Post-Galilean symmetries

Axel Kleinschmidt (Albert Einstein Institute, Potsdam)

Non-relativistic gravity event, Nordita, 24 June 2020

with Joaquim Gomis and Jakob Palmkvist [JHEP 09 (2019) 109 1907.00410

with Joaquim Gomis, Jakob Palmkvist and Patricio Salgado-Rebolledo [PRL 124 (2020) 8, 081602] [JHEP 02 (2020) 009 1910.13560 [1912.07564]

> with Joaquim Gomis, Diederik Roest and Patricio Salgado-Rebolledo [2006.11102]

Minkowski space-time Poincaré symmetry

$$[J_{ab}, J_{cd}] = \eta_{bc} J_{ad} + \dots$$
$$[J_{ab}, P_c] = \eta_{bc} P_a - \eta_{ac} P_b$$
$$[P_a, P_b] = 0$$

Minkowski space-time Poincaré symmetry

 $[J_{ab}, J_{cd}] = \eta_{bc} J_{ad} + \dots$ $[J_{ab}, P_c] = \eta_{bc} P_a - \eta_{ac} P_b$ $[P_a, P_b] = 0$

 $[J_{ab}, J_{cd}] = \eta_{bc} J_{ad} + \dots$ $[J_{ab}, P_c] = \eta_{bc} P_a - \eta_{ac} P_b$ $[P_a, P_b] = 0$

Newtonian 'space+time' Galilei symmetry

 $\begin{bmatrix} J_{ij}, J_{kl} \end{bmatrix} = \delta_{jk} J_{il} + \dots$ $\begin{bmatrix} G_i, G_j \end{bmatrix} = 0 \qquad J_{0i} \rightarrow G_i$ $\begin{bmatrix} G_i, P_j \end{bmatrix} = 0 \qquad P_0 \rightarrow H$ $\begin{bmatrix} H, G_i \end{bmatrix} = P_i$

Minkowski space-time Poincaré symmetry

 $[J_{ab}, J_{cd}] = \eta_{bc} J_{ad} + \dots$ $[J_{ab}, P_c] = \eta_{bc} P_a - \eta_{ac} P_b$ $[P_a, P_b] = 0$

small velocities $1/c \rightarrow 0$ Inönü–Wigner contraction

Newtonian 'space+time' Galilei symmetry

 $\begin{bmatrix} J_{ij}, J_{kl} \end{bmatrix} = \delta_{jk} J_{il} + \dots$ $\begin{bmatrix} G_i, G_j \end{bmatrix} = 0 \qquad J_{0i} \rightarrow G_i$ $\begin{bmatrix} G_i, P_j \end{bmatrix} = 0 \qquad P_0 \rightarrow H$ $\begin{bmatrix} H, G_i \end{bmatrix} = P_i$

Minkowski space-time Poincaré symmetry

$$[J_{ab}, J_{cd}] = \eta_{bc} J_{ad} + \dots$$
$$[J_{ab}, P_c] = \eta_{bc} P_a - \eta_{ac} P_b$$
$$[P_a, P_b] = 0$$

small velocities $1/c \rightarrow 0$ Inönü–Wigner contraction

Newtonian 'space+time' Galilei symmetry

$$\begin{bmatrix} J_{ij}, J_{kl} \end{bmatrix} = \delta_{jk} J_{il} + \dots$$
$$\begin{bmatrix} G_i, G_j \end{bmatrix} = 0 \qquad J_{0i} \rightarrow G_i$$
$$\begin{bmatrix} G_i, P_j \end{bmatrix} = 0 \qquad P_0 \rightarrow H$$
$$\begin{bmatrix} H, G_i \end{bmatrix} = P_i$$

curved space-time $[\nabla_m, \nabla_n]V^p = R^p_{qmn}V^q$ e.g. AdS

 $[P_a, P_b] = R^{-2} J_{ab}$

Minkowski space-time Poincaré symmetry

$$[J_{ab}, J_{cd}] = \eta_{bc} J_{ad} + \dots$$
$$[J_{ab}, P_c] = \eta_{bc} P_a - \eta_{ac} P_b$$
$$[P_a, P_b] = 0$$

small velocities $1/c \rightarrow 0$ Inönü–Wigner contraction

Newtonian 'space+time' Galilei symmetry

$$\begin{bmatrix} J_{ij}, J_{kl} \end{bmatrix} = \delta_{jk} J_{il} + \dots$$
$$\begin{bmatrix} G_i, G_j \end{bmatrix} = 0 \qquad J_{0i} \rightarrow G_i$$
$$\begin{bmatrix} G_i, P_j \end{bmatrix} = 0 \qquad P_0 \rightarrow H$$
$$\begin{bmatrix} H, G_i \end{bmatrix} = P_i$$

curved space-time $[\nabla_m, \nabla_n]V^p = R^p_{qmn}V^q$ e.g. AdS $[P_a, P_b] = R^{-2}J_{ab}$

Minkowski space-time Poincaré symmetry $[J_{ab}, J_{cd}] = \eta_{bc}J_{ad} + \dots$ $[J_{ab}, P_c] = \eta_{bc}P_a - \eta_{ac}P_b$ $[P_a, P_b] = 0$ small velocities

small velocities $1/c \rightarrow 0$ Inönü–Wigner contraction

Newtonian 'space+time' Galilei symmetry

$$\begin{bmatrix} J_{ij}, J_{kl} \end{bmatrix} = \delta_{jk} J_{il} + \dots$$
$$\begin{bmatrix} G_i, G_j \end{bmatrix} = 0 \qquad J_{0i} \rightarrow G_i$$
$$\begin{bmatrix} G_i, P_j \end{bmatrix} = 0 \qquad P_0 \rightarrow H$$
$$\begin{bmatrix} H, G_i \end{bmatrix} = P_i$$

small curvature $1/R \rightarrow 0$

curved space-time $[\nabla_m, \nabla_n]V^p = R^p_{qmn}V^q$ e.g. AdS $[P_a, P_b] = R^{-2}J_{ab}$

