
③ Non-haeutgiauG-stuvtnresktheirintuhsictor.si#

In contrast to the case of loieubgiau structures , the
other kinewatical G-structures do admit intrinsic

torsion and we can use the G-module structure of
•her 2 to distinguish different types and then try
to characterise each type in terms of the tensor
fields defining the G-structure .

We start with galilean (a.k.a. , Newton- Cartan) structures .

The reformulation of a galilean structure in terms of a
G-structure goes back at least to a 1972 paper of kink .

He does not consider the intrinsic torsion , but that was a

new subject then . Kobayashi's book was published in 1972
and Sternberg's 1964 book does not mention it

. They do
appear implicitly ( but not by naive) in Guillemin's 1904

paper on the iutegvability of G-structures .
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A galilean structure on a manifold M
"

can be defined in

at least two equivalent ways :

@hyspeoifyieeg.ee R'CM )
& VET (04M)

with a nowhere -vanishing , bert
#

= (e)

and ✓ positive- semi- definite .

⑨ by a G-structure I
⇒ M where G I GL1V )

is cowgate to the subgroup I / I
The tie algebra g of G is oontugate to { (Xo¥) ( I }



We choose basis Ia, H for V with canonical dual basis

IT47 for V* . We choose basis Iab =-76A, Ba for g ,
where a , 6=1, . .,n -1 .

The brackets are

[ Jab , Jed]
= fbcJad - sacJ6D-8BDJae + 8adJbc

[ Jab , Bc ) = SbcBa- SacB6

The actions of g on V and V* are given by

Jab . Ie = 8bara- 8acI6 Jab . Tic = f- 85 Sad -18186d) Id
Jab . H =0 Jab .

9
= 0

Ba . Ib = 0 Ba. it b = - Gaby
Ba . H - Ia Ba. 9 = 0

We see that neither V nor V
't
are irreducible

:{Ia) CV and G)CV* are submuodieles;

but they are indecoeoposalde, since there are no

complementary sobomodules
.

It is straight - forward to determine the map 8 :g⑦V*→V⑦NV*
and we see that

2 (Jab ⑦IT c) = (SbdEa- sadI6) ⑦ ITDNT
'

2LJab ④7) = (Sue Ia- facto)④I47
2LB a ④Ib ) = Ia④ yaTb
2 (Ba④g) = 0

.

'

.

her 8 = ( Ba④ 9 , Jab⑦7 + (SbcBa- facts6)④IT
')

Jay - CB
,
⑦7) = @bcBa- SacB6)⑦ if

Ba . LBb④y) = 0

Jab . ( Jed⑦Y t (code Be - SeeBa)④IT e) =@bcJad-SacJbd-SbdJactfadJbofx07-odelsbcBa-facBbf-Sce.lsbdBa-8adB6) ⑦the
+ (sole Bc- SeeBae)⑦ (-5186ft 81 off)It



i. Jab . ( Jed⑦7 t (Sde Be - SeeBa)④IT e) = Sbc (Jad④7 + § de Ba- SaeBb)④ITe)
- sac (Jbd④9 + (8deB b- GbeB d) ⑤IT')
- Sbd (Jacxoyt (seeBa- saeBc)⑥IT

')
+ sad (Jbc④7 t (seeB6

- sbeBc)④Te)

Ba ' ( Jed④7 t ( soleBa - SeeBd)④ITe) = §acBd - SadB) ④ 9
+ (sdeBe- GceBd) ⑦ C- sae 9)

=2§acBd - SadBc)④ 4
lemma 4

Asg-modubskerJ±NT
Proof the 9 action on ITV

't
is given by the obvious

action of sg Cn- t ) and then

Bc . IT an Ib = -82 yaIb -8! IT4Y
Be • IT any = 0

so define the following linear map
beers -47 ITV

't
:

Ba④ if
1-47 Sale IT47
4

Jab⑦7 + (SbcBa- facts6)⑦IT
' 1-728×86d IT d

The map 4 is clearly 0cm)
- equivalent . To check it is g -

equivariant , we show it commutes
with the action of B :

Ba . ( Jed⑦ 7 + ( saeBa-SoeBa)④IT e) = 2 ( facBd- Sale Bc)④ 7
µ

§ 2 ofacide- SaleSee) IT4Y

✓

Ba . ( 2 SeeSdf IT eatf) = 2 SeeSdf (- SE9A 1TF - ITeasily)
= 2 §ac8de - Saddle) IT4Y BB•



The ashamed of 8 is spanned by the image in when2

%
{ H④IaxIb

,
H④Yalta)

↳mind 5

µsg-modu6saoKer2ENT
Proof Define 4 : when 2 → AN't by

[H ④IT b) 1-7 That
to

± : contracting
[HX0 9AT

"] I→yNTa [ with y )
It is manifestly Cn - i ) - equivariant . he

addition
,

Bc . [ H④T4T to ] = [ Ba . H ④IT b)
= [ Pa④ IT

to
+ H④ food y ATb- 8%41) ]

= f- Sac Sbd -18151) (H④ gaitd)
Is C- 89%+5! Sad) maid

[HXOTANTB] Is IT
to iB→ (-518%+8152) YNTD

.

q••

As G- module
,
NV* is in deuavposabk, but not irreducible :

O C Lnata) a NV* ( filtered module)

.

