Chern-Simons formulation of non- and ultra-relativistic (SUPER)GRAVITY THEORIES IN 2+1 SPACETIME DIMENSIONS

Based on Phys. Lett. B 804 (2020), 135392, JHEP 04 (2020), 051, and JHEP 02 (2020), 128

Lucrezia Ravera
Politecnico di Torino - DISAT

Online meeting on non-Lorentzian geometry, 24 June 2020 @ Home

- Non-relativistic (NR) and ultra-relativistic (UR) theories: Framework and Chern-Simons (CS) formulation of three-dimensional models
- State of art, open issues \rightsquigarrow Recent results in the context of NR and UR $2+1$-dimensional CS (super)gravity theories:
- Exotic Newtonian gravity with cosmological constant
P. Concha, L.R., E. Rodríguez, Phys. Lett. B 804 (2020), 135392 [arXiv:1912.02836 [hep-th]]
- Maxwellian extended Bargmann supergravity

$$
\text { P. Concha, L.R., E. Rodríguez, JHEP } 04 \text { (2020), } 051 \text { [arXiv:1912.09477 [hep-th]] }
$$

- \mathcal{N}-extended CS Carrollian supergravities (AdS and flat limit)
- Conclusions and future developments

NR AND UR SYmmetries

- NR symmetries \rightarrow NR limit, $c \rightarrow \infty$
- UR symmetries \rightarrow UR limit, $c \rightarrow 0$

Useful to describe some physical phenomena. For instance:

- NR: Gravity models \rightarrow Different NR gravity theories invariant under distinct extensions of the Galilei symmetries ($c \rightarrow \infty$ limit of Poincaré); Galilean conformal symmetries \rightarrow Applications in AdS/CFT; Useful to approach condensed matter systems; Newton-Cartan geometry \rightarrow Lifshitz holography; NR superstrings and superbranes were studied as special points in the parameter space of M-theory; NR strings appear as a possible soluble sector within string or M-theory; etc.
- UR: Carroll symmetry introduced by Lévy-Leblond emerged as the UR contraction $(c \rightarrow 0)$ of Poincaré (dual to the NR contraction); Applications in the study of tachyon condensation; Study of warped CFTs; Tensionless strings; Relations among BMS group, Carrollian physics, flat holography and fluid/gravity correspondence; etc.

NR AND UR GRAVITY theories

NR

- Simplest example: Galilei gravity theory, invariant under the (unextended) Galilei symmetries
- Newtonian gravity and Newton-Cartan gravity (frame-independent reformulation) are invariant under the Bargmann algebra (central extension of the Galilei algebra)
- Dynamical (field theoretic) realization of Newton-Cartan geometry formulated by Banerjee et al. \rightarrow Galilean gauge theory of gravity \rightsquigarrow Exact mapping between this theory and the Poicaré gauge theory of gravity

UR

- Theories of Carrollian gravity developed and analyzed by Hartong et al. and Bergshoeff et al.; In particular, (NR and) UR CS actions in $2+1$ dimensions
- Bergshoeff et al.: The geometry of flat and curved (AdS) Carroll space and the symmetries of a particle moving in such a space, both in the bosonic as well as in the supersymmetric case, were investigated
- Matulich et al.: AdS Carroll CS gravity discussed for the first time

Focus on NR and UR three-dimensional CS gravity theories: Why?

- 3D theories: Toy models to approach higher-dimensional theories
- 3D gravity does not allow for propagating local degrees of freedom \rightarrow The solutions of the corresponding theories are consequently locally 3D Minkowski or (A)dS, with the symmetries of the corresponding spacetime as gauge algebras
- In particular, gravity on $\mathrm{AdS}_{3}+$ proper boundary conditions \rightarrow The asymptotic symmetries of AdS_{3} yield the infinite-dimensional symmetries of a $\mathrm{CFT}_{2} \rightarrow$ Well celebrated AdS/CFT duality
- CS formulation: Possibility to write gravity in a gauge theory formulation
- CS action based on either of the gauge algebras $\mathfrak{i s o}(2,1), \mathfrak{s o}(3,1), \mathfrak{s o}(2,2) \leftrightarrow$ Classically equivalent to the Einstein-Hilbert action in its first-order formulation with zero, positive, or negative cosmological constant, respectively
- Obs. 1: NR and UR gravity theories can be constructed either as limit of relativistic theories or by hand
- Obs. 2: In the case of a CS model, the proper construction of the action requires a non-degenerate invariant bilinear form (invariant tensor) \Rightarrow Introduction of additional generators (together with their dual 1 -form fields) is often necessary \rightarrow Extensions (or expansions) of the algebraic structure on which the theory is based

Framework: Lie (super)algebras and Maurer-Cartan equations

Lie (super)algebras and dual formulation

$$
\begin{gathered}
{\left[T_{A}, T_{B}\right\}=C_{A B}{ }^{C} T_{C}} \\
A^{A}\left(T_{B}\right)=\delta_{B}^{A}
\end{gathered}
$$

A^{A} : Differential 1-form fields

Maurer-Cartan equations (vacuum)

$$
\begin{aligned}
& d A^{A}+\frac{1}{2} C_{B C}{ }^{A} A^{B} \wedge A^{C}=0 \\
& d^{2}=0 \leftrightarrow \text { Jacobi identities }
\end{aligned}
$$

$$
F^{A} \equiv d A^{A}+\frac{1}{2} C_{B C} A^{B} \wedge A^{C} \neq 0 \quad \text { (out of the vacuum) }
$$

F^{A} : Curvatures, (super) field strengths

Chern-Simons construction

$$
\begin{gathered}
\text { General expression of a CS action in } D=3 \\
I_{\text {CS }}=\frac{k}{4 \pi} \int_{\mathcal{M}}\left\langle A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right\rangle=\frac{k}{4 \pi} \int_{\mathcal{M}}\left\langle A \wedge F-\frac{1}{3} A \wedge A \wedge A\right\rangle
\end{gathered}
$$

- k : CS level of the theory (for gravitational theories $k=1 /(4 G)) ;\langle\ldots\rangle$ denotes the invariant tensor (non-degenerate invariant bilinear form); The integral is over a $3 D$ manifold \mathcal{M}
- A: Gauge connection 1-form $A=A^{A} T_{A}$; Corresponding curvature 2-form $F=F^{A} T_{A}=d A+A \wedge A$
- E.o.m.: Vanishing of the (super) field strengths
- (Super)algebra \rightarrow CS action (non-degenerate invariant bilinear form)
- NR and UR CS (super)gravity actions can be constructed
- Either by hand (algebraic structure providing a non-degenerate invariant bilinear form) \rightarrow NR/UR limit of which relativistic theory?
- Or through NR and UR limits of a (super)algebra \rightarrow NR/UR CS action (well defined contraction)

State of art (purely bosonic, $D=3$)