Minkowski space-time Poincaré symmetry $[J_{ab}, J_{cd}] = \eta_{bc}J_{ad} + \dots$ $[J_{ab}, P_c] = \eta_{bc}P_a - \eta_{ac}P_b$ $[P_a, P_b] = 0$

small velocities $1/c \rightarrow 0$ Inönü–Wigner contraction

Newtonian 'space+time' Galilei symmetry

$$\begin{bmatrix} J_{ij}, J_{kl} \end{bmatrix} = \delta_{jk} J_{il} + \dots$$
$$\begin{bmatrix} G_i, G_j \end{bmatrix} = 0 \qquad J_{0i} \rightarrow G_i$$
$$\begin{bmatrix} G_i, P_j \end{bmatrix} = 0 \qquad P_0 \rightarrow H$$
$$\begin{bmatrix} H, G_i \end{bmatrix} = P_i$$

small curvature $1/R \rightarrow 0$

curved space-time

 $[\nabla_m, \nabla_n]V^p = R^p{}_{qmn}V^q$ e.g. AdS

 $[P_a, P_b] = R^{-2} J_{ab}$

(post-)Newtonian gravity weak fields $g_{mn} = \eta_{mn} + \kappa h_{mn}$ <u>and</u> small velocities Newton–Cartan

Minkowski space-time Poincaré symmetry $[J_{ab}, J_{cd}] = \eta_{bc}J_{ad} + \dots$ $[J_{ab}, P_c] = \eta_{bc}P_a - \eta_{ac}P_b$ $[P_a, P_b] = 0$ small velocities $1/c \to 0$

Inönü–Wigner contraction

Newtonian 'space+time' Galilei symmetry

$$\begin{bmatrix} J_{ij}, J_{kl} \end{bmatrix} = \delta_{jk} J_{il} + \dots$$
$$\begin{bmatrix} G_i, G_j \end{bmatrix} = 0 \qquad J_{0i} \rightarrow G_i$$
$$\begin{bmatrix} G_i, P_j \end{bmatrix} = 0 \qquad P_0 \rightarrow H$$
$$\begin{bmatrix} H, G_i \end{bmatrix} = P_i$$

small curvature $1/R \rightarrow 0$

(post-)Newtonian gravity weak fields $g_{mn} = \eta_{mn} + \kappa h_{mn}$ <u>and</u> small velocities Newton–Cartan

curved space-time

 $[\nabla_m, \nabla_n]V^p = R^p{}_{qmn}V^q$

e.g. AdS

 $[P_a, P_b] = R^{-2} J_{ab}$

small velocities

Newtonian 'space+time' Galilei symmetry

$$\begin{bmatrix} J_{ij}, J_{kl} \end{bmatrix} = \delta_{jk} J_{il} + \dots$$
$$\begin{bmatrix} G_i, G_j \end{bmatrix} = 0 \qquad J_{0i} \to G_i$$
$$\begin{bmatrix} G_i, P_j \end{bmatrix} = 0 \qquad P_0 \to H$$
$$\begin{bmatrix} H, G_i \end{bmatrix} = P_i$$

(post-)Newtonian gravity weak fields $g_{mn} = \eta_{mn} + \kappa h_{mn}$

small curvature <u>and</u> small velocities Newton–Cartan

Outline

- kinematical background for systematic 1/c corrections
 - infinite- and finite-dimensional symmetries
 - generalised Minkowski space
- particle dynamics
- \checkmark systematic 1/R corrections and almost flat geodesics

From Poincaré to Galilei

Poincaré algebra iso(1, D - 1) (-+...+ signature) $\begin{bmatrix} J_{ab}, J_{cd} \end{bmatrix} = 2\eta_{c[b}J_{a]d} - 2\eta_{d[b}J_{a]c}$ $\begin{bmatrix} J_{ab}, P_c \end{bmatrix} = 2\eta_{c[b}P_{a]}, \qquad \qquad \begin{bmatrix} P_a, P_b \end{bmatrix} = 0$

With $(i, j, \dots$ spatial)

$$\tilde{J}_{ij} = J_{ij}, \quad \tilde{G}_i = c^{-1} J_{0i}, \quad \tilde{P}_i = P_i, \quad \tilde{H} = c P_0$$

get for $c \rightarrow \infty$ Galilei algebra

$$\begin{bmatrix} \tilde{J}_{ij}, \tilde{J}_{kl} \end{bmatrix} = 4\delta_{k][j}\tilde{J}_{i][l}, \quad \begin{bmatrix} \tilde{J}_{ij}, \tilde{G}_k \end{bmatrix} = 2\delta_{k[j}\tilde{G}_{i]}, \quad \begin{bmatrix} \tilde{G}_i, \tilde{G}_j \end{bmatrix} = 0$$
$$\begin{bmatrix} \tilde{J}_{ij}, \tilde{P}_k \end{bmatrix} = 2\delta_{k[j}\tilde{P}_{i]}, \quad \begin{bmatrix} \tilde{G}_i, \tilde{P}_j \end{bmatrix} = 0, \quad \begin{bmatrix} \tilde{G}_i, \tilde{H} \end{bmatrix} = -\tilde{P}_i$$

