Non-relativistic corners of $\mathcal{N}=4$ super Yang-Mills: ($1+1$)-dimensional theories

Stefano Baiguera
Niels Bohr Institute

Work in collaboration with
T. Harmark, N. Wintergerst

8 July 2020

Outline

(1) Introduction and motivations
(2) Classical sphere reduction and near-BPS limits
(3) Quantization of the near-BPS Hamiltonian
(4) Semi-local QFT formulation
(5) Conclusions and perspectives

AdS/CFT correspondence

$\mathcal{N}=4$ SYM with gauge group $S U(N) \leftrightarrow$ type IIB string theory on $A d S_{5} \times S^{5}$
Believed to be true for all couplings [Maldacena, 1997][Gubser, Klebanov, Polyakov, 1998][Witten, 1998]. Great successes:

- Planar limit $N=\infty$ and the power of integrability [Minahan, Zarembo, 2002][Beisert, Kristjansen, Staudacher, 2003]
- Planar limit and the Hagedorn behaviour [Harmark, Wilhelm, 2017-18]
- Supersymmetric localization [Pestun, 2007]

Problem:

- Planar limit: gravity enters as $1 / N$ perturbative corrections \Rightarrow No access to black holes and D-branes

Spin Matrix Theory

Controlled finite N effects: Spin Matrix Theory limits [Harmark, Orselli, 2014].

- Decoupling limits of $\mathcal{N}=4 \mathrm{SYM}$ on $\mathbb{R} \times S^{3} \Rightarrow$ the theory reduces to a subsector with only one-loop contributions of the dilatation operator [Harmark, Orselli, 2006][Harmark, Kristjansson, Orselli, 2006-07]
- Approach zero-temperature critical points in the grand-canonical ensemble
- Approach unitarity (BPS) bounds in the microcanonical ensemble

Spin Matrix Theory is non-relativistic

- Emergent $U(1)$ global symmetry corresponding to mass conservation
- The bulk duals are non-relativistic string theories with non-Lorentzian geometries [Harmark, Hartong, Obers, 2017][Harmark, Hartong, Menculini, Obers, Yan, 2018][Harmark, Hartong, Menculini, Obers, Oling, 2019]
- Insights on holography and quantum gravity from this corner of physics
- New ways to obtain non-relativistic field theories

Scheme of the procedure [Harmark, Wintergerst, 2019]:

Sectors with effective (1+1)-dimensional theories

Focus on BPS bounds

$$
\begin{equation*}
H \geq S_{1}+\sum_{i=1}^{3} \omega_{i} Q_{i} \tag{1}
\end{equation*}
$$

- S_{1}, S_{2} Cartan generators for rotations on S^{3}
- Q_{i} Cartan generators of $S U(4)$ R-symmetry group
- ω_{i} chemical potentials characterizing the bound

Spin Matrix Theory limit

$$
\begin{equation*}
\lambda \rightarrow 0, \quad \frac{H-S_{1}-\sum_{i=1}^{3} \omega_{i} Q_{i}}{\lambda} \text { finite }, \quad N \text { fixed } \tag{2}
\end{equation*}
$$

Sectors	Combination of $S U(4)$ Cartan charges $\sum_{i=1}^{3} \omega_{i} Q_{i}$
$\operatorname{SU}(1,1)$ bosonic	Q_{1}
$\mathrm{SU}(1,1)$ fermionic	$\frac{2}{3}\left(Q_{1}+Q_{2}+Q_{3}\right)$
$\mathrm{SU}(1,1 \mid 1)$	$Q_{1}+\frac{1}{2}\left(Q_{2}+Q_{3}\right)$
$\mathrm{SU}(1,1 \mid 2)$	$Q_{1}+Q_{2}$

Hamiltonian analysis

Focus on gauge kinetic term + minimal coupling

$$
\begin{equation*}
S=\int \sqrt{-g} \operatorname{tr}\left(-\frac{1}{4} F_{\mu \nu}^{2}+A^{\mu} j_{\mu}\right) \tag{3}
\end{equation*}
$$

Canonical momenta:

$$
\begin{equation*}
\Pi_{0}=\frac{\delta S}{\delta \dot{A}_{0}}=0, \quad \Pi_{i}=\frac{\delta S}{\delta \dot{A}_{i}}=F_{0 i} \tag{4}
\end{equation*}
$$

