Lectures on "non-lorentgian" G-sturctures
What are the possible geometries of space \& time? An answer to this question was given (subject to some assumptions) by Barry \& Lévy-Leblond, who initiated the clarification of kinematical symmetries. Taking their ideas to their logical conclusion, it is possible to giere a couplete clanification of (spatially isotropic, homogeneous) spacetiones in any dimension bot up to covering.

One finds that these spacetimes are of one of several types: lorentzian, galilean, carrollian and aristotelian. (The clanification also gives some viewannian spaces and in 2d some spacetimes without any discernible structure.)

Being homogeneous, they serve as models for more nealistic geometries, in the same way that Minkowski spacetime serves as a model for the lorentzian spacetime in GR. Technically the realistic spacetimes are Cartan geometries modelled on the kinewatical Klein geometries which derive from the pioneering wore ob o Barry \& Lévy-Leblond, Barry \& Nuyts, ending with my paper with Stefan Prohazha.

A natural next step in this direction is to further refine the clarification into lorentzian, galilean, carrollian and aristolelian types, by ne-intermeting each type in e terms of G-stuctures \& then to clanify the possible intriusictorsion of the (adapted) connections.

This may seem strange coming from the direction of GR because in lorentzian geometry (without any additional structure) the intrinsic torsion of a metric connection vanishes, but we will see that for galilean, carrolliau, aristotelian (and even Bargmann) G-stuctures, the intrinsic torsion gives us some information.

For example, the clarification of galilean (a.k.a. NC) structures by intrinsic torsion coincides with the clamfication into torsion-free, twistlens torsional and torsional NC geometries.
we will see that there are 4 tyres of carrollian structures, 16 types of aristotelian structures and 13 types of Bargmaun stmatures which relate in a precise way to galilean stuectures (via mull reduction) and to carrollian sturctures on a distinguished foliation by null hypersurfaces. Moreover, each type can be characterised geometrically without reference to any connection.

The plan of the lectures is the following:

- Basic notions about G-stuctures
- frame bundle
- soldering form
- G-stuctures \& associated bundles
() The inchiusictorsion of a G-stucture
- Elnesmanir connections
- Adapted affine connections
- Intrinsic torsion
(-) Non-lorentriau G-stuctures \& their intrinsic torsion:
- The three tyres of NC geometries
- The four types of carrollian geometries
- The sixteen tyres of aristotelian geometries
- The thirteen types of Bergman geometries
(1) Basic notions about G-structures

Let M be an n-dimensional smooth manifold aud let $p \in M$. By a frame at p we mean a vector space isomorphism $u: \mathbb{R}^{n} \rightarrow T_{p} M$. Since \mathbb{R}^{n} has a distinguished basis (the elementary vectors e_{i}), then its image under u is a basis $\left(X_{1}=u\left(e_{1}\right), X_{2}, \ldots, X_{n}\right)$ for $T_{p} M$. If u, u^{\prime} are tiv frames at p, then $g:=u^{-1} \circ u^{\prime} \in G L(n, \mathbb{R})$. We can write this as $u^{\prime}=u \cdot g$ and in this way we define a right action of $G L(n, \mathbb{R})$ on the collection $F_{p}(M)$ of frames at p. This action is transitive (any two frames are so related) and fine (if $u=u \circ g$ then $g=i d)$. This makes $F_{p}(M)$ into a "forsor" or "principal homogeneous space" of $G L(n, \mathbb{R})$. he other words, it is line $G L(n, \mathbb{R})$ forgetting the identity. (of. affine space v. vector space)

The collection $F(M)=\bigsqcup_{p \in M} F_{p}(M)$ can be made into a principal $G L(n, \mathbb{R})$-bundle called the frame bundle of M. In particular, we have a smooth right action of $G L(n, \mathbb{R})$: a diffeomorphism $R_{g}: F(M) \rightarrow F(M)$ associated with even g $g \in G L(u, \mathbb{R})$, where $R_{g} u=u \circ g$ for even frame $u \in F(M)$. Let $\pi: F(M) \longrightarrow M$ be the smooth map sending $u \in F_{p}(M)$ to $p \in M$. Then $\pi \circ R_{g}=\pi \quad \forall g \in G L(n, \mathbb{R})$, since $G L(n, \mathbb{R})$ acts on the frames at p. A local section $s: U \rightarrow F(M)$, $U \subset M$, is nothing but a moving frame $s=\left(X_{1}, \ldots, X_{n}\right)$ in U.

