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[ SM cross section summary, ATLAS ]
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Dedicated track all week: Machine Learning and Physics Analysis

18 contributions with Machine Learning in the Title

NeuRIPS: Machine Learning and the Physical Sciences

… and many, many more.

https://indico.cern.ch/event/587955/sessions/266675/#all
https://indico.cern.ch/event/686555/search?search-phrase=machine+learning
https://ml4physicalsciences.github.io


HEP&ML: Data Analysis

• Data analysis can profit hugely from ML techniques 

• Most HEP analyses pose classification problem, e.g. signal (   ) vs. background (   ) 

• Classical approach involved often parameter projection & cut (a)(b) 

• Trained classifiers do (in general) a better job (c) 

Potentials
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the red dots and blue triangles, respectively. To select events or to define a search region for
the signal process, a common practice in HEP is to make cuts on the variables, as indicated in
Fig. 1(a). This is a simple procedure and allows one to use some physical intuition in determining
the value of the cut.

ix

jx

(a)

ix

jx

(b)

ix

jx

(c)

Figure 1. Scatter plots of two variables corresponding to two hypotheses: signal and
background. Event selection could be based, e.g., on (a) cuts, (b) a linear boundary, (c) a
nonlinear boundary.

Another relatively simple procedure is to classify events using a linear boundary as shown
in Fig. 1(b), but to exploit the potentially complicated shapes of the pdfs f(x|s) and f(x|b)
one should use a nonlinear boundary as in Fig. 1(c). In fact, the Neyman-Pearson lemma
[3] guarantees that an optimal boundary for event classification is obtained using contours of
constant likelihood ratio,

�(x) =
f(x|s)
f(x|b) . (1)

As the pdfs f(x|s) and f(x|b) are in general not known in closed form, one is unable to
evaluate �(x) at an arbitrary point x, and thus the likelihood ratio is not directly usable in
practice. Instead, Monte Carlo models for the signal and background processes are used to
generate samples of training data. Using these, Machine Learning algorithms allow one to find
a function y(x) such that the classification boundary is a surface of constant y(x). Ideally one
would like to find the y(x) that best approximates the likelihood ratio or a monotonic function
thereof.

If both the signal and background processes are known to exist, then the problem is in e↵ect
one of event classification. For example, one may want to select a sample enriched in signal
events for further study. For given training samples of signal and background events, this is the
usual problem of supervised learning. In many HEP problems, however, the existence of the
signal process is not established and it is the goal of the analysis to see whether it is present at
all. This was the case with the Higgs boson before its discovery in 2012 [4, 5] and it remains
relevant for processes involving Higgs such as the decay H ! ⌧

+
⌧
�, for which the significance

of current observations has not yet reached the level of five standard deviations [6, 7].
Multivariate methods such as Fisher discriminants and neural networks have been used for

many years in HEP for the types of problems described above, and played an important role
in the analyses carried out at the Tevatron at Fermilab and the LEP Collider at CERN in the
1990s. More recently, advances in Machine Learning have led to new tools such as the Boosted
Decision Tree (BDT) and Support Vector Machine (SVM). Many of these developments are
described in standard texts such as those by Hastie et al. [8] and Bishop [9]. Although BDTs

2



HEP&ML: Data Analysis

• Input is often multi-dimensional, separation at first sight poorly 

• perfect playground for advanced classifiers:  
  - Boosted Decision Trees (BDT), Shallow/Deep Neural Networks (NN/DNN)

17

)
2

, j
1

(jηΔ

2 3 4 5 6 7

Ev
en

ts
 / 

0.
35

 

50

100

150

200

250

300

Data
(125)H50 x 
ττ →Z

+single-toptt
Others
Fake lepton
Uncert.

 VBFlepτlepτ ATLAS

Pre-fit-1, 20.3 fb = 8 TeVs

(a)

 [GeV]1
j

T
p

0 100 200 300

Ev
en

ts
 / 

20
 G

eV
 

200

400

600

800

1000

Data
(125)H50 x 
ττ →Z

+single-toptt
Others
Fake lepton
Uncert.

 Boostedlepτlepτ ATLAS

Pre-fit-1, 20.3 fb = 8 TeVs

(b)

)
2

, j
1

(jηΔ

3 4 5 6 7

Ev
en

ts
 / 

0.
2 

0

100

200

300

400

500

600
Data

(125)H50 x 
ττ →Z

+single-toptt
Others

τFake 
Uncert.

 VBFhadτlepτ ATLAS

Pre-fit-1, 20.3 fb = 8 TeVs

(c)

)2τ, 1τ(RΔ
1 2 3 4

Ev
en

ts
 / 

0.
2 

0

500

1000

1500

2000

2500

Data
(125)H50 x 
ττ →Z

+single-toptt
Others

τFake 
Uncert.

 Boostedhadτlepτ ATLAS

Pre-fit-1, 20.3 fb = 8 TeVs

(d)

)
2

, j
1

(jηΔ

2 3 4 5 6 7

Ev
en

ts
 / 

0.
5 

0

50

100

150

200

250

300

350

400

Data
(125)H50 x 
ττ →Z

Others
τFake 

Uncert.

 VBFhadτhadτ ATLAS

Pre-fit-1, 20.3 fb = 8 TeVs

(e)

)2τ, 1τ(RΔ
1 1.5 2

Ev
en

ts
 / 

0.
2 

0
100
200
300
400
500
600
700
800
900

Data
(125)H50 x 
ττ →Z

Others
τFake 

Uncert.

 Boostedhadτhadτ ATLAS

Pre-fit-1, 20.3 fb = 8 TeVs

(f)

Figure 2. Distributions of important BDT input variables for the three channels and the two
categories (VBF, left) and (boosted, right) for data collected at

p
s = 8 TeV. The distributions

are shown for (a) the separation in pseudorapidity of the jets, �⌘(j1, j2), and (b) the transverse
momentum of the leading jet p

j1

T in the ⌧lep⌧lep channel, for (c) �⌘(j1, j2) and (d) �R(⌧1, ⌧2),
the distance �R between the lepton and ⌧had, in the ⌧lep⌧had channel and for (e) �⌘(j1, j2) and
(f) �R(⌧1, ⌧2), the distance �R between the two ⌧had candidates, in the ⌧had⌧had channel. The
contributions from a Standard Model Higgs boson with mH = 125 GeV are superimposed, multiplied
by a factor of 50. These figures use background predictions made without the global fit defined in
section 8. The error band includes statistical and pre-fit systematic uncertainties.
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Figure 3. Distributions of important BDT input variables for the three channels and the two
categories (VBF, left) and (boosted, right) for data collected at

p
s = 8 TeV. The distributions are

shown for (a) the product of the lepton centralities, C⌘1,⌘2(⌘`1) ·C⌘1,⌘2(⌘`2), and (b) the sphericity
in the ⌧lep⌧lep channel, for (c) the centrality of the lepton, C⌘1,⌘2(⌘`), and (d) the E

