

Chiodaroli, Gunaydin, HJ, Roiban (’15)

Carrasco, Mafra, Schlotterer (‘16)

HJ, Nohle (‘17)

Bargheer, He, McLoughlin; 
Huang, HJ, Lee (’12 -’13)



Which gravity theories are double copies

Pure N=4,5,6,8 supergravity (2 < D < 11) KLT (‘86), Bern, Carrasco, HJ (’08 -’10)

Einstein gravity and pure N=1,2,3 supergravity HJ, Ochirov (’14)

D=6 pure N =(1,1) and N =(2,0) supergravity HJ, Kälin, Mogull (’17)

Self-dual gravity O’Connell, Monteiro (’11)

Closed string theories Mafra, Schlotterer, Stieberger (’11); Stieberger, Taylor (’14)

Einstein + R 3 theory  Broedel, Dixon (’12)

Abelian matter coupled to supergravity
Magical sugra, homogeneous sugra Chiodaroli, Gunaydin, HJ, Roiban (’15)

(S)YM coupled to (super)gravity Chiodaroli, Gunaydin, HJ, Roiban (’14)

Spontaneously broken YM-Einstein gravity Chiodaroli, Gunaydin, HJ, Roiban (’15)

D=3 supergravity (BLG Chern-Simons-matter theory)2

Born-Infeld, DBI, Galileon theories (CHY form) Cachazo, He, Yuan (’14)

N =0,1,2,4 conformal supergravity

Bargheer, He, McLoughlin; 
Huang, HJ, Lee (’12 -’13)

Carrasco, Chiodaroli, Gunaydin, Roiban (‘12)
HJ, Ochirov (’14 - ’15)

HJ, Nohle (‘17)