- (A)dS (Generators: $J_{A}, P_{A}, A=0,1,2$; Dual 1-form fields: ω^{A}, V^{A}; Length parameter $\ell \leftrightarrow$ Cosmological constant $\left.\Lambda \propto \pm 1 / \ell^{2}\right) \rightarrow$ Flat limit $(\ell \rightarrow \infty$, that is $\Lambda \rightarrow 0) \rightarrow$ Poincaré
- (A)dS, split $A \rightarrow\{a, 0\}, a=1,2 \Rightarrow J_{A} \rightarrow\left\{K_{a}, J\right\}, P_{A} \rightarrow\left\{P_{a}, H\right\}$; Then rescale $K_{a} \rightarrow \sigma K_{a}$ and $H \rightarrow \sigma H$, and $\sigma \rightarrow \infty(c \rightarrow 0$, UR limit) \rightarrow (A)dS Carroll
- Poincaré, split $A \rightarrow\{a, 0\}, a=1,2 \Rightarrow J_{a} \rightarrow\left\{K_{a}, J\right\}, P_{A} \rightarrow\left\{P_{a}, H\right\}$; Then, $K_{a} \rightarrow \sigma K_{a}$ and $H \rightarrow \sigma H$, and $\sigma \rightarrow \infty$ ($c \rightarrow 0$, UR limit) \rightarrow Carroll (flat limit of (A)dS Carroll)
- Dual limit ($c \rightarrow \infty$, NR limit): Poincaré \rightarrow Galilei
- Bargmann algebra (centrally extended Galilean algebra) is the underlying symmetry of Newtonian gravity
- Recently: A 3D CS (super)gravity theory based on the extended Newtonian algebra (which requires to extend the so-called extended Bargmann algebra by including new generators and central charges) has been presented
- NR models that include a cosmological constant described through the Newton-Hooke symmetry; Flat limit \rightarrow Galilei symmetry
- The incorporation of a cosmological constant in the extended Newtonian gravity was an open issue
- The incorporation of a cosmological constant in the (extended) Newtonian gravity was an open issue
\diamond We have a solution to this open problem, finding an action principle for Newtonian gravity including a cosmological constant
P. Concha, L.R., E. Rodríguez, Phys. Lett. B 804 (2020), 135392 [arXiv:1912.02836 [hep-th]]
- NR construction of supergravity theories is challenging and has only been approached in $D=3$ (it requires additional fermionic generators to construct a non-degenerate invariant bilinear form which ensures the proper construction of a CS action)
\diamond We explored the NR limit of the so-called Maxwell superalgebra for $\mathcal{N}=1$ and $\mathcal{N}=2$, showing that a well-defined NR Maxwellian CS supergravity action requires additional fermionic and bosonic generators
P. Concha, L.R., E. Rodríguez, JHEP 04 (2020), 051 [arXiv:1912.09477 [hep-th]]
- A study of Carrollian (UR) supersymmetric models in the context of supergravity was still lacking
\diamond We developed and analyzed \mathcal{N}-extended CS Carrollian supergravity theories in $D=3$ for the first time

Three-dimensional exotic Newtonian gravity with cosmological constant

Review of the extended Newtonian gravity theory

- Extended Newtonian algebra: Extended Bargmann generators $\left\{J, G_{a}, S, H, P_{a}, M\right\}, a=1$, 2, together with $\left\{T_{a}, B_{a}\right\}$ and two central charges, Y and Z (the latter ensure non-degeneracy of the invariant tensor)
- Non-vanishing components of the invariant tensor:

$$
\begin{aligned}
& \langle M S\rangle=\langle H Z\rangle=-\langle J Y\rangle=-\beta_{1}, \quad\left\langle P_{a} B_{b}\right\rangle=\left\langle G_{a} T_{b}\right\rangle=\beta_{1} \delta_{a b}, \quad\langle J S\rangle=-\alpha_{0}, \quad\left\langle G_{a} G_{b}\right\rangle=\alpha_{0} \delta_{a b}, \\
& \langle J M\rangle=\langle H S\rangle=-\alpha_{1}, \quad\left\langle G_{a} P_{b}\right\rangle=\alpha_{1} \delta_{a b}, \quad\langle S S\rangle=\langle J Z\rangle=-\beta_{0}, \quad\left\langle G_{a} B_{b}\right\rangle=\beta_{0} \delta_{a b}
\end{aligned}
$$

- Gauge connection 1-form $A=\tau H+e^{a} P_{a}+\omega J+\omega^{a} G_{a}+m M+s S+t^{a} T_{a}+b^{a} B_{a}+y Y+z Z$
- Corresponding 2-form curvatures:

$$
\begin{aligned}
& R(\tau)=d \tau, \quad R^{a}\left(e^{b}\right)=d e^{a}+\epsilon^{a c} \omega e_{c}+\epsilon^{a c} \tau \omega_{c}, \quad R(\omega)=d \omega, \quad R^{a}\left(\omega^{b}\right)=d \omega^{a}+\epsilon^{a c} \omega \omega_{c}, \\
& R(m)=d m+\epsilon^{a c} \omega_{a} e_{c}, \quad R(s)=d s+\frac{1}{2} \epsilon^{a c} \omega_{a} \omega_{c}, \quad R^{a}\left(t^{b}\right)=d t^{a}+\epsilon^{a c} \omega t_{c}+\epsilon^{a c} \tau b_{c}+\epsilon^{a c} s e_{c}+\epsilon^{a c} m \omega_{c}, \\
& R^{a}\left(b^{b}\right)=d b^{a}+\epsilon^{a c} \omega b_{c}+\epsilon^{a c} s \omega_{c}, \quad R(y)=d y-\epsilon^{a c} \omega_{a} t_{c}-\epsilon^{a c} e_{a} b_{c}, \quad R(z)=d z+\epsilon^{a c} \omega_{a} b_{c}
\end{aligned}
$$

Three-dimensional exotic Newtonian gravity with cosmological constant

-3D CS generalized extended Newtonian gravity action:

$$
\begin{aligned}
I_{\mathrm{gEN}}= & \frac{k}{4 \pi} \int \alpha_{0}\left[\omega_{a} R^{a}\left(\omega^{b}\right)-2 s R(\omega)\right]+2 \alpha_{1}\left[e_{a} R^{a}\left(\omega^{b}\right)-m R(\omega)-\tau R(s)\right] \\
& +\beta_{0}\left[b_{a} R^{a}\left(\omega^{b}\right)+\omega_{a} R^{a}\left(b^{b}\right)-2 z R(\omega)-s d s\right] \\
& +2 \beta_{1}\left[e_{a} R^{a}\left(b^{b}\right)+t_{a} R^{a}\left(\omega^{b}\right)+y R(\omega)-m R(s)-\tau R(z)\right]
\end{aligned}
$$

Explore the possibility to include a cosmological constant by introducing an explicit length parameter ℓ