miss
T � centrality

in the ⌧lep⌧had channel, and for (e) the centrality of the subleading tau, C⌘1,⌘2(⌘⌧2), and (f) the
E

miss
T � centrality in the ⌧had⌧had channel. The contributions from a Standard Model Higgs boson

with mH = 125 GeV are superimposed, multiplied by a factor of 50. These figures use background
predictions made without the global fit defined in section 8. The error band includes statistical and
pre-fit systematic uncertainties.
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Figure 2. Distributions of important BDT input variables for the three channels and the two
categories (VBF, left) and (boosted, right) for data collected at

p
s = 8 TeV. The distributions

are shown for (a) the separation in pseudorapidity of the jets, �⌘(j1, j2), and (b) the transverse
momentum of the leading jet p

j1

T in the ⌧lep⌧lep channel, for (c) �⌘(j1, j2) and (d) �R(⌧1, ⌧2),
the distance �R between the lepton and ⌧had, in the ⌧lep⌧had channel and for (e) �⌘(j1, j2) and
(f) �R(⌧1, ⌧2), the distance �R between the two ⌧had candidates, in the ⌧had⌧had channel. The
contributions from a Standard Model Higgs boson with mH = 125 GeV are superimposed, multiplied
by a factor of 50. These figures use background predictions made without the global fit defined in
section 8. The error band includes statistical and pre-fit systematic uncertainties.
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Figure 9. Distributions of the BDT discriminants for the data taken at
p
s = 8 TeV in the signal

regions of the VBF (left) and boosted (right) categories for the ⌧lep⌧lep (top), ⌧lep⌧had (middle),
and ⌧had⌧had (bottom) channels. The Higgs boson signal (mH = 125 GeV) is shown stacked with
a signal strength of µ = 1 (dashed line) and µ = 1.4 (solid line). The background predictions
are determined in the global fit (that gives µ = 1.4). The size of the statistical and systematic
normalisation uncertainties is indicated by the hashed band. The ratios of the data to the model
(background plus Higgs boson contributions with µ = 1.4) are shown in the lower panels. The
dashed red and the solid black lines represent the changes in the model when µ = 1.0 or µ = 0 are
assumed respectively.
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[ arXiv:1501.04943 ]

H → τ+τ−

https://arxiv.org/pdf/1501.04943.pdf


HEP&ML: Data Analysis

• Input is often multi-dimensional, separation at first sight poorly 

• perfect playground for advanced classifiers:  
  - Boosted Decision Trees (BDT), Shallow/Deep Neural Networks (NN/DNN)
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Figure 2. Distributions of important BDT input variables for the three channels and the two
categories (VBF, left) and (boosted, right) for data collected at

p
s = 8 TeV. The distributions

are shown for (a) the separation in pseudorapidity of the jets, �⌘(j1, j2), and (b) the transverse
momentum of the leading jet p

j1

T in the ⌧lep⌧lep channel, for (c) �⌘(j1, j2) and (d) �R(⌧1, ⌧2),
the distance �R between the lepton and ⌧had, in the ⌧lep⌧had channel and for (e) �⌘(j1, j2) and
(f) �R(⌧1, ⌧2), the distance �R between the two ⌧had candidates, in the ⌧had⌧had channel. The
contributions from a Standard Model Higgs boson with mH = 125 GeV are superimposed, multiplied
by a factor of 50. These figures use background predictions made without the global fit defined in
section 8. The error band includes statistical and pre-fit systematic uncertainties.
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Figure 3. Distributions of important BDT input variables for the three channels and the two
categories (VBF, left) and (boosted, right) for data collected at

p
s = 8 TeV. The distributions are

shown for (a) the product of the lepton centralities, C⌘1,⌘2(⌘`1) ·C⌘1,⌘2(⌘`2), and (b) the sphericity
in the ⌧lep⌧lep channel, for (c) the centrality of the lepton, C⌘1,⌘2(⌘`), and (d) the E

miss
T � centrality

in the ⌧lep⌧had channel, and for (e) the centrality of the subleading tau, C⌘1,⌘2(⌘⌧2), and (f) the
E

miss
T � centrality in the ⌧had⌧had channel. The contributions from a Standard Model Higgs boson

with mH = 125 GeV are superimposed, multiplied by a factor of 50. These figures use background
predictions made without the global fit defined in section 8. The error band includes statistical and
pre-fit systematic uncertainties.
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Figure 2. Distributions of important BDT input variables for the three channels and the two
categories (VBF, left) and (boosted, right) for data collected at

p
s = 8 TeV. The distributions

are shown for (a) the separation in pseudorapidity of the jets, �⌘(j1, j2), and (b) the transverse
momentum of the leading jet p

j1

T in the ⌧lep⌧lep channel, for (c) �⌘(j1, j2) and (d) �R(⌧1, ⌧2),
the distance �R between the lepton and ⌧had, in the ⌧lep⌧had channel and for (e) �⌘(j1, j2) and
(f) �R(⌧1, ⌧2), the distance �R between the two ⌧had candidates, in the ⌧had⌧had channel. The
contributions from a Standard Model Higgs boson with mH = 125 GeV are superimposed, multiplied
by a factor of 50. These figures use background predictions made without the global fit defined in
section 8. The error band includes statistical and pre-fit systematic uncertainties.
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Figure 9. Distributions of the BDT discriminants for the data taken at
p
s = 8 TeV in the signal

regions of the VBF (left) and boosted (right) categories for the ⌧lep⌧lep (top), ⌧lep⌧had (middle),
and ⌧had⌧had (bottom) channels. The Higgs boson signal (mH = 125 GeV) is shown stacked with
a signal strength of µ = 1 (dashed line) and µ = 1.4 (solid line). The background predictions
are determined in the global fit (that gives µ = 1.4). The size of the statistical and systematic
normalisation uncertainties is indicated by the hashed band. The ratios of the data to the model
(background plus Higgs boson contributions with µ = 1.4) are shown in the lower panels. The
dashed red and the solid black lines represent the changes in the model when µ = 1.0 or µ = 0 are
assumed respectively.
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[ arXiv:1501.04943 ]

https://arxiv.org/pdf/1501.04943.pdf
https://arxiv.org/pdf/1501.04943.pdf


HEP&ML: Data Analysis

• Many industry products are available in ML sector 

• Big tech players invest $$$ in algorithm development 
and SW/hardware optimisation (“free lunch” - not really) 

• Huge pool of ML/DS experts  

•   was put out as [ ML challenge ] on kaggle.com 

• No out-of-the box solutions 

• Concerns regarding interpretability 

• Particular error reporting in HEP:  

