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what are the possible geometries of space & time? An answerTo

this question was given (subject to some assumptions) by
Bang & ldvy- heblond , who initiated the classification
of kiueevatical symmetries . Taking their ideas to their
logical conclusion, it is possible to give a complete
clarification of (spatially isotopic , homogeneous)
spacetime in any dimension

but upto covering .

one finds that these spacetimes are of one of several

types : loreubgiau , galilean , canadian and aristotelian.

(the classification also gives some riemannian spaces and

in 2d some spacetimes without any discernible
structure

.)

Being homogeneous, they serve as models for more realistic

geometries ,
in the same way that Minkowski spacetime

serves as a model for the lovely' au spacetime in GR .

Technically the realistic spacetimes are Cartan geometries
modelled on the kinewatical Klein geometries which
derive from the pioneering work of Baoy & kvy- tethered ,
Bang & Nuyts , ending with my paper with Stefan Prohoeha .

A natural next step in this direction is to further refine
the classification into loreutgiau , galilean ,

carnelian

and aristotelian types , by me- interpreting eachtype
in terms of G-structures & then to classify the
possible intrinsic torsion of the (adapted) connections .

This may seem strange coming from the direction of
GR because in loieutgiaie geometry (without any
additional structure) the intrinsic torsion of a
metric connection vanishes

,
but we will see that

for galilean , carrollton, aristotelian (and even Barrymann)
G- structures

,
the intrinsictorsion gives us some information .



For example , the classification of galilean (a.k.a. NC)
structures by intrinsic torsion coincides with the

classification into torsion- free , thistles torsional and
torsional NC geometries .

we will see that there are 4 tyres of carnelian
structures

,
16 tyres of aristotelian structures and

13 types of Bargmauu structures which relate in
a precise way to galilean structures (wia mill reduction)
and to comedian structures on a distinguished
foliation by null hypersufaues .

Moreover , each type
can be characterised geometrically without reference to
any connection .

The plan of the lectures is the following :

-0 Basic notions about G-structures

③ frame bundle

⑨ soldering form
⑨ G-structures & associated bundles

⑨ The intrinsic torsion of a G-structure

⑨ Ehnesnnamn connections

⑨ Adapted affine connections

⑨ Intrinsic torsion

⑨ Non- loieubgiau G-structures & their intrinsic torsion :

③ the three tyres of NC geometries
⑨ The four types of Carrollton geometries
③ the sixteen tyres of aristotelian geometries
⑨ The thirteen types of Bergmann geometries



④ BasicnotiousaboutG-stwctures.lt
M be an n -dimensional smooth manifold and let

pe M . By a frame at p we mean a vector space

isomorphism U : IR
"
→ TPM .

since IR
"
has a distinguished

basis (the elementary vectors ei ) ,
then its image under u

is a basis ( X , - ale ,) , Xz , . . . , Xn) for Tp M . If u ,u
'

are two frames at p , then g : = a-
'
ou
'
e GL4, IR)

.

We can write this as u
' = u.gr and in this way

we define a right action of GLLn.IR) on the collection
FPCM) of frames at p .

This action is transitive

(any two frames are so related) and free ( if u = dog
then g =

id ) .
This makes FPCM) into a " torso" or

"

principal homogeneous space
"

of GLLN , IR) .

he other

words
,
it is like GL4R) forgetting the identity .

( of . affine space vs .
vector space)

The collection FCM) =p!fy Ip
CM)

can be made into a

principal GLCn.IR) -bundle called the frame bundle

of M .
In particular , we have a smooth night

action of GLCn.IR) : a diffeomorphism Rg : FCM) → FLM)

associated with every gc-GLlh.IR ) , where Rg u = Hog
for every frame we FCM) .

Let it : FCM) → M be

the smooth map sending UE FP1M) to p EM .

Then

To Rg = IT tfgc-GLCn.IR) ,
since GLCn.IR) acts on the

frames at p . A local section s : U→ FCM)
,
UCM

,

is nothing but a moving frame s= CX, , . . . . Xn) in U .

Moving frames always exist : if (U ,
x's . . . .su) is a local

coordinate chart
,
then (¥ , . . . ,£n) is a moving frame

in U
. If (V , y

'
, . .

. ,y
" ) is an overlapping coordinate chart,

then in the overlap Unv the moving frames

(¥s" ' In) and (B) ' " sign) are related by a local
Gun , IR) transformation UAV → Gun ,IR) which is
the jacobianmatrix of the change of coordinates :



£.

=??f ¥ III. 1 : um → Gun.

It
may happen that we can choose

"distinguished
"

moving
frames which are related on overlaps by local
G transformations , for some subgroup G5GLG1R) .

For example, we may cover a riemannian manifold CM , g)
by open sets on each of which we have an orthonormal

moving frame . Orthonormal-ity says that on overlaps

they transform by a local Un) E Gun, IR) transformation .

Continuing with this example . . .

Let pe M and define Ip CFPCM) to be the set of 0N frames
at p .