Inönü–Wigner contraction

Making *c* finite again? Start from Galilei algebra

 $\begin{bmatrix} \tilde{J}_{ij}, \tilde{J}_{kl} \end{bmatrix} = 4\delta_{k][j}\tilde{J}_{i][l}, \quad \begin{bmatrix} \tilde{J}_{ij}, \tilde{G}_k \end{bmatrix} = 2\delta_{k[j}\tilde{G}_{i]}, \quad \begin{bmatrix} \tilde{G}_i, \tilde{G}_j \end{bmatrix} = 0$ $\begin{bmatrix} \tilde{J}_{ij}, \tilde{P}_k \end{bmatrix} = 2\delta_{k[j}\tilde{P}_{i]}, \quad \begin{bmatrix} \tilde{G}_i, \tilde{P}_j \end{bmatrix} = 0, \quad \begin{bmatrix} \tilde{G}_i, \tilde{H} \end{bmatrix} = -\tilde{P}_i$

Making *c* finite again? Start from Galilei algebra

 $\begin{bmatrix} \tilde{J}_{ij}, \tilde{J}_{kl} \end{bmatrix} = 4\delta_{k][j}\tilde{J}_{i][l}, \quad \begin{bmatrix} \tilde{J}_{ij}, \tilde{G}_k \end{bmatrix} = 2\delta_{k[j}\tilde{G}_{i]}, \quad \begin{bmatrix} \tilde{G}_i, \tilde{G}_j \end{bmatrix} = 0$ $\begin{bmatrix} \tilde{J}_{ij}, \tilde{P}_k \end{bmatrix} = 2\delta_{k[j}\tilde{P}_{i]}, \quad \begin{bmatrix} \tilde{G}_i, \tilde{P}_j \end{bmatrix} = 0, \quad \begin{bmatrix} \tilde{G}_i, \tilde{H} \end{bmatrix} = -\tilde{P}_i$

Marked places differ from Poincaré: law of velocity addition

Making *c* finite again? Start from Galilei algebra

 $\begin{bmatrix} \tilde{J}_{ij}, \tilde{J}_{kl} \end{bmatrix} = 4\delta_{k][j}\tilde{J}_{i][l}, \quad \begin{bmatrix} \tilde{J}_{ij}, \tilde{G}_k \end{bmatrix} = 2\delta_{k[j}\tilde{G}_{i]}, \quad \begin{bmatrix} \tilde{G}_i, \tilde{G}_j \end{bmatrix} = 0$ $\begin{bmatrix} \tilde{J}_{ij}, \tilde{P}_k \end{bmatrix} = 2\delta_{k[j}\tilde{P}_{i]}, \quad \begin{bmatrix} \tilde{G}_i, \tilde{P}_j \end{bmatrix} = 0, \quad \begin{bmatrix} \tilde{G}_i, \tilde{H} \end{bmatrix} = -\tilde{P}_i$

Marked places differ from Poincaré: law of velocity addition To go towards Poincaré put non-zero terms there. Be liberal

$$\begin{bmatrix} \tilde{G}_i, \tilde{G}_j \end{bmatrix} = \tilde{S}_{ij}, \\ \begin{bmatrix} \tilde{G}_i, \tilde{P}_j \end{bmatrix} = \delta_{ij}\tilde{N} + \tilde{A}_{ij} + \tilde{B}_{ij}$$

Making *c* finite again? Start from Galilei algebra

 $\begin{bmatrix} \tilde{J}_{ij}, \tilde{J}_{kl} \end{bmatrix} = 4\delta_{k][j}\tilde{J}_{i][l}, \quad \begin{bmatrix} \tilde{J}_{ij}, \tilde{G}_k \end{bmatrix} = 2\delta_{k[j}\tilde{G}_{i]}, \quad \begin{bmatrix} \tilde{G}_i, \tilde{G}_j \end{bmatrix} = 0$ $\begin{bmatrix} \tilde{J}_{ij}, \tilde{P}_k \end{bmatrix} = 2\delta_{k[j}\tilde{P}_{i]}, \quad \begin{bmatrix} \tilde{G}_i, \tilde{P}_j \end{bmatrix} = 0, \quad \begin{bmatrix} \tilde{G}_i, \tilde{H} \end{bmatrix} = -\tilde{P}_i$

Marked places differ from Poincaré: law of velocity addition To go towards Poincaré put non-zero terms there. Be liberal

 $\begin{bmatrix} \tilde{G}_i, \tilde{G}_j \end{bmatrix} = \tilde{S}_{ij}, \qquad \text{Bargmann (central)}$ $\begin{bmatrix} \tilde{G}_i, \tilde{P}_j \end{bmatrix} = \delta_{ij}\tilde{N} + \tilde{A}_{ij} + \tilde{B}_{ij}$

 $(\tilde{S}_{ij} \text{ and } \tilde{A}_{ij} \text{ antisymmetric}; \tilde{B}_{ij} \text{ symmetric traceless.})$

Most general set of new generators allowed by Lie algebra cohomology. (Keep P_a commuting.)

New generators commute with Galilei generators (but \tilde{J}_{ij}).

Extended algebra

$$\left[\tilde{G}_{i},\tilde{G}_{j}\right] = \tilde{S}_{ij}, \quad \left[\tilde{G}_{i},\tilde{P}_{j}\right] = \delta_{ij}\tilde{N} + \tilde{A}_{ij} + \tilde{B}_{ij}$$

New generators commute with Galilei $\neq \tilde{J}_{ij}$ Poincaré would have $\tilde{S}_{ij} = \tilde{J}_{ij}$, $\tilde{N} = \tilde{H}$ and $\tilde{A}_{ij} = \tilde{B}_{ij} = 0$.