H → τ+τ−

R = v ± σstat ± σsyst

Synergies and Challenges 

19[ Higgs Machine Learning Challenge ]

https://www.kaggle.com/c/higgs-boson
http://kaggle.com
http://proceedings.mlr.press/v42/cowa14.pdf


HEP&ML: Event Reconstruction

20

ANALYSIS
RECONSTRUCTION

EXPERIMENTCOLLIDER

EVENT GENERATION DETECTOR  
SIMULATION

TRIGGER & DATA 
ACQUISITON

SIGNAL 
SIMULATION



Event Reconstruction
Particle and object reconstruction from “raw” input

21
[ Illustration: CERN ]

https://cds.cern.ch/record/2205172


Particle Tracking
Trajectory and vertex finding in tracking detectors

22

• Aim to find trajectories of charged particles 
(and thus their kinematic properties) as 
efficiently as possible 

• Cluster trajectories from common vertices 
(and find those) 

• If possible, first particle identification 

• Avoid: fake/ghost trajectories, duplicates, …

Particle Tracking Machine Learning Challenge [ Phase 1 ][ Phase 2 ]

https://www.kaggle.com/c/trackml-particle-identification
https://competitions.codalab.org/competitions/20112


Particle Tracking

• Typical pattern recognition problem 

• Effectively a clustering problem  

• Classical approaches include 

• Global/conformal mapping 

• Track seeding & following  

• Combinatorial filtering

Pattern recognition for particle detectors

23
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Particle Tracking

• Typical pattern recognition problem 

• Effectively a clustering problem  

• Classical approaches include 

• Global/conformal mapping 

• Track seeding & following  

• Combinatorial filtering

Pattern recognition for particle detectors
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Particle Tracking & Computing

• Combinatorial problem 

• And it clearly scales  
like such

25

DESIGN/ACTUAL LUMINOSITY OF LHC 
(+ DETECTORs, + ALGORITHMs)



Particle Tracking & Computing

• Combinatorial problem 

• And it clearly scales  
like such

26
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Particle Tracking & Computing

• Combinatorial problem 

• And it clearly scales  
like such

27
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ML assisted track reconstruction
Seed classification

28

• Most LHC experiments implement a 
seeding & track following approach

FOLLOW

DON’T FOLLOW

CPU INTENSIVE

HIGHEST SEED PURITY REQUIRED



ML assisted track reconstruction
Seed classification

29

• Classification is perfect ML problem, replace cut & go technique 

New data

Training Data:

• approx. 300k total 4-hit seeds sampled from 1020 
tracks with 4+ hits.

• ~225k used for training (75%)

• ~75k for validation (25%)

• Again 3 classes
(4/4, 3/4, 2 or fewer hits on track)

• Track spacepoints extracted from Athena 
with TrkTruthTracks.

• 10 ttbar events with 1113 tracks

True particle tracks 
from simulated event

created random training 
dataset of 4-hit combinations 
with categories

good: 4/4 correct 

medium: 3/4 correct 

bad: <2/4 correct 

[x,y,z]i

N x M 
hidden layers

12 input  features

good medium bad 3 output  features

 [ F. Dietrich, E. Knering, AS : Track Seed Classification using NNs ]

https://indico.cern.ch/event/742793/contributions/3274402/
https://indico.cern.ch/event/742793/contributions/3274402/


ML assisted track reconstruction
Seed classification

30

Confusion Matrix
for best model

good med bad

good 98.5% 1.5% 0.1%

med 3.5% 95.7% 0.8%

bad 0.2% 3.2% 96.7%
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s

Predicted Class

25436 seeds = 100%

25197 seeds = 100%

25102 seeds = 100%

Good: 4/4
Med: 3/4 
Bad <3/4
Hits on track

• Powerful seed classification, here optimistic scenario 

• bad/medium training seeds created by distorting good seedsTrack properties inside the model

Be
am
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xis

-> High pseudorapidity particle tracksgiven hits

Lower momentum particle Higher momentum particle

[ F. Dietrich, E. Knering, AS : Track Seed Classification using NNs ]

https://indico.cern.ch/event/742793/contributions/3274402/


ML assisted track reconstruction
Seed classification

31

Confusion Matrix
for best model

good med bad

good 98.5% 1.5% 0.1%

med 3.5% 95.7% 0.8%

bad 0.2% 3.2% 96.7%
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• Powerful seed classification, here optimistic scenario 

• bad/medium training seeds created by distorting good seedsTrack properties inside the model

Be
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-> High pseudorapidity particle tracksgiven hits

Lower momentum particle Higher momentum particle

[ F. Dietrich, E. Knering, AS : Track Seed Classification using NNs ]

NETWORK “LEARNED” 
PHYSICS OF 

MULTIPLE SCATTERING

https://indico.cern.ch/event/742793/contributions/3274402/


ML assisted track reconstruction
Particle tracking in dense environment

32

• Collimated final states can create local  
dense environments 

• Unsupervised clustering may not resolve that 

2 PARTICLE INTERSECTION
SINGLE CLUSTER POSITION

[ ATL-PHYS-2015-006 ]

https://cds.cern.ch/record/2002609?ln=de


ML assisted track reconstruction

• Use a set of NN to classify the probability if a cluster stems from 1,2 or more particles 

• NN trained on simulated data

Particle tracking in dense environment

33

7x7 pixel 
charge matrix

49 input  
nodes

2 hidden 
layers

2 output 
layers

cluster 
compatible 

with 1 particle

cluster compatible 
with 2 and more 

particles

[ ATL-PHYS-2015-006 ]

https://cds.cern.ch/record/2002609?ln=de


• Use a set of NN to classify the probability if a cluster stems from 1,2 or more particles 

• NN trained on simulated data

ML assisted track reconstruction
Particle tracking in dense environment

34
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Figure 9: The average e�ciency to reconstruct primary tracks with a production vertex before the first layer in jets as
a function of jet pT. The same sample generation, with limited statistics, is used for both reconstruction algorithms
resulting in correlated features. Two track reconstruction algorithms are shown: green triangles label the baseline
reconstruction (Section 3) and red squares label the TIDE optimized reconstruction (Section 5).

The same e�ect drives the reconstruction e�ciency decrease towards the core of a jet in fully simulated
samples. The problem is exacerbate in b-jets due to the displaced decay of heavy-flavour quarks. In all
cases the new (TIDE) reconstruction provides an improvement. An approximate 17% e�ciency gain is
seen for charged particles created at a radius of 30 mm as well as a 10% (14%) improvement in the core
of high pT light (b) jets.