- Same generators of the extended Newtonian algebra, but the presence of a cosmological constant implies new non-vanishing commutators involving an explicit scale $\ell \Rightarrow$ Exotic Newtonian algebra:

$$
\begin{aligned}
& {\left[J, G_{a}\right]=\epsilon_{a b} G_{b}, \quad\left[G_{a}, G_{b}\right]=-\epsilon_{a b} S, \quad\left[H, G_{a}\right]=\epsilon_{a b} P_{b},} \\
& {\left[J, P_{a}\right]=\epsilon_{a b} P_{b}, \quad\left[G_{a}, P_{b}\right]=-\epsilon_{a b} M, \quad\left[H, B_{a}\right]=\epsilon_{a b} T_{b},} \\
& {\left[J, B_{a}\right]=\epsilon_{a b} B_{b}, \quad\left[G_{a}, B_{b}\right]=-\epsilon_{a b} Z, \quad\left[J, T_{a}\right]=\epsilon_{a b} T_{b},} \\
& {\left[S, G_{a}\right]=\epsilon_{a b} B_{b}, \quad\left[G_{a}, T_{b}\right]=\epsilon_{a b} Y, \quad\left[S, P_{a}\right]=\epsilon_{a b} T_{b},} \\
& {\left[M, G_{a}\right]=\epsilon_{a b} T_{b}, \quad\left[P_{a}, B_{b}\right]=\epsilon_{a b} Y, \quad\left[H, P_{a}\right]=\frac{1}{\ell^{2}} \epsilon_{a b} G_{b},} \\
& {\left[H, T_{a}\right]=\frac{1}{\ell^{2}} \epsilon_{a b} B_{b}, \quad\left[P_{a}, P_{b}\right]=-\frac{1}{\ell^{2}} \epsilon_{a b} S, \quad\left[M, P_{a}\right]=\frac{1}{\ell^{2}} \epsilon_{a b} B_{b}, \quad\left[P_{a}, T_{b}\right]=-\frac{1}{\ell^{2}} \epsilon_{a b} Z}
\end{aligned}
$$

Three-dimensional exotic Newtonian gravity with cosmological constant

- The exotic Newtonian algebra admits the non-vanishing components of the invariant tensor of the extended Newtonian algebra along with

$$
\langle H M\rangle=-\frac{\alpha_{0}}{\ell^{2}}, \quad\left\langle P_{a} P_{b}\right\rangle=\frac{\alpha_{0}}{\ell^{2}} \delta_{a b}, \quad\langle M M\rangle=-\langle H Y\rangle=-\frac{\beta_{0}}{\ell^{2}}, \quad\left\langle P_{a} T_{b}\right\rangle=\frac{\beta_{0}}{\ell^{2}} \delta_{a b}
$$

- The 1-form gauge connection is the same, as the field content is the same
- The exotic Newtonian 2-form curvatures are

$$
\begin{aligned}
& R(\tau)=d \tau, \quad R^{a}\left(e^{b}\right)=d e^{a}+\epsilon^{a c} \omega e_{c}+\epsilon^{a c} \tau \omega_{c}, \quad R(\omega)=d \omega, \quad \hat{R}^{a}\left(\omega^{b}\right)=d \omega^{a}+\epsilon^{a c} \omega \omega_{c}+\frac{1}{\ell^{2}} \epsilon^{a c} \tau e_{c}, \\
& R(m)=d m+\epsilon^{a c} \omega_{a} e_{c}, \quad \hat{R}(s)=d s+\frac{1}{2} \epsilon^{a c} \omega_{a} \omega_{c}+\frac{1}{2 \ell^{2}} \epsilon^{a c} e_{a} e_{c}, \\
& R^{a}\left(t^{b}\right)=d t^{a}+\epsilon^{a c} \omega t_{c}+\epsilon^{a c} \tau b_{c}+\epsilon^{a c} s e_{c}+\epsilon^{a c} m \omega_{c}, \\
& \hat{R}^{a}\left(b^{b}\right)=d b^{a}+\epsilon^{a c} \omega b_{c}+\epsilon^{a c} s \omega_{c}+\frac{1}{\ell^{2}} \epsilon^{a c} \tau t_{c}+\frac{1}{\ell^{2}} \epsilon^{a c} m e_{c}, \\
& R(y)=d y-\epsilon^{a c} \omega_{a} t_{c}-\epsilon^{a c} e_{a} b_{c}, \quad \hat{R}(z)=d z+\epsilon^{a c} \omega_{a} b_{c}+\frac{1}{\ell^{\ell}} \epsilon^{a c} e_{a} t_{c}
\end{aligned}
$$

- The flat limit $\ell \rightarrow \infty$ reproduces the extended Newtonian ones

Three-dimensional exotic Newtonian gravity with cosmological constant

- 3D CS action exotic Newtonian gravity action (well-defined, non-degeneracy of the invariant bilinear form):

$$
\begin{aligned}
I_{\mathrm{exN}}= & \frac{k}{4 \pi} \int \alpha_{0}\left[\omega_{a} \hat{R}^{a}\left(\omega^{b}\right)-2 s R(\omega)+\frac{1}{\ell^{2}} e_{a} R^{a}\left(e^{b}\right)-\frac{2}{\ell^{2}} m R(\tau)\right] \\
& +\alpha_{1}\left[e_{a} \hat{R}^{a}\left(\omega^{b}\right)+\omega_{a} R^{a}\left(e^{b}\right)-2 m R(\omega)-2 s R(\tau)\right] \\
& +\beta_{0}\left[b_{a} \hat{R}^{a}\left(\omega^{b}\right)+\omega_{a} \hat{R}^{a}\left(b^{b}\right)-2 z R(\omega)-s d s\right. \\
& \left.+\frac{2}{\ell^{2}} y R(\tau)-\frac{1}{\ell^{2}} m d m+\frac{1}{\ell^{2}} t_{a} R^{a}\left(e^{b}\right)+\frac{1}{\ell^{2}} e_{a} R^{a}\left(t^{b}\right)\right] \\
& +\beta_{1}\left[e_{a} \hat{R}^{a}\left(b^{b}\right)+b_{a} R^{a}\left(e^{b}\right)+t_{a} \hat{R}^{a}\left(\omega^{b}\right)+\omega_{a} R^{a}\left(t^{b}\right)+2 y R(\omega)-2 z R(\tau)-2 m d s\right]
\end{aligned}
$$

- $I_{\text {exN }}$ is invariant under the exotic Newtonian algebra; $\ell \rightarrow \infty \Rightarrow I_{\mathrm{gEN}}$
- $\ell \rightarrow \infty$: The α_{0} and α_{1} sectors can be rewritten as the Lagrangian invariant under the so-called extended Bargmann algebra
- $\ell \rightarrow \infty$ applied in the β_{0} and β_{1} sectors reproduces the extended Newtonian gravity Lagrangian and the corresponding exotic term
- Each independent term of $l_{\text {exN }}$ is invariant under the gauge transformation laws $\delta A=d \lambda+[A, \lambda]$
- E.o.m.: Vanishing of the exotic Newtonian curvature 2-forms

Three-dimensional Maxwellian extended Bargmann supergravity

- Maxwell algebra: First introduced to describe Minkowski space in the presence of a constant electromagnetic field background
- In the gravity context, the Maxwell algebra and its generalizations have been useful to recover standard General Relativity from CS and Born-Infeld gravity theories
- At the supersymmetric level, the (minimal) Maxwell superalgebra describes a constant Abelian supersymmetric gauge field background in a 4D superspace; Generalizations have been studied
- NR version of the Maxwell CS gravity theory has only been presented recently (presence of three U(1) gauge fields required in order to establish a well-defined NR limit and to avoid degeneracy) \rightarrow Maxwellian Extended Bargmann (MEB) algebra and CS gravity theory
- Supersymmetric extension of the NR Maxwell CS supergravity was unknown till now
- We have explored the NR limit of the Maxwell superalgebra for $\mathcal{N}=1$ and $\mathcal{N}=2 \rightsquigarrow$ A well-defined NR Maxwellian CS supergravity action requires to introduce by hand additional fermionic and bosonic generators \rightarrow MEB superalgebra and 3D CS MEB supergravity theory