.

.
There are threetypes of galilean structures depending

on whether the intrinsictorsion ravishes
,
lands in the

sobmodule of type 4AM) or is generic .

Notice that the sequence

0 → im 8 → V④ ITV
't
→ •her 2 → 0

does not split ( as G-modules); although it does split as vector

spaces . This means that whereas it is possible to find a vector

subspace of V⑦NV* complementary to im 2 , it is not possible
to demand in addition that it should be stable under G .



he this example , we have chosen the span of (H ④ IT4H , H④IT4Y )
as the complement of im 2 in V④NV*. But this is not preserved

under G on the nose , but only modulo im 2
.
This has the

following geometrical consequence . Having intrinsic torsion in
the sobmodule of:'-(H ④ ITany ) does NOT mean that there exists an

adapted connection 17 whose torsion T
"
is a section of I xq E .

What it does mean is that relative to some local moving frame
(in E) ,the torsion 2- farm will be represented by a function

T
"

: U→ of

If we change the frame , then since E is not stable under G

this will stop being the case , but one can then modify the
connection s.tn relative to the new adapted connection , the torsion

2- form is represented again by a function TD! U → E .

This is why it is important to derive consequences of the
fact that the intrinsic torsion lands in 7 which are independent

of the choice of adapted connection .

This is something one seldom sees in riemannian G-structures
,

since if G < Ocn) then G is reductive and sequences split
and modules are fully reducible into oneducks .

This is why
the results of this kind are typically simpler to state .

since when 8 EA2V* , I Xq •her2 I 117*14
and therefore the intrinsic torsion is captured by a 2-form .

It should not come as a surprise that it is da , where

ee R
' CM) is the clock one- form .

Let 17 be an adapted afine connection .

Then 172 = 0
.

This says that it X.YE #CM) , ×2)41=0 , which

expands to × . zcy) = 247×4 ) .

Therefore X. ZCY) - Y . ZCX) = 2 LT4Y-7YX)
= e ( Hill + TE4Y))



i. deck,y) = X. ZCY)- Y . E4J-2CH,y3) = 2 (TY4Y ))

-IT
or dz = to 1 but e. is represented by

the constant function I→ V* sending UN7 and
the isomorphism when 't → IV

't
is precisely contracting

with y .

If the intrinsic torsion vanishes
,
de = 0

.

If the intrinsic torsion lands in ( y a) ,
then de

is represented by a G-equiwariaut function I
-7 Lnat)

so • (a) = Jala) 7 HIT
a =

7 A talk)IT
"

which when viewed

as a 2-form on M has the form and 7aER' (M) .

Therefore de = 2×4 # 2nd2=0

Finally , the generic case is such that ende -70 .

Them 6

There are three tyres of galilean structures according
their intrinsictorsion :5.IE?oIE:EFoaIEIEImiEE
⑥ andEto torsional NC geometries .

Examples All spatiallyisotopic homogeneous galilean spacetime have de=o ,
but there are homogeneous examples of all three kinds .

Null reductions of
" supersymmetric spacetime

"

IR×AdSg , 112×53

and Nwa along the Dirac current of a killing spinor give
examples of TTNC , TNC a TNC , respectively .
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A carnelian structure on a manifold M
"

can be defined in

at least two equivalent ways :

⑨ by specifying Gett CM )
& he TC0-4FU)

with § nowhere -vanishing , her ht =L 's)
and h positive- semi- definite .

③ by a G-structure I
⇒ M where G I GL1V )

is congregate to the subgroup If / I
The tie algebra g % G is contugate to { ( I✓

T

With the same notation for the bases of g , V and ✓
*
,

the only differences with the galilean example is that
now

Ba . I6 = Sale H Ba. IT6 = O

BiH = 0 Ba- n
= - fab Ib

Again , V & V* are iudeaaoposalde but not irreducible

0 c LH7 a ✓ 0 a Lta) C V
't

let us introduce the notation IH5 (annihilator )
W for the g-module (Ta) .