7 Impact on Flavor Tagging

Jet-flavour tagging exploits the lifetime of b-quarks through the measurement of lifetime via track impact
parameters or the identification and properties of displaced vertices [18]. Several taggers optimized for the
di�erent means of identification are combined in a multivariate technique. The impact parameter resolution
is likely to degrade if the innermost measurement is missing or shared. In Run I, impact-parameter-based
taggers considered only tracks with a cluster on the innermost layer. Therefore, this type of tagger will
profit from increasing the number and precision of innermost clusters on track. Secondary vertex taggers
employ multivariate discriminants using vertex properties. Such variables include the secondary vertex
mass, the vertex energy fraction or the momentum of the tracks in the vertex compared to all tracks
considered by the discriminant, and the secondary vertex momentum. Increasing the e�ciency for highly
collimated track pairs improves the secondary vertex e�ciency. Also, since the collimated tracks carry a
considerable fraction of the charged-particle momentum, the vertex energy fraction and vertex momentum
become more discriminant.

15

What good is it if simulation does not  
describe reality adequately?

[ ATL-PHYS-2015-006 ]

https://cds.cern.ch/record/2002609?ln=de
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Music, Neighbours and Tracking

• Can we reduce the combinatorics of our problem by narrowing it down? 

• Using an optimal data structure could simplify your search significantly

Hashing approaches for particle tracking

35

[ S. Amrouche, T. Golling, M. Kiehn, AS: Music, Neighbours & Tracking ]
[ S. Amrouche, N. Calace, T. Golling, M. Kiehm. AS : Hashing & similarity learning ]

https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
https://indico.cern.ch/event/831165/contributions/3717122/attachments/2022757/3382937/20200400-msmk-hashing_tracking-v4.pdf


• Perfect hash function would solve the tracking problem right away,  
but does not exist                          

• Approximate hashing, however, can be done

36

[ S. Amrouche, T. Golling, M. Kiehn, AS: Music, Neighbours & Tracking ]

Music, Neighbours and Tracking
Hashing approaches for particle tracking

[ S. Amrouche, N. Calace, T. Golling, M. Kiehm. AS : Hashing & similarity learning ]

h(hit) = track number

h(track 1 hit 0) = group x  
h(track 1 hit 1) = group x  
h(track 0 hit 1) = group x

>�b?BM; �b #m+F2iBM; bi`�i2;v

UoB`im�HV *h.kyky >�b?BM; �M/ bBKBH�`Biv H2�`MBM; 7Q` i`�+FBM; 8
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Bi2K ?�b?

:`QmTb bBKBH�` Bi2Kbf M2B;?#Q`b
7Q` � ;Bp2M K2i`B+

>�b?BM; �b #m+F2iBM; bi`�i2;v
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_�M/QK T`QD2+iBQMb iQ +`2�i2
Bi2K ?�b?

:`QmTb bBKBH�` Bi2Kbf M2B;?#Q`b
7Q` � ;Bp2M K2i`B+

RADNOM 
PROJECTIONS

APPROXIMATE 
NEAREST 

NEIGHBOURS

https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
https://indico.cern.ch/event/831165/contributions/3717122/attachments/2022757/3382937/20200400-msmk-hashing_tracking-v4.pdf
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Hashing approaches for particle tracking
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[ S. Amrouche, T. Golling, M. Kiehn, AS: Music, Neighbours & Tracking ]
[ S. Amrouche, N. Calace, T. Golling, M. Kiehm. AS : Hashing & similarity learning ]

UoB`im�HV *h.kyky >�b?BM; �M/ bBKBH�`Biv H2�`MBM; 7Q` i`�+FBM; d

RX "mBH/ �LL bi`m+im`2
kX Zm2`v ?Bib 7Q` M2B;?#Q`b
jX GQ+�H `2+QMbi`m+iBQM

https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
https://indico.cern.ch/event/831165/contributions/3717122/attachments/2022757/3382937/20200400-msmk-hashing_tracking-v4.pdf
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Music, Neighbours and Tracking
Hashing approaches for particle tracking

[ S. Amrouche, N. Calace, T. Golling, M. Kiehm. AS : Hashing & similarity learning ]

h(hit) = track number

h(track 1 hit 0) = group x  
h(track 1 hit 1) = group x  
h(track 0 hit 1) = group x
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7Q` � ;Bp2M K2i`B+
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UoB`im�HV *h.kyky >�b?BM; �M/ bBKBH�`Biv H2�`MBM; 7Q` i`�+FBM; 8
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Bi2K ?�b?

:`QmTb bBKBH�` Bi2Kbf M2B;?#Q`b
7Q` � ;Bp2M K2i`B+

RADNOM 
PROJECTIONS

APPROXIMATE 
NEAREST 

NEIGHBOURS

seed

approximate 

nearest neighbours

https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
https://indico.cern.ch/event/831165/contributions/3717122/attachments/2022757/3382937/20200400-msmk-hashing_tracking-v4.pdf
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Music, Neighbours and Tracking
Hashing approaches for particle tracking

[ S. Amrouche, N. Calace, T. Golling, M. Kiehm. AS : Hashing & similarity learning ]

h(hit) = track number

h(track 1 hit 0) = group x  
h(track 1 hit 1) = group x  
h(track 0 hit 1) = group x

>�b?BM; �b #m+F2iBM; bi`�i2;v

UoB`im�HV *h.kyky >�b?BM; �M/ bBKBH�`Biv H2�`MBM; 7Q` i`�+FBM; 8

_�M/QK T`QD2+iBQMb iQ +`2�i2
Bi2K ?�b?

:`QmTb bBKBH�` Bi2Kbf M2B;?#Q`b
7Q` � ;Bp2M K2i`B+
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7Q` � ;Bp2M K2i`B+

RADNOM 
PROJECTIONS

APPROXIMATE 
NEAREST 

NEIGHBOURS

:2M2`�H, �TT`QtBK�i2 M2�`2bi M2B;?#Q`b

Pm` +?QB+2, ?iiTb,ff;Bi?m#X+QKfbTQiB7vf�MMQv

UoB`im�HV *h.kyky >�b?BM; �M/ bBKBH�`Biv H2�`MBM; 7Q` i`�+FBM; e

• Our initial choice was the [ annoy ] library from [ spotify ] 

• Recently testing  [ faiss ] from facebook research (mainly for GPU backend) 

• The use of open source industry products is a real asset of ML for HEP

https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
https://indico.cern.ch/event/831165/contributions/3717122/attachments/2022757/3382937/20200400-msmk-hashing_tracking-v4.pdf
https://github.com/spotify/annoy
http://www.spotify.com
https://github.com/facebookresearch/faiss
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Music, Neighbours and Tracking
Hashing approaches for particle tracking

[ S. Amrouche, N. Calace, T. Golling, M. Kiehm. AS : Hashing & similarity learning ]