Three-dimensional Maxwellian extended Bargmann supergravity

- We first analyzed the $\mathcal{N}=1$ case: The $\mathcal{N}=1$ MEB superalgebra we obtained is not a true supersymmetry algebra, since the anti-commutator of two supercharges leads to a central charge transformation instead of a time and space translation \Rightarrow We move on to $\mathcal{N}=2$
- We applied the NR contraction to a $\mathcal{N}=2$ relativistic Maxwell superalgebra spanned by the set of generators $\left\{J_{A}, P_{A}, Z_{A}, \mathcal{B}, \mathcal{Z}, Q_{\alpha}^{i}, \Sigma_{\alpha}^{i}\right\}, A=0,1,2, \alpha=1,2, i=1,2$
- The presence of $\mathbf{a}_{\mathfrak{s o}}(2)$ internal symmetry generator is crucial in order to admit a non-degenerate invariant inner product in the relativistic CS theory
- But the NR Maxwell superalgebra obtained did not allow for the proper construction of a NR CS supergravity action (although its relativistic analogue is well-defined)

A proper NR CS supergravity action based on a supersymmetric extension of the MEB algebra requires a NR superalgebra which not only contains the MEB algebra as a subalgebra but also admits a non-degenerate invariant supertrace

- We constructed by hand such a supersymmetric extension of the MEB algebra by introducing six Majorana fermionic generators $\tilde{Q}^{+}, \tilde{Q}^{-}, \tilde{\Sigma}^{+}, \tilde{\Sigma}^{-}, \tilde{R}$, and \tilde{W}; Furthermore, we introduced six extra bosonic generators $\tilde{Y}_{1}, \tilde{Y}_{2}, \tilde{U}_{1}, \tilde{U}_{2}, \tilde{B}_{1}$, and $\tilde{B}_{2}\left(\tilde{B}_{1}\right.$ and \tilde{B}_{2} central, while the others act non-trivially on the spinor generators)
- Full set of generators of the MEB superalgebra:

$$
\left\{\tilde{J}, \tilde{G}_{a}, \tilde{S}, \tilde{H}, \tilde{P}_{a}, \tilde{M}, \tilde{Z}, \tilde{Z}_{a}, \tilde{T}, \tilde{Y}_{1}, \tilde{Y}_{2}, \tilde{U}_{1}, \tilde{U}_{2}, \tilde{B}_{1}, \tilde{B}_{2}, \tilde{Q}_{\alpha}^{+}, \tilde{Q}_{\alpha}^{-}, \tilde{R}_{\alpha}, \tilde{\Sigma}_{\alpha}^{+}, \tilde{\Sigma}_{\alpha}^{-}, \tilde{W}_{\alpha}\right\}
$$

- Non-degenerate invariant bilinear form
- Gauge connection 1-form \tilde{A} for the MEB superalgebra:

$$
\begin{aligned}
\tilde{A}= & \omega \tilde{J}+\omega^{a} \tilde{G}_{a}+\tau \tilde{H}+e \tilde{P}_{a}+k \tilde{Z}+k^{a} \tilde{Z}_{a}+m \tilde{M}+s \tilde{S}+t \tilde{T} \\
& +y_{1} \tilde{Y}_{1}+y_{2} \tilde{Y}_{2}+b 1 \tilde{B}_{1}+b_{2} \tilde{B}_{2}+u_{1} \tilde{U}_{1}+u_{2} \tilde{U}_{2} \\
& +\psi^{+} \tilde{Q}^{+}+\psi^{-} \tilde{Q}^{-}+\xi^{+} \tilde{\Sigma}^{+}+\xi^{-} \tilde{\Sigma}^{-}+\rho \tilde{R}+\chi \tilde{W}
\end{aligned}
$$

- Corresponding curvature 2 -form \tilde{F} :

$$
\begin{aligned}
\tilde{F}= & R(\omega) \tilde{J}+R^{a}\left(\omega^{b}\right) \tilde{G}_{a}+F(\tau) \tilde{H}+F^{a}\left(e^{b}\right) \tilde{P}_{a}+F(k) \tilde{Z}+F^{a}\left(k^{b}\right) \tilde{Z}_{a} \\
& +F(m) \tilde{M}+R(s) \tilde{S}+F(t) \tilde{T}+F\left(y_{1}\right) \tilde{Y}_{1}+F\left(y_{2}\right) \tilde{Y}_{2}+F\left(b_{1}\right) \tilde{B}_{1}+F\left(b_{2}\right) \tilde{B}_{2} \\
& +F\left(u_{1}\right) \tilde{U}_{1}+F\left(u_{2}\right) \tilde{U}_{2}+\nabla \psi^{+} \tilde{Q}^{+}+\nabla \psi^{-} \tilde{Q}^{-}+\nabla \xi^{+} \tilde{\Sigma}^{+}+\nabla \xi^{-} \tilde{\Sigma}^{-}+\nabla \rho \tilde{R}+\nabla \chi \tilde{W}
\end{aligned}
$$

$$
\begin{aligned}
I_{\mathrm{MEB}}= & \int\left\{\tilde{\alpha}_{0}\left[\omega_{a} R^{a}\left(\omega^{b}\right)-2 s R(\omega)+2 y_{1} d y_{2}\right]+\tilde{\alpha}_{1}\left[2 e_{a} R^{a}\left(\omega^{b}\right)-2 m R(\omega)-2 \tau R(s)+2 y_{1} d u_{2}\right.\right. \\
& \left.+2 u_{1} d y_{2}+2 \bar{\psi}^{+} \nabla \rho+2 \bar{\rho} \nabla \psi^{+}+2 \bar{\psi}^{-} \nabla \psi^{-}\right]+\tilde{\alpha}_{2}\left[e_{a} R^{a}\left(e^{b}\right)+k_{a} R^{a}\left(\omega^{b}\right)+\omega_{a} R^{a}\left(k^{b}\right)\right. \\
& -2 s R(k)-2 m R(\tau)-2 t R(\omega)+2 y_{1} d b_{2}+2 u_{1} d u_{2}+2 y_{2} d b_{1}+2 \bar{\psi}^{-} \nabla \xi^{-}+2 \bar{\xi}^{-} \nabla \psi^{-} \\
& \left.\left.+2 \bar{\psi}^{+} \nabla \chi+2 \bar{\chi} \nabla \psi^{+}+2 \bar{\xi}^{+} \nabla \rho+2 \bar{\rho} \nabla \xi^{+}\right]\right\}
\end{aligned}
$$