We work in Coulomb gauge, imposed via a Lagrange multiplier η. Hamiltonian:

$$
\begin{equation*}
H=\int \sqrt{-g} \operatorname{tr}\left(\frac{1}{2} \Pi_{i}^{2}+\frac{1}{4} F_{i j}^{2}-A_{0}\left(\nabla_{i} \Pi^{i}-j_{0}\right)\right)-A^{i} j_{i}+\eta \nabla_{i} A^{i}, \tag{5}
\end{equation*}
$$

with constraints

$$
\begin{equation*}
\nabla_{i} \Pi^{i}-j_{0}=0, \quad \nabla_{i} A^{i}=0 \tag{6}
\end{equation*}
$$

- We treat A_{0} as a Lagrange multiplier enforcing Gauss' law: it is no longer a dynamical variable.
- They are two second-class constraints, corresponding to the two unphysical degrees of freedom.

Decomposing into spherical harmonics on S^{3} [Ishiki, Takayama, Tsuchiya, 2006] the constraints become

$$
\begin{equation*}
2 i \sqrt{J(J+1)} \Pi_{(0)}^{J m \tilde{m}}+j_{0}^{\dagger J m \tilde{m}}=0, \quad A_{(0)}^{J m \tilde{m}}=0 \tag{7}
\end{equation*}
$$

We can directly solve the constraints for $A_{(0)}^{J m \tilde{m}}$ and its simplectic partner $\Pi_{(0)}^{J m \tilde{m}}$ and plug the solution into the Hamiltonian without changing the Poisson brackets:

$$
\left.\begin{array}{rl}
H=\operatorname{tr} & \sum_{J, m, \tilde{m}} \tag{8}\\
\left\{\sum _ { \rho = \pm 1 } \left(\frac{1}{2}\left|\Pi_{(\rho)}^{J m \tilde{m}}\right|^{2}+\frac{1}{2}(2 J+2)^{2}\left|A_{(\rho)}^{J m \tilde{m}}\right|^{2}+A_{(\rho)}^{J m \tilde{m}} j_{(\rho)}^{\dagger} J m \tilde{m}\right.\right.
\end{array}\right)
$$

General procedure:

- Isolate the propagating modes in a given near-BPS limit from the quadratic classical Hamiltonian
- Derive the form of the current which couple to the gauge field from the $\mathcal{N}=4$ SYM action
- Integrate out additional non-dynamical modes giving rise to effective interactions in a given near-BPS limit
- Derive the interacting Hamiltonian from

$$
\begin{equation*}
H_{\mathrm{int}}=\lim _{g \rightarrow 0} \frac{H-S_{1}-\sum_{i=1}^{3} \omega_{i} Q_{i}}{g^{2} N} \tag{9}
\end{equation*}
$$

The $S U(1,1 \mid 1)$ sector: field content and constraints

Imposing at the quadratic level $H_{0}-S_{1}-Q_{1}-\frac{1}{2}\left(Q_{2}+Q_{3}\right)=0$ gives a set of conditions.
Relevant constraints

$$
\begin{gather*}
A_{(\rho)}^{J m \tilde{m}}=-\frac{1}{(2 J+2)^{2}-(m-\tilde{m})^{2}} j_{(\rho)}^{J m \tilde{m}} \tag{10}\\
\Pi_{1}^{J,-J, J}+i(2 J+1) \Phi_{1}^{\dagger J,-J, J}=0 \tag{11}\\
\psi_{J,-J-\frac{1}{2}, J ; \kappa=1}^{A=1} \quad \text { unconstrained } \tag{12}
\end{gather*}
$$

- They are non-relativistic constraints (anti-particles decouple)
- Eq. (11) imposes the Dirac brackets $\left\{\Phi_{1}^{J,-J, J},\left(\Phi_{1}^{J^{\prime},-J^{\prime}, J^{\prime}}\right)^{\dagger}\right\}=\frac{i}{2(2 J+1)} \delta_{J J^{\prime}}$

