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What are the current ML challenges for scattering science



Neutron and Photon Scattering @

Materials and Life Science Research

"Neutrons tell you where the atoms are and what the atoms §
are doing”

C. Shull & B Brockhouse '94 Nobel laureates

Photon scattering tells you where the electrons are and
what they are doing.

The domains are characterised by many different
experimental methods.

A direct probe of the quantum ground state (and excited
states)




Quantum Magnetism @

Haldane F D M 1983 Phys. Lett. 93A 464; 1983 Phys. Reu. Lett. 50 1153; 1985 J. Appl. Phys. 57 3359
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B. Lake, D.A. Tennant, C.D. Frost & S.E. Nagler
Nature Mater. 4, 329-334 (2005)




European Photon and Neutron Landscape
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Ok users per year
sers visit for short periods 1-3d - one time deal to get a result
10’s PB of data

Data rate increase exceeds moore’s law




Data Challenges
Variety SANS |

Powder diffraction

Single crystal diffraction

Reflectometry

Imaging
PSI Imaging Group

Spectroscopy




Data Challenges

Volume

Each experiment visit creates large data volumes

Neutron >5T per visit
X-Fel >500TB per visit

Data processing becomes a limiting factor.
For data processing many corrections are ‘black box’ algorithms

Artefacts or ‘bad’ data may be included or influence the output

K=-2.0rlu




Neutron Data Challenges
Velocity of input data

Neutron detectors convert incident neutrons to charge
(or photons)

Processing algorithms then determine the spatial location
and Time of neutron arrival.

The input data rate can be as high as (Flux * # readout channels) * ADC bit rate
i.e. > (1le5 * 2) * 12 ~1MHz

Processing triggers are currently ‘simple algorithms’
Processing pipeline must maintain low latency
(for ESS this latency budget is 73msec)



Input Data— Event formation

Particle tracks in Xx,y,t
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There are examples

Of ML on the detector
backplane in the Photon
Community.



Neutron Data Challenges @

Velocity of output data

Data are converted into scientifically meaningful units. K‘
These must then be analysed. L
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Facilities can generate ~ 500MB /s of processed data

log I(s), relative

“; A

L s
1 ’lh‘c r\ "\""«ﬂ l * -a? -‘ l-s\s

For 1D data like Small Angle Scattering IvQ PTTI A CAER ey
1 data set per pulse -14 /s ot (T T
24 Hours collection 1M 1D datasets

size . shape _ fold

This is too much for a human to process in real time during an experiment
How do we know the experiment is working or collecting useful data

ESS has developed a realtime data pipeline*
* Our system has no intelligent way of automating feedback




Scientific Computing Pipeline

Pipeline build to provide near realtime processing
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Real Time processing of Neutron Event Data for SANS
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Scientific Computing Pipeline

ML use cases and impact areas

Data Stream
Acquisition Events
& Event &
Formation aggregate
Meta Data

Reduction

Feedback & Automate

Data Data
Visualisation

Automated Automated
alarms. _ model
Automa}ted Learned good Real data volume reduction selection
collection : .
Automated | |configurations .
schemes Rejection of Learned statistical Configuration
data evaluation prediction
\ \_ O\ _J \

Data Mining
Prediction
parameters
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ML challenges for Scattering data. @

Classification and Segmentation methods have been successfully applied many types

of scattering data.
https://workshops.ill.fr/event/209/overview

There is a lack of Labelled training data.

Experimental Noise is an issue.
Experimental backgrounds are problematic.

Simulated data has been used with limited success.

Analytical understanding of the results.

We need an analytical understanding of the process.

What is the confidence level on any output.
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https://workshops.ill.fr/event/209/overview

Noise

Statistical noise is inherent in scattering experiments
The impact of noise on trained systems is well documented

This impacts the use of simulated data as training data

+.007 x

“panda” noise “gibbon”

57.7% confidence 99.3% confidence

15



Solutions

De-Noising is a ML use case.

i.e. Noise removal using auto encoders

Trained systems require a ground truth

For the variety of scattering techniques this is a challenge.

16




Trust & Reliability @

In many cases a black box classification is not useful.
Scientifically we need to know why a classification has been made.
What part of the data influenced the process.

http://cnnlocalization.csail.mit.edu/

How reliable is a classification
- How do we decide good enough

Class activation maps of top 5 predictions

ML tech is code and code needs to be tested to some level of QA

17



http://cnnlocalization.csail.mit.edu/

Materials discovery @

Data Mining

Mining Existing measurements from Open Data or the literature
- Requires excellent data management
- Examine trends & correlations in parameter space

- Predict future experiments

Mining databases from atomistic calculations.

- Atomisic codes can calculate specific properties of materials
- ML can then be used predict new materials with specific properties

- https://materialsproject.org/
- Organic Materials Data base https://omdb.mathub.io/

v Stockholm
NORDITA  University

18



https://materialsproject.org/

Future work

Standardised training data for the photon and neutron domain.
- Essential for future progress.

Benchmarks for performance and reliability.

New methods to add to the existing tools available.

- Focusing on methods that require less or no training data.

19



Summary @

Can ML accelerate scientific discovery at Scattering facilities

- Is the only technology that can provide a good level of autonomous control and feed back.

- We can create too much data for a single human to meaningfully interpret on the time scale
of an experiment.

- The outputs and choices need to have traceability and variance.

-It is as important to know why as to know what.
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