- For $\tilde{\alpha}_{2} \neq 0$ the field equations from $/$ MEB reduce to the vanishing of the curvature 2 -forms associated with the MEB superalgebra
- ImeB contains the so-called extended Bargmann supergravity theory (supplemented with some additional bosonic 1 -form fields) as a sub-case

Chern-Simons Carrollian supergravities

- (A)dS CS gravity theories (and algebras) in 3D presented, together with their flat limit, are known
- Supersymmetric models less investigated; In particular, no Carrollian CS supergravity theory
- Recently presented: Construction of the $\mathcal{N}=1, D=3$ CS supergravity invariant under the AdS Carroll superalgebra, the latter obtained in the literature as the UR contraction of the AdS superalgebra; Flat limit $\ell \rightarrow \infty$ analyzed \Rightarrow Carrollian CS supergravity and Carroll superalgebra (UR contraction of the Poincaré superalgebra)
L.R., Phys. Lett. B 795 (2019) 331-338 [arXiv:1905.00766 [hep-th]]
- In that work, the method introduced by Concha et al. was adopted and improved in order to coherently perform the flat limit: A generalization of the standard Inönü-Wigner (IW) contraction, consisting in rescaling not only the generators of a Lie (super)algebra but also the arbitrary constants appearing in the components of the invariant tensor; Improvement: Consider dimensionful generators from the very beginning

Let us directly move on to the \mathcal{N}-extended cases

\mathcal{N}-extended Chern-Simons Carrollian supergravities

Remarks on the relativistic side

- $\mathcal{N}=2$ supersymmetric extension of Poincaré and AdS algebras not unique, can be subdivided into two classes: $(2,0)$ and $(1,1)$
- Extension to the (p, q) case \rightarrow Subtleties arise: The (p, q) Poincaré superalgebra can be derived as an IW contraction of the (p, q) AdS superalgebra, but the Poincaré limit applied at the level of the CS action requires to consider a direct sum of an $\mathfrak{s o}(p) \oplus \mathfrak{s o}(q)$ algebra and the (p, q) AdS superalgebra $\mathfrak{o s p}(p \mid 2) \oplus \mathfrak{o s p}(q \mid 2)$
- The semi-direct extension of the $\mathfrak{s o}(p) \oplus \mathfrak{s o}(q)$ automorphism algebra by the (p, q) Poincaré superalgebra allows to produce a non-degenerate bilinear form which is used to construct a well-defined CS (p, q) Poincaré supergravity theory

This also has an effect on the UR theories

- Distinguish between $\mathcal{N}=(p, q)$, that is $\mathcal{N}=p+q$, with $p, q>0$, and $\mathcal{N}=(\mathcal{N}, 0)$
- \mathcal{N}-extended AdS Carroll superalgebras obtained through UR contraction applied to the direct sum of an $\mathfrak{s o}(p) \oplus \mathfrak{s o}(q)$ algebra and $\mathfrak{o s p}(p \mid 2) \oplus \mathfrak{o s p}(q \mid 2)$, and to an $\mathfrak{s o}(\mathcal{N})$ extension of $\mathfrak{o s p}(\mathcal{N} \mid 2) \oplus \mathfrak{s p}(2)$, respectively
- $\mathcal{N}=(\mathcal{N}, 0)$ case more subtle: Carroll limit requires to redefine the supersymmetry generators (\mathcal{N} even)
- Limit $\ell \rightarrow \infty$ also analyzed \Rightarrow Flat super-Carroll

\mathcal{N}-extended Chern-Simons Carrollian supergravities: $\mathcal{N}=(p, q)$

- $\mathfrak{o s p}(p \mid 2) \oplus \mathfrak{o s p}(q \mid 2)$
A. Achucarro and P. Townsend, Phys. Lett. B 229 (1989), 383-387
- Consider the direct sum

$$
\underbrace{[\mathfrak{o s p}(p \mid 2) \oplus \mathfrak{o s p}(q \mid 2)]}_{J_{A B}, \tilde{P}_{A}, \tilde{Z}^{i}, \tilde{Z}^{\prime J}, \tilde{Q}_{\alpha}^{i}, \tilde{Q}_{\alpha}^{\prime}} \oplus \underbrace{[\mathfrak{s o}(p) \oplus \mathfrak{s o}(q)]}_{\tilde{S}^{i j}, \tilde{S}^{\prime J}}
$$

- $A, B=0,1,2, \alpha=1,2, i, j=1, \ldots, p, l, J=1, \ldots, q ; \tilde{Z}^{i j}=-\tilde{Z}^{j i}, \tilde{S}^{i j}=-\tilde{S}^{i j}, \tilde{Z}^{l J}=-\tilde{Z}^{J l}, \tilde{S}^{l J}=-\tilde{S}^{J l}$
- We consider dimensionful generators (improve the method of P. Concha et al. to apply the flat limit)

UR limit

1. Perform the following redefinition: $\tilde{T}^{i j} \equiv \tilde{Z}^{i j}-\ell \tilde{S}^{i j}, \quad \tilde{T}^{I J} \equiv \tilde{Z}^{I J}-\ell \tilde{S}^{I J}$
2. Write the non-vanishing components of the invariant tensor
3. Split $A \rightarrow\{a, 0\} \Rightarrow \tilde{J}_{A B} \rightarrow\left\{\tilde{J}_{a b}, \tilde{J}_{a 0} \equiv \tilde{K}_{a}\right\}, \tilde{P}_{A} \rightarrow\left\{\tilde{P}_{a}, \tilde{P}_{0} \equiv \tilde{H}\right\}$
4. Rescale the generators as $\tilde{H} \rightarrow \sigma H, \tilde{K}_{a} \rightarrow \sigma K_{a}, \tilde{S}^{i j} \rightarrow \sigma S^{i j}, \tilde{S}^{\prime J} \rightarrow \sigma S^{\prime J}, \tilde{Q}_{\alpha}^{i} \rightarrow \sqrt{\sigma} Q_{\alpha}^{i}, \tilde{Q}_{\alpha}^{\prime} \rightarrow \sqrt{\sigma} Q_{\alpha}^{\prime}$
5. Take $\sigma \rightarrow \infty(U R) \Rightarrow \mathcal{N}=(p, q)$ AdS Carroll superalgebra

\mathcal{N}-extended Chern-Simons Carrollian supergravities: $\mathcal{N}=(p, q)$

1. Connection 1-form A :

$$
A=\frac{1}{2} \omega^{a b} J_{a b}+k^{a} K_{a}+V^{a} P_{a}+h H+\frac{1}{2} t^{i j} T_{i j}+\frac{1}{2} t^{\prime J} T_{I J}+\frac{1}{2} s^{i j} S_{i j}+\frac{1}{2} s^{I J} S_{I J}+\psi_{i} Q^{i}+\psi_{l} Q^{\prime}
$$

2. Related curvature 2-form F :

$$
F=\frac{1}{2} \mathcal{R}^{a b} J_{a b}+\mathcal{K}^{a} K_{a}+R^{a} P_{a}+\mathcal{H} H+\frac{1}{2} \mathcal{T}^{i j} T_{i j}+\frac{1}{2} \mathcal{T}^{I J} T_{I J}+\frac{1}{2} \mathcal{S}^{i j} S_{i j}+\frac{1}{2} \mathcal{S}^{\prime J} S_{I J}+\nabla \psi_{i} Q^{i}+\nabla \psi_{l} Q^{\prime}
$$