Conventions (standard normalization of Dirac brackets):

$$
\begin{equation*}
\Phi_{s} \equiv \sqrt{2(s+1)} \Phi_{1}^{\frac{s}{2},-\frac{s}{2}, \frac{s}{2}}, \quad \psi_{s} \equiv \psi_{\frac{s}{2},-\frac{s}{2}-\frac{1}{2}, \frac{s}{2} ; \kappa=1}^{A=1} \tag{13}
\end{equation*}
$$

$S U(1,1 \mid 1)$ sector: interacting Hamiltonian

$$
\begin{aligned}
H_{\text {int }} & =\frac{1}{2 N} \sum_{l=1}^{\infty} \frac{1}{l} \operatorname{tr}\left(\left(q_{l}^{\text {tot }}\right)^{\dagger} q_{l}^{\text {tot }}\right) \\
& +\frac{1}{N} \sum_{s_{1}, s_{2}, l=0}^{\infty} \frac{1}{\sqrt{\left(s_{1}+l+1\right)\left(s_{2}+l+1\right)}} \operatorname{tr}\left(\left[\Phi_{s_{2}}, \psi_{s_{2}+l}^{\dagger}\right]\left[\psi_{s_{1}+l}, \Phi_{s_{1}}^{\dagger}\right]\right) \\
& +\frac{1}{8 N} \operatorname{tr}\left(\left(q_{0}^{\text {tot }}\right)^{\dagger} q_{0}^{\text {tot }}\right)-\frac{1}{4 N} \sum_{s_{1}=0}^{\infty} \frac{1}{s_{1}+1} \operatorname{tr}\left(\left[\Phi_{s_{1}}^{\dagger}, \Phi_{s_{1}}\right] q_{0}^{\text {tot }}\right) .
\end{aligned}
$$

where the charge densities are

$$
\begin{equation*}
q_{l} \equiv \sum_{s \geq 0}\left[\Phi_{s}^{\dagger}, \Phi_{s+l}\right], \quad \tilde{q}_{l} \equiv \sum_{s \geq 0} \frac{\sqrt{s+1}}{\sqrt{s+l+1}}\left\{\psi_{s}^{\dagger}, \psi_{s+l}\right\}, \quad q_{l}^{\mathrm{tot}} \equiv q_{l}+\tilde{q}_{l} \tag{14}
\end{equation*}
$$

- Global $U(1)$ symmetry: conservation of particle number
- Commutes with the generators $L_{0}, L_{ \pm}$of the $S U(1,1)$ subgroup
- Supersymmetric: can be shown explicitly using a superfield formulation

Quantization of the $S U(1,1 \mid 1)$ Hamiltonian

Define quantum operators $a_{s} \equiv \Phi_{s}, a_{s}^{\dagger} \equiv \Phi_{s}^{\dagger}, b_{s} \equiv \psi_{s}, b_{s}^{\dagger} \equiv \psi_{s}^{\dagger}$ such that

$$
\begin{equation*}
\left[\left(a_{r}\right)^{i}{ }_{j},\left(a_{s}^{\dagger}\right)^{k}\right]=\delta_{l}^{i}{ }_{l} \delta^{k} \delta \delta_{r s}, \quad\left\{\left(b_{r}\right)^{i}{ }_{j},\left(b_{s}^{\dagger}\right)_{l}^{k}\right\}=\delta_{l}^{i} \delta^{k}{ }_{j} \delta_{r s} \tag{15}
\end{equation*}
$$

Directly promote the classical result to a quantum-mechanical Hamiltonian

$$
\begin{align*}
H_{\mathrm{qm}} & =\operatorname{tr}\left(\sum_{s=0}^{\infty}\left(s+\frac{1}{2}\right) a_{s}^{\dagger} a_{s}+\sum_{s=0}^{\infty}(s+1) b_{s}^{\dagger} b_{s}+\frac{g_{0}}{2 N} \sum_{s=1}^{\infty} \frac{1}{s}\left(q_{s}^{\mathrm{tot}}\right)^{\dagger} q_{s}^{\mathrm{tot}}\right) \\
& +\frac{g_{0}}{N} \sum_{s, s_{1}, s_{2}=0}^{\infty} \frac{1}{\sqrt{\left(s_{1}+s+1\right)\left(s_{2}+s+1\right)}} \operatorname{tr}\left(\left[a_{s_{2}}, b_{s_{2}+s}^{\dagger}\right]\left[b_{s_{1}+s}, a_{s_{1}}^{\dagger}\right]\right) \tag{16}\\
& +\frac{g_{0}}{8 N} \operatorname{tr}\left(\left(q_{0}^{\mathrm{tot}}\right)^{\dagger} q_{0}^{\mathrm{tot}}\right)-\frac{g_{0}}{4 N} \sum_{s_{1}=0}^{\infty} \frac{1}{s_{1}+1} \operatorname{tr}\left(\left[a_{s_{1}}^{\dagger}, a_{s_{1}}\right] \tilde{q}_{0}^{\mathrm{tot}}\right) .
\end{align*}
$$