:Sl T2`7Q`K�M+2

UoB`im�HV *h.kyky >�b?BM; �M/ bBKBH�`Biv H2�`MBM; 7Q` i`�+FBM; Rj

h`�+FJG /�i�b2i
iī- µ = kyy

:Sl LoB/B� h2bH� E9yK
Rk:# _�J- k33y *l.� *Q`2b

a2H2+i #m+F2ib Q7 ?Bib mbBM; `�M/QKHv
/`�rM ?Bib �b [m2`v TQBMib

Zm2`B2b �`2 7mHHv T�`�H2HHBx2/These tracks are brought to you by 

To find a bucket with at least 4/hits of the track contained 
(good enough for track seeding)

https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
https://indico.cern.ch/event/831165/contributions/3717122/attachments/2022757/3382937/20200400-msmk-hashing_tracking-v4.pdf


J2i`B+ H2�`MBM; 7Q` i`�+Fb
lb2b GQ+�H 6Bb?2`
.Bb+`BKBM�Mi �M�HvbBb
aT�iB�HHv +HQb2 i`�+Fb UH27iV
b2T�`�i2/ BM i`�Mb7Q`K2/
bT�+2 U`B;?iV
*�p2�i, mb2b h`�+FJG
/�i�b2i rBi? �//BiBQM�H ?Bi
72�im`2b
LQi 2�bBHv i`�MbH�i�#H2 iQ
Qi?2` +�b2b Uv2iV

UoB`im�HV *h.kyky >�b?BM; �M/ bBKBH�`Biv H2�`MBM; 7Q` i`�+FBM; Ry

• Mapping data into a different representation was one classical approach to  
track finding (hough transform, conformal mapping) 

• Can we learn a better way to look at tracks?

41

[ S. Amrouche, T. Golling, M. Kiehn, AS: Music, Neighbours & Tracking ]

Tracking & metric learning
Are we searching/clustering in the right space?

[ S. Amrouche, N. Calace, T. Golling, M. Kiehm. AS : Hashing & similarity learning ]

HUMAN ML AGENT

REQUIRED ANALYTICAL 
TRANSFORM

https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
https://indico.cern.ch/event/831165/contributions/3717122/attachments/2022757/3382937/20200400-msmk-hashing_tracking-v4.pdf


• Exa.TrkX project applies a Graph Neural Network (GNN) approach 

• Build nodes and edges, classify edges [0, 1] and eventually drop them 

42

 

End-to-end Tracking attempts
The “my job is done by a machine” scenario

 

Particle Tracking Machine Learning Challenge [ Phase 1 ][ Phase 2 ]

BERKELEY LAB 
Office of
Science19

Triplet GNN Performance

Gold: Unambiguously correct triplet or 
quadruplet

Other colours: False positive/negative

Key:

Silver: Ambiguously correct triplet or quadruplet 
(i.e. edge shared by correct triplet and 
false positive triplet)

Bronze dashed: Correct triplet, but missed 
quadruplet (i.e. edge shared by correct 
triplet and false negative triplet)

Red: Completely false positive triplet

Blue dashed: Completely false negative triplet

BERKELEY LAB 
Office of
Science21

Black: Triplet classifier correctly 
labelled, doublet classifier 
mislabelled

Red: Doublet classifier correctly 
labelled, triplet classifier 
mislabelled

In this graph, triplet classifier

Fixes 389 edges

Worsens 10 edges

Triplet GNN improves 
doublet GNN results

BERKELEY LAB 
Office of
Science12
12

• Message Passing
Gilmer, Justin, et al. "Neural message passing for quantum 
chemistry." Proceedings of the 34th International Conference on 
Machine Learning-Volume 70. JMLR. org, 2017.

• Attention Message Passing
VeOiĀkRYiþ, Petar, et al. "Graph attention networks." arXiv
preprint arXiv:1710.10903 (2017).

• Attention Message Passing 
with Recursion

GNN Edge prediction architecture

• Attention Message Passing
with Residuals

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with 
graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).
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https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
https://indico.cern.ch/event/831165/contributions/3717122/attachments/2022757/3382937/20200400-msmk-hashing_tracking-v4.pdf
https://www.kaggle.com/c/trackml-particle-identification
https://competitions.codalab.org/competitions/20112


Calorimeter & Jets
Jet clustering & particle identification
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• Calorimeter measure  
energy deposits of 
charged and neutral 
parameters  

• Segmented into cells 

• Usually split into 
electromagnetic/
hadronic part



Pretend it’s a 2d problem

Figure from arXiv:1612.01551

I Of course it’s not

I Multiple types of particles

I Tracks have 5 parameters

I Calo energy has depth,

shape

I But thinking in 5d is hard

I Also experiment-specific

⌘
�

b
e
a
m

pre-process

convolutional layer

max-pooling

dense layer

quark jet

gluon jet

� �� �
�3

Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2�2 down-sampling with a stride length of 2. The dense

layer consisted of 128 units.

All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss

– 8 –
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Tracking view Calorimeter view 

Calorimetry & Jet reconstruction

• Calorimeters measure  
energy deposits of 
charged and neutral 
parameters  

• Segmented into cells 

• Usually split into 
electromagnetic/
hadronic part 

• Image representation very 
intuitively

Clustering and object identification
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Calorimetry & Jet reconstruction

• Clustering & jet building is unsupervised learning

Clustering and object identification

45

Then cluster in 2d

1. Make every particle into a vector

2. Cluster in �–y space (y ⇡ ⌘)

Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random soft

“ghosts”, clustered with four di�erent jets algorithms, illustrating the “active” catchment areas of

the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by the

specific set of ghosts used, and change when the ghosts are modified.

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which clips a

lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various quanti-

tative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet boundaries for

di�erent algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures a jet’s

susceptibility to point-like radiation, and the active area (A) which measures its susceptibility to

di�use radiation. The simplest place to observe the impact of soft resilience is in the passive area for

a jet consisting of a hard particle p1 and a soft one p2, separated by a y � � distance �12. In usual

IRC safe jet algorithms (JA), the passive area aJA,R(�12) is �R
2

when �12 = 0, but changes when

�12 is increased. In contrast, since the boundaries of anti-kt jets are una�ected by soft radiation,

4

Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random soft

“ghosts”, clustered with four di�erent jets algorithms, illustrating the “active” catchment areas of

the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by the

specific set of ghosts used, and change when the ghosts are modified.

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which clips a

lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various quanti-

tative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet boundaries for

di�erent algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures a jet’s

susceptibility to point-like radiation, and the active area (A) which measures its susceptibility to

di�use radiation. The simplest place to observe the impact of soft resilience is in the passive area for

a jet consisting of a hard particle p1 and a soft one p2, separated by a y � � distance �12. In usual

IRC safe jet algorithms (JA), the passive area aJA,R(�12) is �R
2

when �12 = 0, but changes when

�12 is increased. In contrast, since the boundaries of anti-kt jets are una�ected by soft radiation,
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Calorimetry & Jet reconstruction

• Many, many input variables

Clustering and object identification

46

3

Jet tagging: which parton was that?