3. Rescaling and Carroll (UR) limit $\sigma \rightarrow \infty$ of the invariant tensor \Rightarrow UR invariant tensor

$$
\mathcal{N}=(p, q) \text { CS Carrollian supergravity action }
$$

$$
\begin{aligned}
l_{C S}^{(p, q)} & =\frac{k}{4 \pi} \int_{\mathcal{M}}\left\{\frac{\alpha_{0}}{2}\left(\omega_{b}^{a} R^{b}{ }_{a}+\frac{2}{\ell^{2}} V^{a} R_{a}+2 t^{i}{ }_{j} d t^{j}{ }_{i}+\frac{4}{3} t^{i}{ }_{j} t^{j}{ }_{\kappa} t^{k}{ }_{i}+2 t^{\prime}{ }_{J} d t^{J}{ }_{\iota}+\frac{4}{3} t^{\prime}{ }_{J} t^{J}{ }_{\kappa} t^{K}{ }_{\iota}\right)\right. \\
& +\alpha_{1}\left[\epsilon_{a b} R^{a b} h-2 \epsilon_{a b} \mathfrak{K}^{a} V^{b}+\frac{1}{\ell^{2}} \epsilon_{a b} V^{a} V^{b} h-2 t^{i}{ }_{j}\left(d s^{j}{ }_{i}+t^{j}{ }_{k} s^{k}{ }_{i}\right)+2 t^{\prime}{ }_{J}\left(d s^{J}{ }_{\iota}+t^{J}{ }_{K} s^{K}{ }_{l}\right)+2 \bar{\psi}^{j} \nabla \psi^{i}+2 \bar{\psi}^{\prime} \nabla \psi^{\prime}\right] \\
& \left.-d\left(\frac{\alpha_{1}}{2} \epsilon_{a b} \omega^{a b} h-\alpha_{1} \epsilon_{a b} k^{a} V^{b}+\alpha_{1} t^{i}{ }_{j} s^{j}{ }_{i}-\alpha_{1} t^{\prime}{ }_{J} s^{J}{ }_{\iota}\right)\right\}
\end{aligned}
$$

- $I_{C S}^{(p, q)}$ invariant by construction under the $\mathcal{N}=(p, q)$ AdS Carroll superalgebra
- For $\alpha_{1} \neq 0$, e.o.m. reduce to the vanishing of the (p, q) super-AdS Carroll curvature 2-forms
- $\ell \rightarrow \infty$ can be applied at the superalgebra, CS action, supersymmetry transformation laws, and e.o.m.

\mathcal{N}-extended Chern-Simons Carrollian supergravities: $\mathcal{N}=(\mathcal{N}, 0)$

- Consider $[\mathfrak{o s p}(\mathcal{N} \mid 2) \oplus \mathfrak{s p}(2)] \oplus \mathfrak{s o}(\mathcal{N}):$

$$
\begin{aligned}
& {\left[\tilde{J}_{A B}, \tilde{J}_{C D}\right]=\eta_{B C} \tilde{J}_{A D}-\eta_{A C} \tilde{J}_{B D}-\eta_{B D} \tilde{J}_{A C}+\eta_{A D} \tilde{J}_{B C}, \quad\left[\tilde{J}_{A B}, \tilde{P}_{C}\right]=\eta_{B C} \tilde{P}_{A}-\eta_{A C} \tilde{P}_{B}, \quad\left[\tilde{P}_{A}, \tilde{P}_{B}\right]=\frac{1}{\ell^{2}} \tilde{J}_{A B},} \\
& {\left[z^{i j}, z^{k l}\right]=\delta^{j k} z^{i l}-\delta^{i k} \bar{z}^{\prime \prime}-\delta^{j l} z^{i k}+\delta^{i l} \tilde{z}^{j k}, \quad\left[\tilde{s}^{i j}, \tilde{s}^{k l}\right]=-\frac{1}{\ell}\left(\delta^{j k} \tilde{s}^{i l}-\delta^{i k} \tilde{s}^{\prime \prime}-\delta^{j l} \tilde{s}^{i k}+\delta^{i l} \tilde{s}^{j k}\right) \text {, }} \\
& {\left[\tilde{J}_{A B}, \tilde{Q}_{\alpha}^{i}\right]=-\frac{1}{2}\left(\Gamma_{A B} \tilde{Q}^{i}\right)_{\alpha}, \quad\left[\tilde{\rho}_{A}, \tilde{Q}_{\alpha}^{i}\right]=-\frac{1}{2 \ell}\left(\Gamma_{A} \tilde{Q}^{i}\right)_{\alpha}, \quad\left[z^{i j}, \tilde{Q}_{\alpha}^{k}\right]=\delta^{j k} \tilde{Q}_{\alpha}^{i}-\delta^{i k} \tilde{Q}_{\alpha}^{j},} \\
& \left\{\tilde{Q}_{\alpha}^{i}, \tilde{\alpha}_{\beta}^{j}\right\}=\delta^{i j}\left[-\frac{1}{2 \ell}\left(r^{A B} C\right)_{\alpha \beta} \tilde{J}_{A B}+\left(\Gamma^{A} C\right)_{\alpha \beta} \tilde{P}_{A}\right]+\frac{1}{\ell} C_{\alpha \beta} z^{i j}
\end{aligned}
$$

- $A, B, \ldots=0,1,2, \alpha, \beta, \ldots=1,2, i, j, \ldots=1, \ldots, \mathcal{N}$ (we considered $\mathcal{N}=2 x, x=1, \ldots, \mathcal{N} / 2$)
- Construction analogous to the $\mathcal{N}=(p, q)$ case, but here we also have to redefine the supersymmetry charges as

$$
\tilde{Q}_{\alpha}^{ \pm \lambda}=\frac{1}{\sqrt{2}}\left(\tilde{Q}_{\alpha}^{\lambda} \pm\left(\Gamma_{0}\right)_{\alpha \beta} \tilde{Q}_{\beta}^{x+\lambda}\right), \quad \lambda, \mu, \ldots=1, \ldots, x
$$

- This has an effect on the generators $\tilde{T}^{i j}$ and $\tilde{S}^{i j}$:

$$
\begin{gathered}
\tilde{T}^{\lambda \mu}, \quad \tilde{T}^{\prime \lambda \mu} \equiv \tilde{T}^{\lambda+x} \mu+x, \quad \tilde{U}^{\lambda \mu} \equiv \tilde{T}^{x+\lambda \mu}, \quad \tilde{U}^{\prime \lambda \mu} \equiv \tilde{T}^{\lambda x+\mu}, \\
\tilde{S}^{\lambda \mu}, \quad \tilde{S}^{\prime \lambda \mu} \equiv \tilde{S}^{\lambda+x \mu+x}, \quad \tilde{V}^{\lambda \mu} \equiv \tilde{S}^{x+\lambda \mu}, \quad \tilde{V}^{\prime \lambda \mu} \equiv \tilde{S}^{\lambda x+\mu} ; \\
\tilde{T}^{\lambda \mu}=-\tilde{T}^{\mu \lambda}, \tilde{T}^{\prime \lambda \mu}=-\tilde{T}^{\prime \mu \lambda}, \tilde{U}^{\lambda \mu}=-\tilde{U}^{\prime \mu \lambda}, \tilde{S}^{\lambda \mu}=-\tilde{S}^{\mu \lambda}, \tilde{S}^{\prime \lambda \mu}=-\tilde{S}^{\prime \mu \lambda}, \tilde{V}^{\lambda \mu}=-\tilde{V}^{\prime \mu \lambda}
\end{gathered}
$$