Normal ordering gives rise to self-energy corrections

$$
\begin{aligned}
& \sum_{s=1}^{\infty} \frac{1}{s} \operatorname{tr}\left(\left(q_{s}^{\mathrm{tot}}\right)^{\dagger} q_{s}^{\mathrm{tot}}\right)=\sum_{s=1}^{\infty} \frac{1}{s} \operatorname{tr}\left(:\left(q_{s}^{\mathrm{tot}}\right)^{\dagger} q_{s}^{\mathrm{tot}}:\right)+2 N \sum_{s=0}^{\infty} h(s) \operatorname{tr}\left(a_{s}^{\dagger} a_{s}\right) \\
& -2 \sum_{s=0}^{\infty} h(s) \operatorname{tr}\left(a_{s}^{\dagger}\right) \operatorname{tr}\left(a_{s}\right)+2 N \sum_{s=0}^{\infty} h(s+1) \operatorname{tr}\left(b_{s}^{\dagger} b_{s}\right)+2 \sum_{s=0}^{\infty} h(s+1) \operatorname{tr}\left(b_{s}^{\dagger}\right) \operatorname{tr}\left(b_{s}\right)
\end{aligned}
$$

Similar manipulations also work for the terms proportional to the singlet constraint.

Comparison with one-loop dilatation operator

Interacting Hamiltonian:

$$
\begin{aligned}
H_{\text {int }} & =\frac{1}{4 N} \sum_{s=0}^{\infty} \sum_{s_{1}, s_{2}=0}^{s} \operatorname{tr}\left(:\left[a_{s_{1}}^{\dagger}, a_{s_{2}}\right]\left[a_{s_{1}-s}^{\dagger}, a_{s_{2}-s}\right]:\right)\left(\delta_{s_{1}, s_{2}}\left(h\left(s_{1}\right)+h\left(s_{2}-s\right)\right)-\frac{1-\delta_{s_{1}, s_{2}}\left|s_{1}-s_{2}\right|}{}\right) \\
& +\frac{1}{4 N} \sum_{s=0}^{\infty} \sum_{s_{1}, s_{2}=0}^{s} \sqrt{\frac{\left(s_{1}+1\right)\left(s_{2}-s+1\right)}{\left(s_{2}+1\right)\left(s_{1}-s+1\right)}} \operatorname{tr}\left(:\left\{b_{s_{1}}^{\dagger}, b_{s_{2}}\right\}\left\{b_{s_{1}-s}^{\dagger}, b_{s_{2}-s}\right\}:\right) \\
& \times\left(\delta_{s_{1}, s_{2}}\left(h\left(s_{1}+1\right)+h\left(s_{2}-s+1\right)\right)-\frac{1-\delta_{s_{1}, s_{2}}}{\left|s_{1}-s_{2}\right|}\right) \\
& +\frac{1}{4 N} \sum_{s=0}^{\infty} \sum_{s_{1}, s_{2}=0}^{s} \sqrt{\frac{s_{1}-s+1}{s_{2}-s+1}} \operatorname{tr}\left(:\left[a_{s_{1}}^{\dagger}, a_{s_{2}}\right]\left\{b_{s_{1}-s}^{\dagger}, b_{s_{2}-s}\right\}:\right)\left(\delta_{s_{1}, s_{2}} h\left(s_{1}\right)-\frac{1-\delta_{s_{1}, s_{2}}}{\left|s_{1}-s_{2}\right|}\right) \\
& +\frac{1}{4 N} \sum_{s=0}^{\infty} \sum_{s_{1}, s_{2}=0}^{s} \sqrt{\frac{s_{2}+1}{s_{1}+1}} \operatorname{tr}\left(:\left\{b_{s_{1}}^{\dagger}, b_{s_{2}}\right\}\left[a_{s_{1}-s}^{\dagger}, a_{s_{2}-s}\right]:\right)\left(\delta_{s_{1}, s_{2}} h\left(s_{1}+1\right)-\frac{1-\delta_{s_{1}, s_{2}}}{\left|s_{1}-s_{2}\right|}\right) \\
& +\frac{1}{N} \sum_{s, s_{1}, s_{2}=0}^{\infty} \frac{1}{\sqrt{\left(s_{1}+s+1\right)\left(s_{2}+s+1\right)}} \operatorname{tr}\left(:\left[a_{s_{2}}, b_{s_{2}+s}^{\dagger}\right]\left[b_{s_{1}+s}, a_{s_{1}}^{\dagger}\right]:\right)
\end{aligned}
$$