Extended algebra

$$\left[\tilde{G}_{i},\tilde{G}_{j}\right] = \tilde{S}_{ij}, \quad \left[\tilde{G}_{i},\tilde{P}_{j}\right] = \delta_{ij}\tilde{N} + \tilde{A}_{ij} + \tilde{B}_{ij}$$

New generators commute with Galilei $\neq \tilde{J}_{ij}$ Poincaré would have $\tilde{S}_{ij} = \tilde{J}_{ij}$, $\tilde{N} = \tilde{H}$ and $\tilde{A}_{ij} = \tilde{B}_{ij} = 0$.

Setting the generators to these values is <u>not</u> consistent since e.g. $[\tilde{S}_{ij}, \tilde{G}_k] = 0$ but $[\tilde{J}_{ij}, \tilde{G}_k] \neq 0$

Extended algebra

$$\left[\tilde{G}_{i},\tilde{G}_{j}\right] = \tilde{S}_{ij}, \quad \left[\tilde{G}_{i},\tilde{P}_{j}\right] = \delta_{ij}\tilde{N} + \tilde{A}_{ij} + \tilde{B}_{ij}$$

New generators commute with Galilei $\neq \tilde{J}_{ij}$ Poincaré would have $\tilde{S}_{ij} = \tilde{J}_{ij}$, $\tilde{N} = \tilde{H}$ and $\tilde{A}_{ij} = \tilde{B}_{ij} = 0$.

Setting the generators to these values is <u>not</u> consistent since e.g. $[\tilde{S}_{ij}, \tilde{G}_k] = 0$ but $[\tilde{J}_{ij}, \tilde{G}_k] \neq 0$

But: Thinking of

- \tilde{G}_i as the boost at order 1/c: $\tilde{G}_i \sim c^{-1}J_{0i}$ (better v/c)
- \tilde{S}_{ij} as the first $1/c^2$ correction to the Galilean addition of velocities: $\tilde{S}_{ij} \sim c^{-2}J_{ij}$

 $\Rightarrow [\tilde{S}_{ij}, \tilde{G}_k] = 0 + \mathcal{O}(1/c^3)$ is the correct answer approximately

Free Galilean algebra

Add new generators iteratively for 1/c corrections to Galilei.

Free Galilean algebra

Add new generators iteratively for 1/c corrections to Galilei. Allowing the most general extension at every step leads to a free Lie algebra generated by \tilde{G}_i and \tilde{H} [Gomis, AK] Palmkvist]

	$\ell = 0$	$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$	• • •
m = 0	\widetilde{J}_{ij}	\tilde{G}_i	\tilde{S}_{ij}	$ ilde{Y}_i, ilde{Y}_{ij,k}$		• • •
<i>m</i> = 1		\tilde{H}	\tilde{P}_i	$\tilde{N}, \tilde{A}_{ij}, \tilde{B}_{i,j}$	□+ 2 □ + □	• • •
m = 2				\widetilde{Z}_i	— +2 —	•••
<i>m</i> = 3						• • •

Contains much more than corrections towards Poincaré

Free Galilean algebra

Add new generators iteratively for 1/c corrections to Galilei. Allowing the most general extension at every step leads to a free Lie algebra generated by \tilde{G}_i and \tilde{H} [Gomis, AK] Palmkvist]

	$\ell = 0$	$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$	•••
m = 0	\widetilde{J}_{ij}	\tilde{G}_i	\tilde{S}_{ij}	$ ilde{Y}_i, ilde{Y}_{ij,k}$		• • •
<i>m</i> = 1		\tilde{H}	\tilde{P}_i	$\widetilde{N}, \widetilde{A}_{ij}, \widetilde{B}_{i,j}$	□+2	• • •
m = 2				\widetilde{Z}_i	 +2	• • •
<i>m</i> = 3						• • •

Contains much more than corrections towards Poincaré Take quotient to obtain only 1/c corrections predicted by Poincaré. Reproduces algebras of [Hansen, Hartong] [Ozdemir, Ozkan Obers [] [Ozdemir, Ozkan] Tunca, Zorba

$Galilei_{\infty} \ algebra$

Denote the quotient to all orders in 1/c by \mathfrak{G}_{∞} $(m, n \ge 0)$

$$\begin{bmatrix} J_{ij}^{(m)}, J_{kl}^{(n)} \end{bmatrix} = 4\delta_{k][j}J_{i][l}^{(m+n)}, \qquad \begin{bmatrix} G_{i}^{(m)}, G_{j}^{(n)} \end{bmatrix} = J_{ij}^{(m+n+1)}$$
$$\begin{bmatrix} J_{ij}^{(m)}, G_{k}^{(n)} \end{bmatrix} = 2\delta_{k[j}G_{i]}^{(m+n)}, \qquad \begin{bmatrix} J_{ij}^{(m)}, P_{k}^{(n)} \end{bmatrix} = 2\delta_{k[j}P_{i]}^{(m+n)}$$
$$\begin{bmatrix} H^{(m)}, G_{i}^{(n)} \end{bmatrix} = P_{i}^{(m+n)}, \qquad \begin{bmatrix} G_{i}^{(m)}, P_{j}^{(n)} \end{bmatrix} = -\delta_{ij}H^{(m+n+1)}$$

Here $J_{ij}^{(0)} = \tilde{J}_{ij}$, $J_{ij}^{(1)} = \tilde{S}_{ij}$, $H^{(0)} = \tilde{H}$, $H^{(1)} = \tilde{N}$ etc.