Moving frames always exist: if $\left(U, x^{\prime}, \ldots, x^{n}\right)$ is a local coordinate chart, then $\left(\frac{\partial}{\partial x^{\prime}}, \ldots, \frac{\partial}{\partial x^{n}}\right)$ is a moving frame in U. If $\left(V, y^{\prime}, \ldots, y^{n}\right)$ is an overlapping coordinate chant, then in the overlap U AV the moving frames $\left(\frac{\partial}{\partial x^{\prime}}, \cdots, \frac{\partial}{\partial x^{n}}\right)$ and $\left(\frac{\partial}{\partial y^{\prime}}, \cdots, \frac{\partial}{\partial y^{n}}\right)$ are related by a local $G L(n, \mathbb{R})$ trousformation $U \cap V \longrightarrow G L(n, \mathbb{R})$ which is the jacobian matrix of the change of coordinates:

$$
\frac{\partial}{\partial x^{i}}=\sum_{j} \frac{\partial y^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}} \quad\left[\frac{\partial y^{j}}{\partial x^{i}}\right]: \text { unv } \rightarrow G L(n, \mathbb{R})
$$

It may happen that we call choose "distinguished" moving Srames which are nelated on overlaps by 10 cal G transformations, for some subgroup $G\ulcorner G L(n, \mathbb{R})$.
For exauple, we may coner a riewanniau manifold (M, g) by oseu sets on cach of which we have an orthonormal moving frame. Orthonormality saup that on ovechaps they trausform by a local $O(n)<G L(n, \mathbb{R})$ trausformation.

Continuing with this exawple...
Let $p \in M$ and defive $P_{p} \subset F_{p}(M)$ to be the set of $O N$ frames at p. Then $\gamma \in O(n)$ acts on P_{p} by sending an ON frame $u \in P_{p}$ to $u^{\prime}=u \cdot \gamma$, which is also an ON frame.
The collection $P=\bigcup_{p \in M} P_{p}$ of $O N$ frames defies a pal $O(n)$-subbundle of $F(M)$. We call $P \subset F(M)$ an $O(n)$-stucture on M.

If M is paracoupact (e: it admits smooth partitions of urity) then Malwayp admits a riewannian metric ard heuce there is no obstuction to the existence of an $O(n)$-stuecture. This is in sharp contrast with the case of coreutrian stuctures (ㅌ: $O(n-1,1)$-stuctures) which may be topologically obstuated.

Defintion 1
Let $G<G L(n, \mathbb{R})$. A G-structure on M^{n} is a principal G-subbundle $P \subset F(M)$.

As in the exauple of riewanniau geometry, a G-structure on M cau be defiued interms of teusor fields on M, bot this nequines introducing a couple of additional concepts.

Let $P \subset F(M)$ be a G-structure on M. Then $P \rightarrow M$ is a principal G-bundle \& hence we have the usual notions of Ehresmanu connections (see tomorrow's lecture) and usociated vector bundles. Let $\rho: G \rightarrow G L(\mathbb{V})$ be a representation of $\rho, w i$ th \mathbb{V} some vector space. Then we can define a (right) action of G on $P \times \mathbb{V}$ by

$$
(u, v) \cdot g:=\left(u \circ g, \rho\left(g^{-1}\right) \cdot v\right)
$$

This action is free (since G acts freely on P) and the quotient $P X_{G} \mathbb{V}$ is the total space of a vector bundle over M with typical five \mathbb{V} : the anociated vector bundle to (P, \mathbb{V}). Sections of $P X_{G} \mathbb{V}$ maybe identified with functions $P \xrightarrow{\sigma} \mathbb{V}$ which are G-equivariaut:

$$
\Gamma\left(P \times_{G} \mathbb{V}\right) \cong C_{G}^{\infty}(P ; \mathbb{V})=\left\{\sigma: P \rightarrow V \mid \sigma(u \cdot g)=\rho\left(g^{-1}\right) \cdot \sigma(u)\right\}
$$