The red terms match with the one-loop dilatation operator [Beisert, 2004][Bellucci, Casteill, Morales, 2005]

Semi-local formulation of the $S U(1,1 \mid 1)$ sector

Surviving states of the $S U(1,1 \mid 1)$ near-BPS limit

$$
\begin{gathered}
\left|d_{1}^{n} Z\right\rangle \quad(\text { spin } 1 / 2 \text { representation of } s u(1,1)) \\
\left|d_{1}^{n} \chi_{1}\right\rangle \quad(\text { spin } 1 \text { representation of } s u(1,1))
\end{gathered}
$$

- One quantum number $n \Rightarrow$ There is a one-dimensional spatial direction
- n is quantized \Rightarrow We put the theory on a circle
- The action of the $s u(1,1)$ generators $L_{0}, L_{ \pm}$on physical states $\left|d_{1}^{n} Z\right\rangle,\left|d_{1}^{n} \chi_{1}\right\rangle$ induces the representation

$$
\begin{equation*}
\Phi(t, x)=\sum_{n=0}^{\infty} \Phi_{n}(t) e^{i\left(n+\frac{1}{2}\right) x}, \quad \psi(t, x)=\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} \psi_{n}(t) e^{i(n+1) x} \tag{17}
\end{equation*}
$$

Local fields + positivity contraint on the modes.

Non-standard equal-time (anti)commutators

$$
\begin{align*}
& {\left[\Phi(t, x), \Phi\left(t, x^{\prime}\right)\right]=0, \quad\left[\Phi(t, x),-i \Phi^{\dagger}\left(t, x^{\prime}\right)\right]=i S_{\frac{1}{2}}\left(x-x^{\prime}\right)} \tag{18}\\
& \left\{\psi(t, x), \psi\left(t, x^{\prime}\right)\right\}=0, \quad\left\{\psi(t, x), \partial_{x^{\prime}} \psi^{\dagger}\left(t, x^{\prime}\right)\right\}=i S_{1}\left(x-x^{\prime}\right) \tag{19}
\end{align*}
$$

where

$$
\begin{equation*}
S_{j}(x)=\sum_{n=0}^{\infty} e^{i(n+j) x} \tag{20}
\end{equation*}
$$

Superfield formulation of the $S U(1,1 \mid 1)$ sector

Semi-local formulation of the Hamiltonian in the $S U(1,1 \mid 1)$ near-BPS limit with a superfield formalism \Rightarrow manifest supersymmetric invariance

- Anti-commutator $\left\{Q, Q^{\dagger}\right\}=-i \partial_{x}=H_{0} \Rightarrow$ superspace contains a single complex Grassmannian variable $\left(\theta, \theta^{\dagger}\right)$
- Representation of supercharges

$$
Q=\frac{\partial}{\partial \theta}-\frac{i}{2} \theta^{\dagger} \partial_{x}, \quad Q^{\dagger}=\frac{\partial}{\partial \theta^{\dagger}}-\frac{i}{2} \theta \partial_{x}
$$