Each line and box represents many measurements

• Each line (track) or box  
(energy deposit, cluster)  
represents several input 
features  

O (1000) input features 

• Those input features look 
differently for different 
jet types: q (flavour), g 



Jet tagging: which flavour of q

• Most commonly known and applied taggers aim to identify jets from b-quarks

Classification problems

47

4

wikipedia

Key features:
• Displaced tracks from longer lifetimes 

of  heavy flavor jets
• Secondary vertex
• Eventually leptons in jets from W* in b 

→ W*c or c → W*s
• Slightly wider jets
• …

• Typically CMS jets have up to 50 particles with 
detailed information and secondary vertices ~1000 
features

Most commonly used tagger: b-jet tagging

[ Image: Nazar Bartosik ]

• Most state-of-the-art b-tagger use ML to exploit 
a variety of features 

• Finite lifetime of b-quark generates secondary 
vertex & displaced tracks 

• Eventually leptons in final state 

• Slightly wider jet structure from kinematics

http://bartosik.pp.ua/hep_sketches/btagging


Jet tagging: which flavour of q

• The network architecture is not unessential in this context

Classification problems

48[ M Stoye: DeepJet ]

DPs-2017-013

Blue: naive DNN (700 inputs)
Green: CMS tagger (~65 human made inputs)
Red: Physics inspired DNN (700 inputs)

Particle and vertex based DNN performs best
9

Impact of DeepJet/DeepFlavour architecture

HUMAN

700  
input  

features NAIVE DNN

PHYSICS INSPIRED DNN

66  handcrafted

using all 700 

using all 700 

https://dl4physicalsciences.github.io/files/nips_dlps_2017_10.pdf


Jet tagging: q/g separation

• Jets from quarks & gluons result in 
different topologies (“images”) 

• Jet images augmented with color  
information:

Clustering and object identification

49Figure 1: The average jet images for 200 GeV Pythia gluon jets (top) and quark jets

(bottom) shown after normalization (left) and after the zero-centering and standardization

(right). Di↵erent linear color scales are used to highlight the important features of each step.

On the left the quark jets have more intensity in the five core pixels whereas the gluon jets are

wider. On the right, the standardization procedure illustrates that quark jets are narrower

and emphasizes the softer outer radiation.

3.2 Network architecture

The deep convolutional network architecture used in this study consisted of three iterations

of a convolutional layer with a ReLU activation and a maxpooling layer, all followed by

a dense layer with a ReLU activation. To predict a binary classification between quarks

and gluons, an output layer of two units with softmax activation is fully connected to the

final dense hidden layer. An illustration of the architecture used is shown in Figure 2. The

dropout rate was taken to be 0.25 after the first convolutional layer and 0.5 for the remaining

layers, with spatial dropout (drop entires feature maps) used in the convolutional layers. Each

convolutional layer consisted of 64 filters, with filter sizes of 8⇥8, 4⇥4, and 4⇥4, respectively.

– 7 –

Source: 

arxiv.org:612.01551

RED: transverse momenta of charged particles
GREEN: transverse momenta of neutral particles
BLUE: charged particle multiplicity

https://arxiv.org/pdf/1612.01551.pdf
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Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2⇥2 down-sampling with a stride length of 2. The dense

layer consisted of 128 units.

All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss

– 8 –

Jet tagging: q/g separation

• Jets from quarks & gluons result in 
different topologies (“images”) 

• Fed into Convolutional Neural Network 

• Max pooling 

• Dense layers 

• Output interpreted as quark/gluon tag 

Clustering and object identification
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Source: 

arxiv.org:612.01551

https://arxiv.org/pdf/1612.01551.pdf


Jet tagging: q/g separation

• CNN classification shows 
extremely strong ROC 
curve  

• Adding “color” enhances 
that even more

Clustering and object identification
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Source: 

arxiv.org:612.01551

Figure 5: (top) ROC and (bottom) SIC curves of the FLD and the deep convolutional

network trained on (left) 200GeV and (right) 1000GeV Pythia jet images with and without

color compared to baseline jet observables and a BDT of the five jet observables.

e�ciency at 50% quark jet classification e�ciency for each of the jet variables and the CNN

are listed in Table 1. To combine the jet variables into more sophisticated discriminants, a

boosted decision tree (BDT) is implemented with scikit-learn. The convolutional network

outperforms the traditional variables and matches or exceeds the performance of the BDT of

all of the jet variables. The performance of the networks trained on images with and without

color is shown in Figure 6.

5.1 Colored jet images

The benchmarks in the previous section were compared to the jet images with and without

color, where the three color channels correspond to separating out the charge and multiplicity

information as described in Section 3.3. Figure 6 shows the SIC curves of the neural network

performances with and without color on Pythia jet images. For the 100GeV and 200GeV

images, only small changes in the network performance were observed by adding in color of

this form. For the 500GeV and 1000GeV jet images, performance increases were consistently

– 13 –

https://arxiv.org/pdf/1612.01551.pdf


HEP&ML: Operation
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ANALYSIS
RECONSTRUCTION

EXPERIMENTCOLLIDER

EVENT GENERATION DETECTOR  
SIMULATION

TRIGGER & DATA 
ACQUISITON

SIGNAL 
SIMULATION



• DQM is essential for detector operation, guarantees high quality data  

• Has been (is) often done with human intervention (shifters) 

• A lot of data (40 MHz collision, 108 channels),  
but sparse (anomalies even sparser) 

53

 

Data Quality Monitoring (DQM)
Anomalie Detection

HUMAN ML AGENT

“GOOD FOR PHSYCIS” FASTER RESPONSE TIME 
INTERPRETABILITY INCREASES 
+ IT IS A BORING JOB TO A BE SHIFTER

https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
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Data Quality Monitoring (DQM)
Anomalie Detection

• Auto-encoders are networks that aim (sparse) to map the input data to output data  
through a compressed representation

[ Lilian Weng: From Autoencoder to Beta-VAE ]

https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html#autoencoder
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Data Quality Monitoring (DQM)
Anomalie Detection

Results

• ROC AUC is 0.9782 using TOP100

• The visible error waves depend on inst. luminosity.

Reconstruction error vs time

Široký et al., 9 Jul 2018 Anomaly Detection Using Deep Autoencoders 9

• Auto-encoders are networks that aim (sparse) to map the input data to output data  
through a compressed representation 

• Trained only on a “good” selection will result in sub-optimal output on anomalies 

• Least squares of 100 worst 
reconstructed features

Dataset

• Use all features and lumisections in the dataset from June to October

2016 (160k samples).

• One lumisection is one sample.

• Normalize the data using standard scaler.

• Train and test based on the quality labels provided by experts.

• Sort samples chronologically (60 + 20 : 20 split).

• Decision function: mean squared error of 100 worst reconstructed

features:

TOP100 =
1

100

100X

i=1

sorted(Xi � X̂i )
2

.