If \mathbb{W} is another representation, a G-equraviant linear map $\phi: \mathbb{V} \rightarrow \mathbb{W}$ defines a bundle map $P X_{G} \mathbb{V} \xrightarrow{\Phi} P x_{G} \mathbb{W}$. The comesponding map on sections seuss $\sigma \in C_{G}^{\infty}(P ; V)$ to $\phi \circ \sigma \in C_{G}^{\infty}(P ; W)$.
In our case $P \subset F(M)$ and this gives us au additional structure: an \mathbb{R}^{n}-valued 1 -form θ on P. Suppose that $X_{u} \in T_{u} P$ for $u \in P_{p}$. Then $\theta_{u}\left(X_{u}\right):=u^{-1}\left(\pi_{*} X_{u}\right)$, where $\pi: P \rightarrow M$ with $\pi(u)=p$. In words, $\theta_{u}\left(X_{u}\right)$ is the coordinate vector of $\pi_{*} X_{u} \in T_{p} M$ relative to the frame $u: \mathbb{R}^{n} \rightarrow T_{p} M$.
Let $\left(e_{1}, \ldots, e_{n}\right)$ be the standard basis of $\left(\mathbb{R}^{n}\right.$. Then w nite $\theta=\theta^{i} e_{i}$ (Einstein summation convention!). If $s=\left(x_{1}, \ldots, x_{n}\right): u \rightarrow P$ is a local moving frame, $s^{*} \theta^{i} \in \Omega^{1}(U)$ and $\left(s^{*} \theta^{1}, \ldots, s^{*} \theta^{n}\right)$ is the dual coframe: $\left(s^{*} \theta^{i}\right)\left(X_{j}\right)=\delta_{j}^{i}$. We call $\theta \in \Omega^{1}\left(P ; \mathbb{R}^{n}\right)$ the soldering form of the G-structure.

The soldering form defines an isomorphism $T M \xlongequal{\cong} P X_{G} \mathbb{R}^{n}$ and ingeneral allows vs to identify tensor bundles over M with the comesponding associated vector bundles to P. we will use this often (and often tacitly) in these lectures.

Let $\rho: G \longrightarrow G L(\mathbb{V})$ be a representation and let $\theta \neq v \in \mathbb{V}$ be G-mvariaut: $\rho(g) \cdot v=v \quad \forall g \in G$.
Then the constant function
$f: P \longrightarrow \mathbb{V}$
$u \longmapsto \sim$
obeys $f(u \cdot g)=\rho\left(g^{-1}\right) \cdot v$ and therefore gus a section of the associated vector bundle $P X_{G} \mathbb{V}$ and, in a the soldering form, a tensor field on M. For example, let $\mathbb{N}=\mathcal{O}^{2}\left(\mathbb{R}^{n}\right)^{*}$ and $\delta \in \mathbb{V}$ be such that $\delta\left(e_{i}, e_{j}\right)=\delta_{i j}$. δ is $O(n)$-invariant \& indeed $O(n)$ is precisely the subgroup of $G L(n, \mathbb{R})$ leaving δ invariant. If P is an $O(n)$-structure, the constant function $P \longrightarrow \Theta^{2}\left(R^{n}\right)^{*}$ defies a section of $P x_{o(n)} O^{2}\left(\mathbb{R}^{n}\right)^{*}$, and ni the soldering form a section of $\theta^{2} T^{*} M$, which relative to a local $O N$ frame $s=\left(X_{1}, \ldots, X_{n}\right): U \rightarrow P$ takes the form $\delta_{i j} s^{*} \theta^{i} s^{*} \theta^{j}$ Le: the iewannian metric on M which defines the $O(n)$-stunctire.