- Representation of supersymmetric covariant derivatives

$$
\begin{gathered}
D=i \frac{\partial}{\partial \theta}-\frac{1}{2} \theta^{\dagger} \partial_{x} \quad D^{\dagger}=-i \frac{\partial}{\partial \theta^{\dagger}}+\frac{1}{2} \theta \partial_{x}, \\
\{D, Q\}=\left\{D^{\dagger}, Q^{\dagger}\right\}=\left\{D, Q^{\dagger}\right\}=\left\{D^{\dagger}, Q\right\}=0, \quad\left\{D, D^{\dagger}\right\}=-H_{0}
\end{gathered}
$$

- (Anti)chiral fermionic superfield
$\Psi\left(t, x, \theta, \theta^{\dagger}\right)=\psi+\theta \Phi+\frac{i}{2} \theta \theta^{\dagger} \partial_{x} \psi, \quad \Psi^{\dagger}\left(t, x, \theta, \theta^{\dagger}\right)=\psi^{\dagger}+\theta^{\dagger} \Phi^{\dagger}-\frac{i}{2} \theta \theta^{\dagger} \partial_{x} \psi^{\dagger}$
satisfying

$$
D^{\dagger} \Psi=0, \quad D \Psi^{\dagger}=0
$$

(Anti)chiral bosonic superfield:

$$
\begin{gathered}
\mathcal{A}\left(t, x, \theta, \theta^{\dagger}\right)=A(t, x)+\theta \lambda(t, x)+\frac{i}{2} \theta \theta^{\dagger} \partial_{x} A(t, x), \\
\mathcal{A}^{\dagger}\left(t, x, \theta, \theta^{\dagger}\right)=A^{\dagger}(t, x)-\theta^{\dagger} \lambda^{\dagger}(t, x)-\frac{i}{2} \theta \theta^{\dagger} \partial_{x} A^{\dagger}
\end{gathered}
$$

A, λ are residual gauge field and gaugino after quantization in Coulomb gauge. Action of the $S U(1,1 \mid 1)$ sector:

$$
\begin{equation*}
S=\int d t d x \int d \theta^{\dagger} d \theta \operatorname{tr}\left(i \Psi^{\dagger}\left(\mathcal{D}_{0}-\mathcal{D}_{x}\right) \Psi+\mathcal{A}^{\dagger} \mathcal{A}\right) \tag{21}
\end{equation*}
$$

with $\mathcal{D}_{0} \equiv \partial_{0}, \mathcal{D}_{x} \equiv \partial_{x}-i g_{0} \mathcal{A}-i g_{0} \mathcal{A}^{\dagger}$.
Formulation in components after integrating out the gaugino λ

$$
\begin{align*}
S=\int d t d x & \operatorname{tr}\left\{\partial_{x} \psi^{\dagger}\left(\partial_{0}-\partial_{x}\right) \psi-i \Phi^{\dagger}\left(\partial_{0}-\partial_{x}\right) \Phi+i A^{\dagger} \partial_{x} A\right. \tag{22}\\
& \left.+g_{0} A j+g_{0} A^{\dagger} j^{\dagger}+g_{0}^{2}\left[\Phi, \psi^{\dagger}\right]\left[\psi, \Phi^{\dagger}\right]\right\}
\end{align*}
$$

where

$$
\begin{equation*}
j(t, x)=i\left\{\partial_{x} \psi^{\dagger}, \psi\right\}+\left[\Phi^{\dagger}, \Phi\right] \tag{23}
\end{equation*}
$$

In momentum space A can also be integrated out, giving the correct SMT Hamiltonian.

Conclusions

- Derivation of novel interacting non-relativistic theories from near-BPS limits of $\mathcal{N}=4 \mathrm{SYM}$
- Equivalence between two procedures: sphere reduction + quantization \leftrightarrow quantum corrections of dilatation operator + SMT limit
- Local interpretation of the effective ($1+1$)-dimensional field theory with non-standard Dirac brackets
- Superfield formulation for the $S U(1,1 \mid 1)$ sector

Future developments

- Investigation of SMT limits in sectors with (2+1)-dimensional effective behaviour (work in progress with T. Harmark, N. Wintergerst)
- Exploration of properties of these new non-relativistic field theories
- Holographic investigations: TNC and SNC strings [Bergshoeff, Gomis, Gürsoy, Harmark, Hartong, Oling, Rosseel, Simsek, Yan, Zinnato, ...]
- Relation to black holes for the $S U(1,2 \mid 3)$ sector [Gutowski, Reall, 2004]

Thank you!

