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Introduction and Motivation
For certain supersymmetric quantum field theories on a
(compact) manifold M the partition function Z [M] or
expectation values of BPS operators 〈O〉 can be determined
exactly.
[Pestun 2012], [Nekrasov 2003], [Kapustin et. al. 2010]

Questions:
How robust is localization? Does it rely on
Lorentzian/Euclidean symmetries?
NR supersymmetry on curved backgrounds?
Can we localize non-relativistic QFTs?
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Minimal Coupling?

Start with some flat space theory and couple minimally to
some background M together with a Killing spinor equation

∂µε = 0 −→ Dµε = Aµε .

e.g . M = S3
` : Aµ =

i

2`
γµ

Typically, this breaks supersymmetry.

This can be seen by noting that

δLmin ∼ gµνδTµν 6= 0 ,

since the EM-Tensor is not a singlet but part of the
supercurrent multiplet.
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Beyond Minimal Coupling

Three established solutions:

Quick fix: Noether procedure
Add non-minimal terms of order 1/` to the minimally coupled
theory and solve iteratively

Superminimal coupling: Festuccia-Seiberg
Couple to the full supercurrent multiplet. This is done via
off-shell supergravity [F-S 2012; ...]. Vanishing of the fermions
gives rise to Killing spinor equations

δΨµ = (Dµ −Aµ) ε = 0
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Recycling: Dimensional reduction
Start with an established, rigid theory in D dimensions, i.e.

δL = 0 + Dµε = Aµε

and reduce this information to (D − 1) dimensions.

For us: start with rigid 4D old-minimal supergravity and
perform a twisted null reduction, yielding rigid 3D NR susy
theory plus Killing spinor equations

Note, there has been an attempt of adapting FS to NR
supergravity [Knodel,Lisbao,Liu 2015]
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Bargmann Spinors

Spinors χ± furnish an irrep of SO(2) rotations

δJχ± =
1

4
λabγabχ± , (a, b = 1, 2)

and a reducible but in-decomposable representation of Galilean
boosts

δGχ+ = 0 , δGχ− = −
√

2

2
λaγa0χ+ .
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3D N = 2 Bargmann Supersymmetry

Extending the Bargmann algebra (Jab,H ,Pa,Ga,M) with two
fermionic generators Q±

[Jab,Q±] ∼ γabQ± , [Ga,Q+] ∼ γa0Q− , [Ga,Q−] ∼ 0 ,

{Q+,Q+} ∼ γ0H , {Q−,Q−} ∼ γ0M , {Q+,Q−} ∼ γaPa

Can be obtained by construction or an Inönü-Wigner
contraction of the Poincaré superalgebra.

→ Field theory representation?
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→ Field theory representation?

11 / 26



Schrödinger + Lévy-Leblond

Three-dimensional pseudo chiral and pseudo anti-chiral
multiplets

(z , πχ+, π̄χ−, h) , (z̄ , π̄χ+, πχ−, h̄)

where π = 1/2(1− iγ0) and π̄ = 1/2(1 + iγ0) are projections
compatible with Bargmann transformations.

L = im(z̄ ż − ˙̄zz)− ∂az̄∂az + h̄h

− χ̄−γa∂aχ+ − χ̄+γa∂aχ− +
√

2 χ̄+γ0χ̇+ −m
√

2 χ̄−χ−

(note that χ− is non-dynamical)
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and is supersymmetric under N = 2 supersymmetry with
parameters (ε+, ε−)

δz = ε̄+π̄χ− + ε̄−πχ+ ,

δπχ+ =
1

2
π̄ (γa∂az + h) ε+ −

m
√

2

2
γ0πε− z ,

δπ̄χ− =
1

2
π (γa∂az + h) ε− −

√
2

2
γ0π̄ε+ ż ,

δh = ε̄+γa∂aπχ+ + ε̄−γa∂aπ̄χ−

−
√

2 ε̄+γ0πχ̇+ + m
√

2 ε̄−π̄χ−

See also [Auzzi, Baiguera, Nardelli, Penati 2019]
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Null-Embedding/Null-Reduction