In these lectures we shall be interested in several different G-stunctures besides Lorentzian:

- galilean $G \cong O(n-1) \times \mathbb{R}^{n-1}<G L(n, \mathbb{R})_{n-1}$ the subgroup fixing $e_{n}^{*} \in\left(\mathbb{R}^{n}\right)^{*}$ and $\sum_{i=1}^{n-1} e_{i} e_{i} \in \Theta^{2} \mathbb{R}^{n}$.

$$
\begin{gathered}
\left(\begin{array}{ll}
0^{\top} & 1
\end{array}\right)\left(\begin{array}{ll}
A & v \\
w^{\top} & \alpha
\end{array}\right)=\left(\begin{array}{ll}
0^{\top} & 1
\end{array}\right) \quad\left(\begin{array}{ll}
A & v \\
w^{\top} \alpha
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
A & v \\
w^{\top} \alpha
\end{array}\right)^{\top}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
\Rightarrow G=\left\{\left.\left(\begin{array}{ll}
A & v \\
0^{\top} & 1
\end{array}\right) \in G L(n, \mathbb{R}) \right\rvert\, \begin{array}{l}
A \in O(n-1) \\
v \in \mathbb{R}^{n-1}
\end{array}\right\}
\end{gathered}
$$

- canolliau $G^{\approx}=O(n-1) \times \mathbb{R}^{n-1}<G L(n, \mathbb{R})$ the subgroup fixing $e_{n} \in \mathbb{R}^{n}$ and $\sum_{i=1}^{n-1} e_{i}^{*} e_{i}^{*} \in \vartheta^{2}\left(\mathbb{R}^{n}\right)^{*}$.

$$
\begin{aligned}
& \left(\begin{array}{cc}
A & v \\
w^{\top} & \alpha
\end{array}\right)\binom{0}{1}=\binom{0}{1} \quad\left(\begin{array}{ll}
A & V \\
w^{\top} \alpha
\end{array}\right)^{\top}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\binom{A}{w^{\top} \alpha}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& \Rightarrow G=\left\{\left(\begin{array}{ll}
A & 0 \\
w^{\top} & 1
\end{array}\right) \left\lvert\, \begin{array}{l}
A \in O(n-1) \\
w \in R^{n-1}
\end{array}\right.\right\}
\end{aligned}
$$

Notice that $G_{\text {gal }} \cong G_{\text {car }}$ but they are not conjugate subgroups of $G L(n, \mathbb{R})$. They are related by transposition

- aristotelian $\quad G=G_{\text {gal }} \cap G_{C a r}$ since aristotelian spacetimes admit simultaneously a galilean and a carrollian stucture

$$
\Rightarrow \quad G=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
\text { OT } & 1
\end{array}\right) \right\rvert\, A \in O(n-1)\right\} \cong O(n-1)<G L(n, \mathbb{R})
$$

- Bergman

$$
G \cong O(n-1) \times \mathbb{R}^{n-1}<O(n, 1)<G L(n+1, \mathbb{R})
$$

the subgroup of $O(n, 1)$ which fixes a null vector.

$$
\begin{aligned}
& \Rightarrow \\
& \left.\left.G=\left\{\begin{array}{ccc}
1+\frac{1}{2} x x x & x T A & -\frac{1}{2} x \pi x \\
x & A & -x \\
\frac{1}{2} x \top x & x \top A & 1-\frac{1}{2} x \pi x
\end{array}\right) \in G L(n+1, \mathbb{R}) \right\rvert\, \begin{array}{l}
A \in O(n-1) \\
x \in \mathbb{R}^{n-1}
\end{array}\right\} \cong O(n-1) \propto \mathbb{R}^{n-1}<O(n, 1)\langle G L(a+1, \mathbb{R})
\end{aligned}
$$

Notice that, abstractly, $G_{\text {Bang }}^{(n+1} \cong G_{\text {gal }}^{(n)} \cong G_{c a r}^{(n)}$ bot the geometries are different.

In the next lecture we will introduce connections adapted to a G-structure and discuss its torsion and, in particular, the component of the torsion which doesn't depend on the choice of connection: the "intrinsic" torsion.

H Bacry + J.M. Lévy-Leblond, J. Math. Phys. 9 (1968) 1605-1614
H Bacry and J Nuyts, J. Math. Phys. 27 (1986) no. 10, 2455-2457
HP Künzle, Ann. Inst. H. Poincaré Sec. A (N.S.) 17 (1972) 337-362
JMF + S Prohazka, JHEP 01 (2019) 229 (arXiv:1809.01224 [hep-th])
JMF + R Grassie + S Prohazka, JHEP 08 (2019) 119, arXiv:1905.00034 [hep-th])