The map 2 : g④V*→ V④NV* is soon that

I ( Jab ④9) = (socio- fact6)④IT4Y
2 (Jab ④ IT ') = (SbdIa- Sadf6)QITDNT

'

2 (Ba ①g) = Sab H ⑦ itbay
2 ( Ba④ ITb) = Sac H ⑦ IT

to



Therefore kerb =L (Sbc Ba tSacBb)④T
' ) I 0.2W

§ be Ba tookB.6) ④IT ' → Sacsbd IT d

Similarly , when 2 is spanned by the image in cohort of

{ §bcIa + facts)⑦ YAT')

Therefore when 2 I 02W as well
.

The module 02W breaks
up into two srbmnodules :

03 W ⑦ IR and hence so does • her 2 :

-
-

symmetric trace
travelers

•her 2 = ④beta + Sacra- sabre)④y ⑦ { ERa⑦9NTaI)
c-
-

GI Ga

h summary , there are four types of carrollton geometries
depending on which submodule of colors the intrinsic
torsion lands : 0

, tea , hez , 6,062 .

To characterise them geometrically , observe that the intrinsic
torsion is captured by the symmetric tensor

[ IX.Y ) = h( TY4X) , Y)
- -

because because of
% I ⑦ . . .

. - . ④ Ya .. .

or equivalently by the h - symmetric eudomorphis.ms of
TM4E) defined by

s ⇒ THE,X)
.

Then the four types of carrollton structures correspondTo
5=0 , 5 scalar , 5 travelers , 5 none of the above .

Notice that since & is parallel , THE,XI = BX - [ EX ]
and since his parallel



0 = ⇐ h) LY
,
7) = X. HCY

,7) - h (17×4,2) - h (4,17×2)

put X =3 : 0 = § . hey,E) - h ( Rosy,E) - h LY,BZ)
= Cash) E) th ( EEYI

, E) + HIY , FEED
- hlBY ,

t ) - h LY ,Rest)
= Cash) 7) - h (SCYI , Z ) - h LY , SCH)

i. Igh = 2 E

If 5=0 , Lash = 0
If S is scalar

, Is h = f- h 7ft CM)

if S is h - trawlers
,
then Ig µ = 0 , where µ is the

(perhaps only locally defined ) volume form on M

corresponding to the g- invariant
tensor

7 A IT
'
Ii . . . + IT

"" E IM✓
*

This is only Go- invariant, where G. is the identity
component of G . If the G-structure can be reduced
to Go ( e.g, M orientable or simply- connected ) , then
me ICM) exists . Otherwise only locally , but in any
case the condition Is µ= 0 makes sense .

In summary ,

Theorem 7

There are 4 types of carnelian G -structures

according to their intrinsic torsion :%E3.LI?fhtto=ifeooauDIIIIYtmaeknh③ I 5 µ = 0 's is volume- preserving
③ none of the above 5 is none ofthe above

Examples : symmetric carrollton spaces 6C, dsc , ADSC ) have Lash = 0
The carrollton light cone has Igh = 2h .

I know no explicit homogeneous examples of the last two
types .
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Rather than bore you with the detailed calculations,
let me newark that here G=0Cn-i ) = GL6V) , and
hence it sits inside OCV) for some location or

euclidean inner product on V . And hence by
tenure 3 her 2=0

.
since G is reductive

,

V
,
V't a cohort are fully reducible into irreducible :

✓ = W ⑦ TH ) V*=W*⑦Ly7
where W = (Ea ) se W

't
= (Ita)

.

Then when 2 I IR⑦ 03W ⑦ A2W ⑦ W

and hence there are 24=16 aristotelian geometries .

To characterise them
,
we may use what we learnt from

the galilean and carnelian cases :

Lgh = I Log µ=tr6s) µ de = zoT
"

where SCXI = TY2X) and [(X.'D= h LSCX),Y )
but we now also have an additional ingredient :

1-

Iz a = egdztd east
= ↳Got

' )
= Z o 5

⇒ if de -- o or dem =o
,
then LgE=o automatically .

if dzxzto then Las 2 is not constrained .

For each of the four cases
d 2=0 Igh = 0

dz it = o

d 2oz #0 Is 2=0
we have Lg h= fh

Leg µ= 0
deal#0 LE 240 none of the above

giving a total of 16 aristotelian geometries .
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Summary : intrinsic torsion allows us to refine the clarification

of space-time geometries , while still keeping a
sense of '

geuericity
'

and a manageable small
list :

3 types of galilean geometries

4 types of carnelian geometries

16 types of aristotelian geometries

which can be characterised in terms of the

tensors defining the G- stricture .

Contrary to what I claimed in the first lecture, the

Bergmann case is substantially more complicated and
I do not have a nice succinct statement in that

case .
That will have to wait .
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