$Galilei_{\infty} \ algebra$

Denote the quotient to all orders in 1/c by \mathfrak{G}_{∞} $(m, n \ge 0)$

$$\begin{bmatrix} J_{ij}^{(m)}, J_{kl}^{(n)} \end{bmatrix} = 4\delta_{k][j}J_{i][l}^{(m+n)}, \qquad \begin{bmatrix} G_{i}^{(m)}, G_{j}^{(n)} \end{bmatrix} = J_{ij}^{(m+n+1)}$$
$$\begin{bmatrix} J_{ij}^{(m)}, G_{k}^{(n)} \end{bmatrix} = 2\delta_{k[j}G_{i]}^{(m+n)}, \qquad \begin{bmatrix} J_{ij}^{(m)}, P_{k}^{(n)} \end{bmatrix} = 2\delta_{k[j}P_{i]}^{(m+n)}$$
$$\begin{bmatrix} H^{(m)}, G_{i}^{(n)} \end{bmatrix} = P_{i}^{(m+n)}, \qquad \begin{bmatrix} G_{i}^{(m)}, P_{j}^{(n)} \end{bmatrix} = -\delta_{ij}H^{(m+n+1)}$$

Here $J_{ij}^{(0)} = \tilde{J}_{ij}, J_{ij}^{(1)} = \tilde{S}_{ij}, H^{(0)} = \tilde{H}, H^{(1)} = \tilde{N}$ etc.

Similar construction in ^{Khasanov}_{Kuperstein}. Algebra can also be viewed as (parabolic part of twisted) affine algebra. Lie algebra expansion

$$\begin{split} J_{ij}^{(m)} &= c^{-2m} J_{ij} , \qquad G_i^{(m)} = c^{-2m-1} J_{0i} & \begin{bmatrix} \mathsf{Peñafiel} \\ \mathsf{Ravera} \end{bmatrix} \begin{bmatrix} \mathsf{Hatsuda} \\ \mathsf{Sakaguchi} \end{bmatrix} \begin{bmatrix} \mathsf{Izaurieta}, \mathsf{Salgado} \\ \mathsf{Rodriguez} \end{bmatrix} \\ P_i^{(m)} &= c^{-2m} P_i , \qquad H^{(m)} = c^{-2m+1} P_0 & \begin{bmatrix} \mathsf{de} \mathsf{Azcarraga}, \mathsf{Picon} \\ \mathsf{Izquierdo}, \mathsf{Varela} \end{bmatrix} \begin{bmatrix} \mathsf{Bergshoeff}, \mathsf{Izquierdo} \\ \mathsf{Ortin}, \mathsf{Romano} \end{bmatrix} \end{split}$$

Generalised Minkowski space

What does the infinite symmetry algebra act on?

Take non-linear realisation of \mathfrak{G}_{∞} w.r.t. $\mathfrak{L}_{\infty} = \langle J_{ij}^{(m)}, G_i^{(m)} \rangle$

Coset element
$$g = \exp\left[\sum_{m\geq 0} \left(t_{(m)}H^{(m)} + x_{(m)}^i P_i^{(m)}\right)\right]$$

Infinite-dim'l space: generalised Minkowski space \mathcal{M}_{∞}

Generalised Minkowski space

What does the infinite symmetry algebra act on?

Take non-linear realisation of \mathfrak{G}_{∞} w.r.t. $\mathfrak{L}_{\infty} = \langle J_{ij}^{(m)}, G_i^{(m)} \rangle$

Coset element
$$g = \exp\left[\sum_{m\geq 0} \left(t_{(m)}H^{(m)} + x_{(m)}^i P_i^{(m)}\right)\right]$$

Infinite-dim'l space: generalised Minkowski space \mathcal{M}_{∞}

For infin.
$$\sum_{m\geq 0} \left(\frac{1}{2} \alpha_{(m)}^{ij} J_{ij}^{(m)} + v_{(m)}^i G_i^{(m)} + \epsilon_{(m)} H^{(m)} + \epsilon_{(m)}^i P_i^{(m)} \right) \in \mathfrak{G}_{\infty}$$

$$\delta x_{(m)}^{i} = \epsilon_{(m)}^{i} + \sum_{n=0}^{m} \left(v_{(n)}^{i} t_{(m-n)} - \delta_{jk} \alpha_{(n)}^{ij} x_{(m-n)}^{k} \right)$$
$$\delta t_{(m)} = \epsilon_{(m)} + \sum_{n=0}^{m-1} \delta_{ij} v_{(n)}^{i} x_{(m-n-1)}^{j}$$

Standard Minkowski space $\mathbb{R}^{1,D-1}$ is a quotient of \mathcal{M}_{∞}

Fixed X^i and X^0 describe hypersurfaces of co-dimension D

Standard Minkowski space $\mathbb{R}^{1,D-1}$ is a quotient of \mathcal{M}_{∞}

$$X^{i} = \sum_{m \ge 0} c^{-2m} x^{i}_{(m)}, \qquad X^{0} = \sum_{m \ge 0} c^{-2m+1} t_{(m)}$$

Fixed X^i and X^0 describe hypersurfaces of co-dimension D. The action of a generalised boost with parameter

$$\theta^i = \sum_{m \ge 0} c^{-2m-1} v^i_{(m)}$$

on the quotient by the hypersurfaces is

$$\delta X^i = \theta^i X^0, \qquad \delta X^0 = \delta_{ij} \theta^i X^j$$

Standard Poincaré boost.