Široký et al., 9 Jul 2018 Anomaly Detection Using Deep Autoencoders 8
[ A. Pole, Anomalie Detection in CMS, CHEP2018 ]

https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
https://indico.cern.ch/event/587955/contributions/2937523/


• LHC experiments deploy complicated triggering 
systems to filter “interesting” events 

• Data scouting is one of the strategies 

• Trigger objects fed into a multi-layer 
perception network to model offline 
parameters for muons 

• Goal to run on FPGAs in real-time

56

 

Triggering using ML
Fast trigger detection / scoutingCMS Trigger and Data Acquisition

1.5 MB 
event size 100 KHz

40 MHz

0.15 TB/s

2 KHz

Phase 0&1: 2008 - 2024

7.5 MB 
event size 750 KHz

40 MHz

5.5 TB/s

7.5 KHz

Phase 2: 2027 - 2036

Peak pile-up 60 Peak pile-up 200++

Phase-2 
Upgrade 

2027 - onwards

3

[ D. Golubović/CMS: 40 MHz scouting at CMS ]

https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
https://indico.cern.ch/event/831165/contributions/3717111/attachments/2024731/3386650/CTD_2020_40_MHz_Scouting_DG.pdf


• LHC experiments deploy complicated triggering 
systems to filter “interesting” events 

• Data scouting is one of the strategies 

• Trigger objects fed into a multi-layer 
perception network to model offline 
parameters for muons 

• Goal to run on FPGAs in real-time
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Triggering using ML
Fast trigger detection / scoutingCMS Trigger and Data Acquisition

1.5 MB 
event size 100 KHz

40 MHz

0.15 TB/s

2 KHz

Phase 0&1: 2008 - 2024

7.5 MB 
event size 750 KHz

40 MHz

5.5 TB/s

7.5 KHz

Phase 2: 2027 - 2036

Peak pile-up 60 Peak pile-up 200++

Phase-2 
Upgrade 

2027 - onwards

3

[ D. Golubović/CMS: 40 MHz scouting at CMS ]
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Neural Network distribution narrower compared to the GMT
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Deep Learning Models

• Multilayered perceptron to re-fit muon parameters ( , , ) 

• Model inputs - L1 Trigger muon objects 

• Model targets - offline reconstructed data 

• Improve accuracy of the Global Muon Trigger data 

• Development tools 

• Python programming language 

• Keras and Tensorflow as deep learning frameworks 

• Scikit-learn, Matplotlib, Searborn, PyRoot, Pandas, H5py…
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https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf
https://indico.cern.ch/event/831165/contributions/3717111/attachments/2024731/3386650/CTD_2020_40_MHz_Scouting_DG.pdf
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Intelligent Computing operation
Data popularity prediction 

[ Performance and Impact of dynamic data placement in ATLAS ]

• HEP lives from distributed data storage & processing  

• Non-trivial problem, as data storage  
& CPU is expensive 

• Predicting popularity of a data set could  
help optimising computing resources, 
using meta data to predict popularity with AdaBoost 

• Intelligent computing operation is an upcoming topic  

• Aim is to optimise resource usage & minimise failures

data and workload management systems is given in Section 2. Section 3 introduces the dy-
namic data placement tool C3PO, which was developed during the Run-2 phase of the LHC.
In Section 4 the analysis of performance and impact of C3PO operations in ATLAS is shown.
Finally, the results of a study on data popularity prediction with machine learning techniques
are presented in Section 5.

2 ATLAS distributed data and workload management
Recorded ATLAS physics data are managed by the ATLAS distributed data management
(DDM) system Rucio [4], which extends its predecessor Don Quijote 2 (DQ2) [5] in terms of
scalability, expandability with new technologies and use cases, and lower maintenance effort.
Simulated and detector data are organised in datasets, which are collections of files sharing
common properties, such as the simulated physics process or the identification number of the
ATLAS data taking run. The copy of a file or dataset at the storage element of a computing
site is called a replica. The creation and distribution of new replicas is managed by replica-
tion rules, which define the minimum number of replicas to be available on a list of storage
elements. Rucio processes replication rules, which creates replica locks for storage elements
and issues file transfers until the rules are satisfied.

Grid data processing is orchestrated by the ATLAS workload management system PanDA
[6]. Analysis and data production tasks are submitted manually by users or automatically by
the ATLAS production system [7] to the PanDA server. With the information from Rucio
about the dataset content and location of replicas, PanDA jobs are generated and distributed
across available computing resources in the Grid. Jobs are processed at worker nodes via the
PanDA pilot system [8]. PanDA sends out pilot wrappers to computing sites where they are
further distributed to the worker nodes of the local batch system. The wrappers download
and execute the PanDA pilot code, which fetches jobs from the PanDA server suitable for the
worker node, stages in input files if needed, executes the job payload, and stages out output
files. This is the most common operational scenario for the pilot, which is altered for special
computing resources like High Performance Computing facilities.

The ATLAS DDM tracer system [9] collects data of each file access operation executed by
PanDA. This provides file access traces with additional information such as the corresponding
dataset, the storage element that was accessed and the user associated to the respective PanDA
job. The file access data is used by C3PO as well as the analysis of C3PO operations presented
in this proceedings to get a measure for dataset accesses.

3 Dynamic data placement tool C3PO
C3PO [10] is a dynamic data placement agent integrated in Rucio which identifies popular
datasets from past data accesses for which it creates additional, transient replicas. This helps
to inject additional copies of heavily accessed datasets into the Grid and spread the workload
more evenly across available computing resources. Currently, C3PO takes into consideration
DAOD and NTUP datasets. The latter is the data type used in physics analyses during the
Run-1 phase of the LHC. C3PO collects information from different sources to feed a place-
ment algorithm, which employs criteria to decide if new replicas are created and where they
are placed. The gathered data contain newly submitted tasks from PanDA and their input
dataset(s), network metrics of links between Grid sites, current replica information from Ru-
cio, and the dataset popularity. The latter is a daily aggregation of the file access traces for
each dataset, counting the number of PanDA pilot instances that accessed the data.

The placement algorithm evaluates the input datasets of tasks submitted to PanDA, for
which several requirements must be fulfilled:

Figure 1. Number of accessed and not accessed replicas according to the leading 20 sites at which they
were created.

• Limit on the number of already existing replicas and whether a replica was created in the
past 24 hours.
• Limit on the number of files and bytes C3PO can create per hour, per day, and per destina-

tion site.
• Find suitable pair of a site where the replica already exists and a destination site accord-

ing to free disk space, network metrics, and past C3PO replica creations to destination
candidates.
• The popularity of the dataset over the previous seven days is at least eight or at least five

tasks have been submitted in the past 24 hours.
When the full selection chain is passed successfully, a new replication rule for the dataset

at the selected destination site is issued to Rucio with a lifetime of seven days. After the
expiration of the rule, the new replica can be deleted by Rucio when disk space is needed.