Then TE04) acts on Ip by sending an ON fraud
u E Ip to u' = no 8 ,

which is also an 0N frame.

The collection I = ¥mIp of 0N frames defines a
ppal 04)- subbundle of FCM)

.
We call I c FCM) an

0cm -structure on M .

If M is paracompact ( e : it admits smooth partitions of unity)
then M always admits a riemannian metric and

hence

there is no obstruction to the existence of an Un) -structure .

This is in sharp contrast with the case of loeeutgian
structures ( e : 04-1, i ) -structures) which may be 6-pohogicakg
obstructed

.

Definition I

mwEtaIhm¥¥¥Tm7
As in the example of viewauniau geometry , a G-structure on M

can be defined interms of tensor fields on M
,
but this

requires introducing a couple of additional concepts .



let ICFCM) be a G-structure on M
.
Then I → M is a

principal G -bundle 4 hence we have the usual motions

of Ehnesnnauu connections (see tomorrow's lecture) and
associated vector bundles

.

let f : G → GL4V ) be a

representation of g , with µ some vector space . Then
we can define a tight) action of G on IX1V by

( u ,
u ) . of

÷ ( U.gr , 5cg
" ) -u )

This action is free ( since G acts freely onI ) and the
quotient IXGIV is the total space of a vector bundle

over M with typical fibre IV : the associated vector

bundle to CRY) .
Sections of RXGIV may be identified

with functions I -7N which are G- equivariant :

1- ( RXGN ) ± CECE ;N) =L o :I→N tofu . g) = gcg-y.nu) }
If 1W is another representation , a G-equivalent linear map
of : N→ 1W defines a bundle map IXGW Ixqlw .

The

corresponding map on sections sends OE CECE :N) to

do 0 C- CECI ; 1W ) .

In our case I CFCM) and this gives us an additional

structure : an IR"- valued 1- form 0 on I . Suppose that

Xu ETUI for ue Ip
.

Then tutXu) := ui' #Xu)
,
where

it : I→ M with Tin) =p .
he words

, 0uLXu) is the coordinate

nectar of T*XuETpM relative to the frame u : IR"→ TPM .

let Lei , . . . . en) be the standard basis of IR4 .

Then write

① = tie; (Einstein summation convention ! ) .
If s -- CX1, . . .. Xn) : U→I

is a local moving frame, s*0i E R4U) and LEO's . . . ,
E)

is the dual co frame : fi) (Xj ) = Gij . We call GER
' Rn)

the soldering form of the G-structure .

The soldering form defines an isomorphism TM PX4R
"

and in general allows us to identify tensor bundles over
M with the corresponding associated vector bundles to R .

We will use this often (and often tacitly ) in these lectures
.



let g : G→ GL4V) be a representation and let

0 EVEN be G- invariant : gigs . u = u FGEG .

Then the constant function f : I →W

U ↳ ~

obeys flu . g) = 5cg
-You and therefore gives a section

of the associated vector bundle EXGN and
,
via the

soldering form , a tensor field on It .

For example , let
N= 042nF and 8 EW be such that scene;) = Sij .

S is Ocn) - invariant & indeed 0cal is precisely the
subgroup of GLLn.IR) leaving 8 invariant .

If I is

an 04) - structure , the constant function I→ Okay't

defines a section of I %,
-0442nF

,
and

" '→ s

via the soldering form a section of 04*19 , which
relative to a local 0N frame s = (Xy . . . ,Xn) : U→I

takes the form fij $0
" 5*0-5 ie : the riemannian

metric on M which defines the 0cm - structure .

In these lectures we shall be interested in several different
G- structures besides hheutgiaie :

~

⑨ galilean G = Ocn -1) a. IR
""
I GL1N, IR) the subgroup

fixing eEe4RnY and
,
eiei E0-2IR" .

I I
' " "µ ;) -- '

"" 1%41%5=1%1
⇒ a-- { LET )eGun*Y II I

⑨ carnelian GE04-↳ a IR"" EGLCn.IR) the subgroup

fixing ent IR
"
and I eie.EE ORRY .

I

11:11:11:/ DIE 1%1

⇒ a- { III.III ' 3
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Notice that Ggae 1- Gear but they are not conjugate
subgroups of GL4, IR) . They are related by transposition

⑨ aristotelian G = Ggaen Gear since aristotelian

spacetime admit simultaneously a
galilean and a carnelian structure

⇒ G = { (I %) / AE04-D} I ocn-DEGLCn.IR)

⑨ Bargmanu G I Ocn -t) x IR
"
T O Ln , 1) TGL Cntt , IR)

the subgroup of Oln, t ) which fixes
a null vector

.

⇒

G ('
'

EG1M-4NI I in - is air
"

ocn.tkGunna

Notice that
, abstractly , GE1Y EG"g'ae = Ger but the

geometries are different .

In the next lecture we will introduce connections adapted to

a G-structure and discuss its torsion and
,
in particular ,

the component of the torsion which doesn't depend on the
choice of connection : the " intrinsic

"
torsion

.