\mathcal{N}-extended Chern-Simons Carrollian supergravities: $\mathcal{N}=(\mathcal{N}, 0)$

UR limit

1. Write the non-vanishing components of the invariant tensor
2. Split $A \rightarrow\{a, 0\} \Rightarrow \tilde{J}_{A B} \rightarrow\left\{\tilde{J}_{a b}, \tilde{J}_{a 0} \equiv \tilde{K}_{a}\right\}, \tilde{P}_{A} \rightarrow\left\{\tilde{P}_{a}, \tilde{P}_{0} \equiv \tilde{H}\right\}$
3. Rescale as $\tilde{H} \rightarrow \sigma H, \tilde{K}_{a} \rightarrow \sigma K_{a}, \tilde{S}^{\lambda \mu} \rightarrow \sigma S^{\lambda \mu}, \tilde{S}^{\prime \lambda \mu} \rightarrow \sigma S^{\prime \lambda \mu}, \tilde{V}^{\lambda \mu} \rightarrow \sigma V^{\lambda \mu}, \tilde{Q}_{\alpha}^{ \pm \lambda} \rightarrow \sqrt{\sigma} Q_{\alpha}^{ \pm \lambda}$
4. Take $\sigma \rightarrow \infty(\mathrm{UR}) \Rightarrow \mathcal{N}=(\mathcal{N}, 0)$ AdS Carroll superalgebra

CS construction

1. Connection 1 -form A :

$$
A=\frac{1}{2} \omega^{a b} J_{a b}+k^{a} K_{a}+V^{a} P_{a}+h H+\frac{1}{2} \lambda^{\lambda \mu} T_{\lambda \mu}+\frac{1}{2} t^{\prime \lambda \mu} T_{\lambda \mu}^{\prime}+u^{\lambda \mu} U_{\lambda \mu}+\frac{1}{2} s^{\lambda \mu} s_{\lambda \mu}+\frac{1}{2} s^{\prime \lambda \mu} s_{\lambda \mu}^{\prime}+v^{\lambda \mu} V_{\lambda \mu}+\psi_{\lambda}^{+} Q^{+\lambda}+\psi_{\lambda}^{-} Q^{-\lambda}
$$

2. Related curvature 2-form F :

$$
\begin{aligned}
F & =\frac{1}{2} \mathcal{R}^{a b} J_{a b}+\mathcal{K}^{a} K_{a}+R^{a} P_{a}+\mathcal{H} H+\frac{1}{2} \mathcal{T}^{\lambda \mu} T_{\lambda \mu}+\frac{1}{2} \mathcal{T}^{\prime \lambda \mu} T_{\lambda \mu}^{\prime}+\mathcal{U}^{\lambda \mu} U_{\lambda \mu}+\frac{1}{2} \mathcal{S}^{\lambda \mu} S_{\lambda \mu}+\frac{1}{2} \mathcal{S}^{\prime \lambda \mu} S_{\lambda \mu}^{\prime}+\mathcal{V}^{\lambda \mu} V_{\lambda \mu} \\
& +\nabla \psi_{\lambda}^{+} Q^{+\lambda}+\nabla \psi_{\lambda}^{-} Q^{-\lambda}
\end{aligned}
$$

3. Rescaling and Carroll (UR) limit $\sigma \rightarrow \infty$ of the invariant tensor \Rightarrow UR invariant tensor

\mathcal{N}-extended Chern-Simons Carrollian supergravities: $\mathcal{N}=(\mathcal{N}, 0)$

$$
\begin{gathered}
\mathcal{N}=(\mathcal{N}, 0) \text { CS Carrollian supergravity action } \\
I_{C S}^{(\mathcal{N}, 0)}=\frac{k}{4 \pi} \int_{\mathcal{M}}\left\{\frac { \alpha _ { 0 } } { 2 } \left(\omega_{b}^{a} R_{a}^{b}+\frac{2}{\ell^{2}} v^{a} R_{a}+2 t^{\lambda}{ }_{\mu} d t^{\mu}{ }_{\lambda}+\frac{4}{3} t^{\lambda}{ }_{\mu} t^{\mu}{ }_{\nu} t^{\nu}{ }_{\lambda}+2 t^{\prime \lambda}{ }_{\mu} d t^{\prime \mu}{ }_{\lambda}+\frac{4}{3} t^{\prime \lambda}{ }_{\mu} t^{\prime \mu}{ }_{\nu} t^{\prime \nu}{ }_{\lambda}\right.\right. \\
\left.+4 u^{\lambda}{ }_{\mu} d u^{\prime \mu}{ }_{\lambda}-4 t_{\lambda \mu} u^{\prime \lambda}{ }_{\nu} u^{\nu \mu}-4 t_{\lambda \mu}^{\prime} u^{\lambda}{ }_{\nu} u^{\prime \nu \mu}\right)+\alpha_{1}\left[\epsilon_{a b} R^{a b} h-2 \epsilon_{a b} \mathfrak{K}^{a} V^{b}+\frac{1}{\ell^{2} \epsilon_{a b} V^{a} V^{b}}\right. \\
-2 t^{\lambda}{ }_{\mu}\left(d s^{\mu}{ }_{\lambda}+t^{\mu}{ }_{\nu} s^{\nu}{ }_{\lambda}\right)-2 t^{\prime \lambda}{ }_{\mu}\left(d s^{\prime \mu}{ }_{\lambda}+t^{\prime \mu}{ }_{\nu} s^{\prime \nu}{ }_{\lambda}\right)-4 u^{\lambda}{ }_{\mu} d v^{\prime \mu}{ }_{\lambda}-2 u^{\prime \lambda}{ }_{\mu} u^{\mu}{ }_{\nu} s^{\nu}{ }_{\lambda} \\
\left.-2 u^{\lambda}{ }_{\mu} u^{\prime \mu}{ }_{\nu}{s^{\prime \nu}}_{\lambda}-4 u^{\prime \lambda}{ }_{\mu} v^{\mu}{ }_{\nu} t^{\nu}{ }_{\lambda}-4 u_{\mu}^{\lambda}{ }_{\mu}^{\prime \mu}{ }_{\nu} t^{\prime \nu}{ }_{\lambda}+2 \bar{\psi}^{+\lambda}{ }_{\nabla} \psi^{+\lambda}+2 \bar{\psi}^{-\lambda}{ }_{\nabla} \psi^{-\lambda}\right] \\
\\
\left.-d\left(\frac{\alpha_{1}}{2} \epsilon_{a b} \omega^{a b} h-\alpha_{1} \epsilon_{a b} k^{a} V^{b}+\alpha_{1} t^{\lambda}{ }_{\mu} s^{\mu}{ }_{\lambda}+\alpha_{1} t^{\prime \lambda}{ }_{\mu} s^{\prime \mu}{ }_{\lambda}+2 \alpha_{1} u^{\lambda}{ }_{\mu} v^{\prime \mu}{ }_{\lambda}\right)\right\}
\end{gathered}
$$

where

$$
u^{\lambda \mu}=t^{\lambda+x \mu}=-t^{\mu \lambda+x}=-u^{\prime \mu \lambda}, \quad v^{\lambda \mu}=s^{\lambda+x \mu}=-s^{\mu \lambda+x}=-v^{\prime \mu \lambda}
$$