4 Performance and impact analysis

The performance of the decision making process of C3PO is measured by the usage of the
newly created replicas. The file access traces are used to determine if Grid jobs have accessed
a given replica as input or not. This groups the replicas created by C3PO into accessed and
not accessed, which is used as the main distinction if C3PO made good selection decisions.

For the performance evaluation, the data of C3PO operations in the time period of July to
December of 2017 is used. While C3PO is taking into account DAOD and NTUP datasets, the
fraction of the latter in this data sample is negligible. Figure 1 shows the number of accessed
and not accessed replicas according to the leading 20 sites at which they were created. The
percentages indicate the replica efficiency, which is the fraction of accessed replicas of all
replicas created by C3PO. Overall, the replica efficiency for the evaluated time period is 64%,
which reflects a good performance of the C3PO placement algorithm. However, the created
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cessibility of input data or high workload on computing sites, a difference between Sample A
and Sample B is expected to be measured in these metrics.

Figure 4 depicts the distribution of the time to completion (TTC) of tasks that used the
datasets of Sample A and Sample B as input. The fraction of tasks that pass selection on lower
thresholds on the TTC are shown separately for Sample A and Sample B. A significantly
smaller fraction of tasks for Sample A end up in the tails of the TTC distribution, compared
to Sample B. This indicates that the additional replicas created by C3PO have a positive effect
on outlier tasks with very long TTC.

5 Popularity prediction with machine learning

C3PO only uses static selections on popularity parameters to select popular datasets for repli-
cation. A potential improvement of the decision making process is the inclusion of machine
learning techniques to predict the future popularity of datasets according to data usage pat-
terns in the past. In the following, results of a study on dataset popularity prediction based
on the methodology in Ref. [11] are presented. The machine learning model consists of two
steps, the popularity definition evaluation with a selected amount of data and the popularity
prediction evaluation of the full considered time period. The AdaBoost algorithm [12] with
decision trees is used for the training of both these steps. The input to the training are historic
meta-data of Grid jobs that used the evaluated DAOD datasets as input. Four variables, which
characterise the dataset, are used as training input:

• The six digit dataset id

• The version tag of physics data

• The data period or MC simulation campaign string

• The data format string

In order to mark datasets as popular for the prediction training, a popularity definition is
constructed using the following strategy:

• Consider Grid job parameters which don’t have a strong dependence on the time period
which is evaluated.

• Train four weeks of high statistics data which amount to ∼60000 Grid jobs, separately using
each parameter for the popularity definition to mark datasets as popular or not popular.

• Popularity definition: for a given parameter distribution, the considered dataset falls into
the tailing X% where X is a variable threshold cut.

The considered parameters are the accumulated information of Grid jobs such as the
number of associated users or the number of associated tasks. The AdaBoost Decision Tree
parameters chosen for the popularity definition training are maximum depth 8, learning rate
0.5, and number of estimators 10. The data is split into 66% training and 33% test data.
Applying the training results to the test data, three metrics are considered to identify the most
suitable parameter:

• Precision: the fraction of datasets predicted as popular that actually are popular.

• True positive rate (TPR): the fraction of actual popular datasets that have been predicted as
popular.

• False positive rate (FPR): the fraction of actual unpopular datasets that have been predicted
as popular.

Figure 5. Precision of the popularity prediction for weeks in 2016 and 2017.

The number of users in combination with a 7% threshold cut is chosen as popularity def-
inition, since it provides the highest precision and good performance in terms of TPR and
FPR.

With this popularity definition the full data of 2016 and 2017 Grid jobs are evaluated. The
popularity prediction for a given week is done by training on data of the previous four weeks.
In addition to the previously mentioned four training variables, the popularity of the previous
three weeks is included in the training input. According to a hyperparameter optimisation,
the AdaBoost Decision Tree parameters for the popularity prediction are set to maximum
depth 8, learning rate 0.1, and number of estimators 10. Figure 5 shows the precision of the
popularity prediction for weeks in 2016 and 2017. In general, the model yields high precision
but also large week to week fluctuations. The inconsistency of the resulting precision is an
indication that the chosen training period of four weeks is potentially not always sufficient to
get a good popularity prediction.

6 Conclusions
This proceedings presented the analysis of the performance of the C3PO decision making
process and the impact that dynamic data placement has on selected metrics related to efficient
Grid data processing in ATLAS. The placement algorithm of C3PO shows good performance
in terms of the decisions it makes, as determined by the usage of replicas after their creation.
The positive impact of C3PO operations on outlier tasks with a very long time to completion
is demonstrated with an A/B testing method applied to the datasets that pass the selection
criteria of C3PO.

Furthermore, the results of a study on popularity prediction with machine learning tech-
niques were presented. The prediction model shows promising results with a large array of
additional options to explore in order to refine the used methodology.

C3PO shows good performance in general, but several aspects can be improved by incor-
porating more information and mechanisms into the decision making process. This includes
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Detector Simulation

• HEP relies a lot (too much?)  
in Monte Carlo simulation 

• Full (& very precise) detector simulation  
toolkit Geant4, very CPU hungry 

• Fast simulation techniques 
are often good enough 

• But how to sample something 
as complex as this?

Monte Carlo data production

60[ Image : ALICE CERN ]

http://alicematters.web.cern.ch/?q=ALICEoverview
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• Generative Adversarial Network (GAN)

[ www.thispersondoesnotexit.com ]

http://alicematters.web.cern.ch/?q=ALICEoverview
http://www.thispersondoesnotexit.com


Detector Simulation

• Variational Auto-Encoder (VAE)

Fast simulation techniques
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• Generative Adversarial Network (GAN)

[ Lilian Weng: From Autoencoder to Beta-VAE ] [ I. Goodfellow et al: Generative Adversarial Nets ]

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html#autoencoder
https://papers.nips.cc/paper/5423-generative-adversarial-nets


Detector Simulation
Fast simulation techniques
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• Generative Adversarial Network (GAN)

 

[ ATL-SOFT-PUB-2018-001 ]
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Figure 7: Energy deposited in the individual calorimeter layers for photons with an energy of approximately 65 GeV
in the range 0.20 < |⌘ | < 0.25. The energy depositions from a full detector simulation (black markers) are shown as
reference and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and
the hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Figure 7: Energy deposited in the individual calorimeter layers for photons with an energy of approximately 65 GeV
in the range 0.20 < |⌘ | < 0.25. The energy depositions from a full detector simulation (black markers) are shown as
reference and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and
the hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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• Variational Auto-Encoder (VAE)

• Very promising results at a fraction of the CPU cost, similar study quotes ~1/1000

[ S. Vallecorsa , F. Carminati , G. Khattak : 3D convolutional GAN for fast simulation ] 

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html#autoencoder
https://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf
http://cds.cern.ch/record/2701779/files/10.1051_epjconf_201921402010.pdf
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