Standard Minkowski space $\mathbb{R}^{1,D-1}$ is a quotient of \mathcal{M}_{∞}

$$X^{i} = \sum_{m \ge 0} c^{-2m} x^{i}_{(m)}, \qquad X^{0} = \sum_{m \ge 0} c^{-2m+1} t_{(m)}$$

Fixed X^i and X^0 describe hypersurfaces of co-dimension D. The action of a generalised boost with parameter

$$\theta^i = \sum_{m \ge 0} c^{-2m-1} v^i_{(m)}$$

on the quotient by the hypersurfaces is

$$\delta X^i = \theta^i X^0 , \qquad \delta X^0 = \delta_{ij} \theta^i X^j$$

Standard Poincaré boost.

 \mathfrak{G}_{∞} transformations move between different hypersurfaces

Standard Minkowski space $\mathbb{R}^{1,D-1}$ is a quotient of \mathcal{M}_{∞}

$$X^{i} = \sum_{m \ge 0} c^{-2m} x^{i}_{(m)}, \qquad X^{0} = \sum_{m \ge 0} c^{-2m+1} t_{(m)}$$

Fixed X^i and X^0 describe hypersurfaces of co-dimension D

• Choose
$$v_{(m)}^i = \frac{v^{2m+1}}{2m+1}n^i \Rightarrow \theta^i = \operatorname{artanh} \frac{v}{c}n^i$$
 ('wlog')

Standard Minkowski space $\mathbb{R}^{1,D-1}$ is a quotient of \mathcal{M}_{∞}

$$X^{i} = \sum_{m \ge 0} c^{-2m} x^{i}_{(m)}, \qquad X^{0} = \sum_{m \ge 0} c^{-2m+1} t_{(m)}$$

Fixed X^i and X^0 describe hypersurfaces of co-dimension D

- <u>Choose</u> $v_{(m)}^i = \frac{v^{2m+1}}{2m+1}n^i \Rightarrow \theta^i = \operatorname{artanh} \frac{v}{c}n^i$ ('wlog')
- Effective symmetry acting on quotient space is quotient algebra $\mathfrak{G}_{\infty}/\mathfrak{I} = \mathfrak{iso}(1, D-1)$ (Poincaré).

Ideal \Im generated by relations

 $J_{ij}^{(m)} = J_{ij}^{(n)}$, $G_i^{(m)} = G_i^{(n)}$, $P_i^{(m)} = P_i^{(n)}$, $H^{(m)} = H^{(n)}$ Undoes the expansion.

Standard Minkowski space $\mathbb{R}^{1,D-1}$ is a quotient of \mathcal{M}_{∞}

$$X^{i} = \sum_{m \ge 0} c^{-2m} x^{i}_{(m)}, \qquad X^{0} = \sum_{m \ge 0} c^{-2m+1} t_{(m)}$$

Fixed X^i and X^0 describe hypersurfaces of co-dimension D

- <u>Choose</u> $v_{(m)}^i = \frac{v^{2m+1}}{2m+1}n^i \Rightarrow \theta^i = \operatorname{artanh} \frac{v}{c}n^i$ ('wlog')
- Effective symmetry acting on quotient space is quotient algebra $\mathfrak{G}_{\infty}/\mathfrak{I} = \mathfrak{iso}(1, D-1)$ (Poincaré).

Ideal \Im generated by relations

 $J_{ij}^{(m)} = J_{ij}^{(n)}$, $G_i^{(m)} = G_i^{(n)}$, $P_i^{(m)} = P_i^{(n)}$, $H^{(m)} = H^{(n)}$ Undoes the expansion.

• More quotients of \mathcal{M}_{∞} possible \Rightarrow other symmetries?

Particle dynamics

Generalised Minkowski space \mathcal{M}_{∞} has invariant metric

$$ds^{2} = dX^{a} dX_{a} = \sum_{m,n \ge 0} c^{-2(m+n)} \left(-c^{2} dt_{(m)} dt_{(n)} + d\vec{x}_{(m)} \cdot d\vec{x}_{(n)} \right)$$

Particle dynamics

Generalised Minkowski space \mathcal{M}_{∞} has invariant metric

$$ds^{2} = dX^{a} dX_{a} = \sum_{m,n \ge 0} c^{-2(m+n)} \left(-c^{2} dt_{(m)} dt_{(n)} + d\vec{x}_{(m)} \cdot d\vec{x}_{(n)} \right)$$

Probe geometry of \mathcal{M}_∞ by considering geodesics

$$S = -mc \int d\tau \sqrt{-\dot{X}^a \dot{X}_a} = S_{(0)} + S_{(1)} + S_{(2)} + \dots$$

$$S_{(0)} = -mc^2 \int d\tau \dot{t}_{(0)}$$

$$S_{(1)} = m \int d\tau \left[-\dot{t}_{(1)} + \frac{\dot{\ddot{x}}_{(0)}^2}{2\dot{t}_{(0)}} \right]$$

$$S_{(2)} = \frac{m}{c^2} \int d\tau \left[-\dot{t}_{(2)} + \frac{\dot{\ddot{x}}_{(0)} \cdot \dot{\ddot{x}}_{(1)}}{\dot{t}_{(0)}} - \frac{\dot{t}_{(1)} \dot{\ddot{x}}_{(0)}^2}{2\dot{t}_{(0)}^2} + \frac{\dot{\ddot{x}}_{(0)}^4}{8\dot{t}_{(0)}^3} \right]$$