- $I_{C S}^{(\mathcal{N}, 0)}$ invariant by construction under the $\mathcal{N}=(\mathcal{N}, 0)$ AdS Carroll superalgebra
- For $\alpha_{1} \neq 0$, e.o.m. reduce to the vanishing of the ($\mathcal{N}, 0$) super-AdS Carroll curvature 2 -forms
- $\ell \rightarrow \infty$ can be applied at the superalgebra, CS action, supersymmetry transformation laws, and e.o.m.

Conclusions

Summary

- Importance of NR and UR models
- Explicit construction of the theories either by hand or through a contraction procedure
- New results in gravity both at the purely bosonic and supersymmetric level (construction of NR and UR 3D CS (super)gravity theories)

Possible future developments

- Extensions to higher-dimensional theories
- Matter coupling?
- Relations among different NR and UR CS theories can be found by means of mathematical tools applied at the algebraic level \rightarrow Gain something on the relativistic side?
- Role of NR/UR symmetries in the study of supergravity theories on a manifold with boundary (e.g., Carrollian structures, holography)?

Conclusions

Summary

- Importance of NR and UR models
- Explicit construction of the theories either by hand or through a contraction procedure
- New results in gravity both at the purely bosonic and supersymmetric level (construction of NR and UR 3D CS (super)gravity theories)

Possible future developments

- Extensions to higher-dimensional theories
- Matter coupling?
- Relations among different NR and UR CS theories can be found by means of mathematical tools applied at the algebraic level \rightarrow Gain something on the relativistic side?
- Role of NR/UR symmetries in the study of supergravity theories on a manifold with boundary (e.g., Carrollian structures, holography)?

Direct sum $[\mathfrak{o s p}(p \mid 2) \oplus \mathfrak{o s p}(q \mid 2)] \oplus[\mathfrak{s o}(p) \oplus \mathfrak{s o}(q)]$

$$
\begin{aligned}
& {\left[\tilde{J}_{A B}, \tilde{J}_{C D}\right]=\eta_{B C} \tilde{J}_{A D}-\eta_{A C} \tilde{J}_{B D}-\eta_{B D} \tilde{J}_{A C}+\eta_{A D} \tilde{J}_{B C},} \\
& {\left[\tilde{J}_{A B}, \tilde{P}_{C}\right]=\eta_{B C} \tilde{P}_{A}-\eta_{A C} \tilde{P}_{B}, \quad\left[\tilde{P}_{A}, \tilde{P}_{B}\right]=\frac{1}{\ell^{2}} \tilde{J}_{A B},} \\
& {\left[\tilde{Z}^{i j}, \tilde{Z}^{k l}\right]=\delta^{j k} \tilde{Z}^{i l}-\delta^{i k} \tilde{Z}^{j l}-\delta^{j l} \tilde{Z}^{i k}+\delta^{i l} \tilde{Z}^{j k}, \quad\left[\tilde{Z}^{\prime J}, \tilde{Z}^{K L}\right]=\delta^{J K} \tilde{Z}^{I L}-\delta^{I K} \tilde{Z}^{J L}-\delta^{J L} \tilde{Z}^{I K}+\delta^{I L} \tilde{Z}^{J K},} \\
& {\left[\tilde{S}^{i j}, \tilde{S}^{k l}\right]=-\frac{1}{\ell}\left(\delta^{j k} \tilde{S}^{i l}-\delta^{i k} \tilde{S}^{j l}-\delta^{j /} \tilde{S}^{i k}+\delta^{i l} \tilde{S}^{j k}\right),} \\
& {\left[\tilde{S}^{I J}, \tilde{S}^{K L}\right]=-\frac{1}{\ell}\left(\delta^{J K} \tilde{S}^{\prime L}-\delta^{I K} \tilde{S}^{J L}-\delta^{J L} \tilde{S}^{I K}+\delta^{I L} \tilde{S}^{J K}\right),} \\
& {\left[\tilde{J}_{A B}, \tilde{Q}_{\alpha}^{i}\right]=-\frac{1}{2}\left(\Gamma_{A B} \tilde{Q}^{i}\right)_{\alpha}, \quad\left[\tilde{J}_{A B}, \tilde{Q}_{\alpha}^{\prime}\right]=-\frac{1}{2}\left(\Gamma_{A B} \tilde{Q}^{\prime}\right)_{\alpha},} \\
& {\left[\tilde{P}_{A}, \tilde{Q}_{\alpha}^{i}\right]=-\frac{1}{2 \ell}\left(\Gamma_{A} \tilde{Q}^{i}\right)_{\alpha}, \quad\left[\tilde{P}_{A}, \tilde{Q}_{\alpha}^{\prime}\right]=\frac{1}{2 \ell}\left(\Gamma_{A} \tilde{Q}^{\prime}\right)_{\alpha},} \\
& {\left[\tilde{Z}^{i j}, \tilde{Q}_{\alpha}^{k}\right]=\delta^{j k} \tilde{Q}_{\alpha}^{i}-\delta^{i k} \tilde{Q}_{\alpha}^{j}, \quad\left[\tilde{Z}^{I J}, \tilde{Q}_{\alpha}^{K}\right]=\delta^{J K} \tilde{Q}_{\alpha}^{\prime}-\delta^{I K} \tilde{Q}_{\alpha}^{J},} \\
& \left\{\tilde{Q}_{\alpha}^{i}, \tilde{Q}_{\beta}^{j}\right\}=\delta^{i j}\left[-\frac{1}{2 \ell}\left(\Gamma^{A B} C\right)_{\alpha \beta} \tilde{J}_{A B}+\left(\Gamma^{A} C\right)_{\alpha \beta} \tilde{P}_{A}\right]+\frac{1}{\ell} C_{\alpha \beta} \tilde{Z}^{i j}, \\
& \left\{\tilde{Q}_{\alpha}^{\prime}, \tilde{Q}_{\beta}^{J}\right\}=\delta^{\prime J}\left[\frac{1}{2 \ell}\left(\Gamma^{A B} C\right)_{\alpha \beta} \tilde{J}_{A B}+\left(\Gamma^{A} C\right)_{\alpha \beta} \tilde{P}_{A}\right]-\frac{1}{\ell} C_{\alpha \beta} \tilde{Z}^{I J}
\end{aligned}
$$