Can embed this into 4D Lorentzian space w/ coordinates
(x i , t, v) and null isometry K = ∂v

4D chiral multiplet ∼ 3D pseudo chiral multiplet

(Z , χL,H) ∼ e−im v (z , πχ+, π̄χ−, h)

and

ds2 = (hµν + 2τµmν)dxµdxν − 2τdv ,

where xµ = (x i , t) and h = eaea.
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3D NR Rigid Supersymmetry

A Lagrangian coupled to a manifold with NC structure
(τ, ea,m) (a priori arbitrary torsion)

L = Lmin + Lnon−min ,

which is supersymmetric under

δ = δmin + δnon−min

Minimal coupling means ∂0 → τµ∇̄µ and ∂a → ea
µ∇̄µ.

The N = 2 supersymmetry parameters (ε+, ε−) satisfy
appropriate Killing spinor equations.
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Non-relativistic Killing Spinor Equations

Killing spinors (ε+, ε−)(x i , t) associated to conserved
supercharges (Q(ε+),Q(ε−)) satisfy equations of the form

∇̄µε+ = A(+)
µ ε+ +A(−)

µ ε− ,

∇̄µε− = B(+)
µ ε+ + B(−)

µ ε− .

Note, however: these equations do not close under Galilean
boosts. Using δG ε+ = 0, the first equation transforms to

0 = C(+)
µ ε+ + C(−)

µ ε−
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Lesson:
Non-relativistic Killing spinor equations naturally form a set of
differential and algebraic equations.

Strategy:
Solve the algebraic Killing spinor equations first. This typically
leads a trade-off between restrictions on backgrounds and the
number of preserved supercharges.
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Example 1: Twistless Torsional

We consider a three-manifold with coordinates xµ = (t, x i)
with i = 1, 2 and NC structure

τ = e−λ dt , ea = eλ dxa , m = eλ τ ,

with

eλ =
2

1− xix i/`2
(xix

i < `2) ,

hence spatial slices are locally isomorphic to the Poincaré disc.

Note, the NC structure is twistless torsional τ ∧ dτ = 0
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This background allows for two supercharges of the form

(ε+, 0) = e
π
8
γ0−λ

2 (ε0, 0)

with ε0 constant and arbitrary,

δnon−minh =− 1

2
τ0aε̄+γaπ̄ψ− ,

Lnon−min =− 1

12`2

(
11− 7e−λ

)
z̄z

+ τ0aψ̄+γaψ− −
i

2
τ0aεab

(
z̄∇̄bz − z∇̄bz̄

)
,

and realizes the following rigid superalgebra

{Q(ε+),Q(ε+)} = −i
√

2

2
L
[
N+τµ

]
,

where N+ = −iε̄+γ0ε+ .
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Example 2: Torsional

Consider a three-manifold with coordinates xµ = (t, η1, η2)
and NC structure [Grosvenor,Hartong,Keeler,Obers 2017]

τ = dt − `

2
cos η1 dη2 ,

ea =
`

2
(dη1 + sin η1 dη2) ,

m =
`

4
cos η1 dη2

The NC structure is torsional τ ∧ dτ 6= 0 (but ιτdτ = 0)
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This background allows for two supercharges of the form

(0, ε−) = e
t
`
γ0(0, ε0)

with ε0 constant and arbitrary,

δnon−min = 0 ,

Lnon−min =
1

6`

(
29

`
− 10m

)
z̄z +

5

`
√

2
ψ̄+ψ+ −

i

`

(
z̄∇̄0z − z∇̄0z̄

)
and realizes the following rigid superalgebra

{Q(ε−),Q(ε−)} = −i
√

2

2
δU(1)

(
N−) ,

where N− = iε̄−γ0ε−.
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Summary and Extensions

We have obtained first non-trivial examples of NC
three-manifolds compatible with supersymmetry.

Natural extensions:

1 gauge multiplet? (SGED/SGYM)

2 new minimal sugra? conformal?

3 other dimensions?

4 euclidean? compact manifolds?

5 FS for NR off-shell sugra?

6 Susy Lifshitz?

Possible applications:

1 localization? susy indices?

2 anomaly structure?
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Thank You!
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