Particle dynamics

Generalised Minkowski space \mathcal{M}_∞ has invariant metric

$$ds^{2} = dX^{a} dX_{a} = \sum_{m,n \ge 0} c^{-2(m+n)} \left(-c^{2} dt_{(m)} dt_{(n)} + d\vec{x}_{(m)} \cdot d\vec{x}_{(n)} \right)$$

Probe geometry of \mathcal{M}_∞ by considering geodesics

$$S = -mc \int d\tau \sqrt{-\dot{X}^a \dot{X}_a} = S_{(0)} + S_{(1)} + S_{(2)} + \dots$$

$$S_{(0)} = -mc^2 \int d\tau \dot{t}_{(0)} \quad \leftarrow \text{ total der.}$$

$$S_{(1)} = m \int d\tau \left[-\dot{t}_{(1)} + \frac{\dot{\vec{x}}_{(0)}^2}{2\dot{t}_{(0)}} \right] \quad \leftarrow \text{ Bargmann inv.}$$

$$S_{(2)} = \frac{m}{c^2} \int d\tau \left[-\dot{t}_{(2)} + \frac{\dot{\vec{x}}_{(0)} \cdot \dot{\vec{x}}_{(1)}}{\dot{t}_{(0)}} - \frac{\dot{t}_{(1)} \dot{\vec{x}}_{(0)}^2}{2\dot{t}_{(0)}^2} + \frac{\dot{\vec{x}}_{(0)}^4}{8\dot{t}_{(0)}^3} \right]$$

Particle dynamics (II)

Action

$$S = -mc \int d\tau \sqrt{-\dot{X}^a \dot{X}_a} = S_{(0)} + S_{(1)} + S_{(2)} + \dots$$

has full \mathfrak{G}_{∞} symmetry (even every individual $S_{(m)}$) Dynamical system with ∞ variables. Truncate at $m \leq N$ To analyse fix gauge & reparam. invariance $c^{-2m}t_{(m)} = t = \tau$

Particle dynamics (II)

Action

$$S = -mc \int d\tau \sqrt{-\dot{X}^a \dot{X}_a} = S_{(0)} + S_{(1)} + S_{(2)} + \dots$$

has full \mathfrak{G}_{∞} symmetry (even every individual $S_{(m)}$) Dynamical system with ∞ variables. Truncate at $m \leq N$ To analyse fix gauge & reparam. invariance $c^{-2m}t_{(m)} = t = \tau$ Project $c^{-2m}x_{(m)}^i = x^i$. Breaks \mathfrak{G}_{∞} symmetry

$$\Rightarrow S_{(2)} = \int dt \left[-mc^2 + \frac{m}{2} \dot{\vec{x}}^2 + \frac{m}{8c^2} \dot{\vec{x}}^4 \right]$$

Associated conserved energy and momentum

$$E = mc^{2} + \frac{m}{2}\dot{\vec{x}}^{2} + \frac{3m}{8c^{2}}\dot{\vec{x}}^{4}, \qquad \vec{P} = m\dot{\vec{x}} + \frac{m}{2c^{2}}\dot{\vec{x}}^{2}\dot{\vec{x}} \qquad \checkmark$$

Same philosophy also applies to (A)dS and its contractions Newton–Hooke and Carroll. (A)dS starting point

 $\begin{bmatrix} J_{ab}, J_{cd} \end{bmatrix} = 4\eta_{c} [[bJ_{a}] [d], \quad \begin{bmatrix} J_{ab}, P_{c} \end{bmatrix} = 2\eta_{c} [bP_{a}], \quad \begin{bmatrix} P_{a}, P_{b} \end{bmatrix} = \sigma J_{ab}$ $(\sigma = +1: \text{ AdS}, \sigma = -1: \text{ dS}.) \text{ Newton-Hooke } c \to \infty \text{ contraction}$ $\begin{bmatrix} \tilde{G}_{i}, \tilde{H} \end{bmatrix} = \tilde{P}_{i}, \qquad \begin{bmatrix} \tilde{J}_{ij}, \tilde{P}_{k} \end{bmatrix} = 2\delta_{k} [j\tilde{P}_{i}], \quad \begin{bmatrix} \tilde{J}_{ij}, \tilde{G}_{k} \end{bmatrix} = 2\delta_{k} [j\tilde{G}_{i}]$ $\begin{bmatrix} \tilde{J}_{ij}, \tilde{J}_{kl} \end{bmatrix} = 4\delta_{k} [j\tilde{J}_{i}] [l], \qquad \begin{bmatrix} \tilde{P}_{i}, \tilde{H} \end{bmatrix} = \sigma \tilde{G}_{i}$ effect of curvature

Choose AdS for definiteness.

Same philosophy also applies to (A)dS and its contractions Newton–Hooke and Carroll. (A)dS starting point

 $\begin{bmatrix} J_{ab}, J_{cd} \end{bmatrix} = 4\eta_{c} [b J_{a}] [d , [J_{ab}, P_{c}] = 2\eta_{c} [b P_{a}] , [P_{a}, P_{b}] = \sigma J_{ab}$ $(\sigma = +1: \text{ AdS}, \sigma = -1: \text{ dS}.) \text{ Newton-Hooke } c \to \infty \text{ contraction}$ $[\tilde{G}_{i}, \tilde{H}] = \tilde{P}_{i}, [\tilde{J}_{ij}, \tilde{P}_{k}] = 2\delta_{k} [j \tilde{P}_{i}], [\tilde{J}_{ij}, \tilde{G}_{k}] = 2\delta_{k} [j \tilde{G}_{i}]$ $[\tilde{J}_{ij}, \tilde{J}_{kl}] = 4\delta_{k} [j \tilde{J}_{i}] [l , [\tilde{P}_{i}, \tilde{H}] = \sigma \tilde{G}_{i} \text{ effect of curvature}$

Choose AdS for definiteness.

To go from this non-relativistic algebra to a relativistic one, again expand generators [Gomis, AK, Palmkvist] Salgado-Rebolledo

$$J_{ij}^{(m)} = c^{-2m} \tilde{J}_{ij}, \ H^{(m)} = c^{-2m} \tilde{H}, \ G_i^{(m)} = c^{-2m-1} \tilde{G}_i, \ P_i^{(m)} = c^{-2m-1} \tilde{P}_i$$

Truncate at a finite order in 1/c. E.g. c^{-3} , new generators

$$J_{ij}^{(1)}, \quad H^{(1)}, \quad G_i^{(1)}, \quad P_i^{(1)}$$

Truncate at a finite order in 1/c. E.g. c^{-3} , new generators

$$\begin{array}{cccc} J_{ij}^{(1)}, & H^{(1)}, & G_i^{(1)}, & P_i^{(1)} \\ S_{ij} & N & B_i & T_i \end{array} \begin{array}{c} \text{Hansen, Hartong} \\ \text{Obers} \end{array} \right]$$

Truncate at a finite order in 1/c. E.g. c^{-3} , new generators

 $J_{ii}^{(1)}, H^{(1)}, G_i^{(1)}, P_i^{(1)}$

 S_{ij} N B_i T_i

Can be done in any dimension D and to any order in 1/c. **Post-Newtonian gravity**

Hansen, Hartong

Obers

Truncate at a finite order in 1/c. E.g. c^{-3} , new generators

 $J_{ii}^{(1)}, \quad H^{(1)}, \quad G_i^{(1)}, \quad P_i^{(1)}$

 S_{ij} N B_i T_i

Can be done in any dimension D and to any order in 1/c. Post-Newtonian gravity

Obtain again an infinite-dimensional algebra $\mathfrak{n}\mathfrak{h}_{\infty}$

- quotient to Newton–Hooke
- quotient to AdS
- relation to affine Kac–Moody algebras

Can repeat steps for particle model with cosmological constant

Hansen, Hartong

Non-relativistic Chern–Simons

For gravity theory consider Chern–Simons in D = 3

$$S_{CS}[A] = \int d^3x \left(A dA + \frac{2}{3} A \wedge A \wedge A \right) = S_{(0)} + S_{(1)} + S_{(2)} + \dots$$

with connection one-form A in \mathfrak{nh}_{∞}

$$A = \sum_{m \ge 0} \left(e^{i}_{(m)} P^{(m)}_{i} + \omega^{i}_{(m)} G^{(m)}_{i} + \tau_{(m)} H^{(m)} + \frac{1}{2} \omega^{ij}_{(m)} J^{(m)}_{ij} \right)$$

Non-relativistic Chern–Simons

For gravity theory consider Chern–Simons in D = 3

$$S_{CS}[A] = \int d^3x \left(A dA + \frac{2}{3} A \wedge A \wedge A \right) = S_{(0)} + S_{(1)} + S_{(2)} + \dots$$

with connection one-form A in \mathfrak{nh}_{∞}

$$A = \sum_{m \ge 0} \left(e^{i}_{(m)} P^{(m)}_{i} + \omega^{i}_{(m)} G^{(m)}_{i} + \tau_{(m)} H^{(m)} + \frac{1}{2} \omega^{ij}_{(m)} J^{(m)}_{ij} \right)$$

Expanded action

• $S_{(0)}$ Galilei gravity

S₍₁₎ extended Newton-Hooke gravity ⊃ extended Bargmann
Papageorgiou Bergshoeff Hartong Schroers Bosseel Lei, Obers

Also other choices of invariant form since $\mathfrak{so}(2,2) = \mathfrak{sl}(2) \oplus \mathfrak{sl}(2)$

Small curvatures

Apply the same idea to 1/R expansion? [Gomis, AK, Roest Salgado-Rebolledo] Go from $[P_a, P_b] = 0$ to $[P_a, P_b] \neq 0...$

Introduce generators $J_{ab}^{(m)} = R^{-2m}J_{ab}$ and $P_a^{(m)} = R^{-2m-1}$ (expansion of AdS algebra)

Small curvatures

Apply the same idea to 1/R expansion? [Gomis, AK, Roest Salgado-Rebolledo]

Go from $[P_a, P_b] = 0$ to $[P_a, P_b] \neq 0...$

Introduce generators $J_{ab}^{(m)} = R^{-2m}J_{ab}$ and $P_a^{(m)} = R^{-2m-1}$ (expansion of AdS algebra)

- construct infinite coset space, with quotients to Minkowski and AdS space
- geodesic particle action on this space, truncated to finite order gives expansion of AdS geodesics
- same for dS
- embedded in larger formalism of free Lie algebras (Maxwell_∞) that also occurs in electro-magnetism
 Schrader Bacry Bonanos Gomis Schrader Levy-Leblond Gomis AK

Summary and outlook

- systematic kinematics for small correction 1/c or 1/R
- simplest quotients recover directly corrections for particles and gravity
- Other quotients —> direct constructions of new NR theories?
- kinematics also applicable to extended objects (brane algebras)
- Applications to post-Newtonian GR and gravitational waves?

Summary and outlook

- systematic kinematics for small correction 1/c or 1/R
- simplest quotients recover directly corrections for particles and gravity
- Other quotients —> direct constructions of new NR theories?
- kinematics also applicable to extended objects (brane algebras)
- Applications to post-Newtonian GR and gravitational waves?

Thank you for your attention!