(3) Non-Lorentgiau G-stunctures \& their intrinsic torsion

In contrast to the case of lorentian stunctures, the other kinewatical G-stwatures do admit intrinsic torsion and we cal use the G-module structure of cover ∂ to distinguish different types and then try to characterise each type in terms of the tensor fields defining the G-sturcture.

We start with galilean (a.k.a., Newton-Cartau) stuctures. The reformulation of a galilean stuecture in tarns of a G-stucture goes back at least to a 1972 paper of künzle. He does not consider the wetrinsic torsion, but that was a new sobject then. Kobayashi's book was published in 1972 aud Stemberg's 1964 book does not mention it. They do appear impliatly (but not by name) ie Gutllewin's 1964 paper on the integrability of G-sturctures.
hutriusic torsion of a galilean G-stuncture

A galilean sturcture on a manifold M^{n} course defined in at least two equivalent ways:

- by specifying $\tau \in \Omega^{1}(M)$ \& $\gamma \in\left(-\left(\Theta^{2} T M\right)\right.$ with τ wowhere-vamishing, ger $\gamma^{\#}=\langle\tau\rangle$ and γ positive-sewi-definte.
\odot by a G-structure $P \xrightarrow{T} M$ where $G<G L(V)$ is congregate to the sobgroup $\left\{\left(\begin{array}{l|l}A & V \\ \hline O^{T} & 1\end{array}\right) \left\lvert\, \begin{array}{l}A \in O(n-1) \\ V \in \mathbb{R}^{n-1}\end{array}\right.\right\}$
The he algebra 9 of G is conjugate to $\left\{\left(\frac{X \mid v}{O^{\top} \mid O}\right) \left\lvert\, \begin{array}{l}X^{\top}=-X \\ v \in \mathbb{R}^{n-1}\end{array}\right.\right\}$

We choose basis P_{a}, H for V with canonical dual basis π^{a}, η for V^{*}. We choose basis Jab=-Jba, Ba for 9 , where $a, b=1, \ldots, n-1$. The brackets are

$$
\begin{aligned}
& {\left[J_{a b}, J_{c d}\right]=\delta_{b c} J_{a d}-\delta_{a c} J_{b d}-\delta_{b d} J_{a c}+\delta_{a d} J_{b c}} \\
& {\left[J_{a b}, B_{c}\right]=\delta_{b c} B_{a}-\delta_{a c} B_{b}}
\end{aligned}
$$

The actions of g on V and V^{*} are given by

$$
\begin{array}{ll}
J_{a b} \cdot P_{c}=\delta_{b c} P_{a}-\delta_{a c} P_{b} & J_{a b} \cdot \pi^{c}=\left(-\delta_{b}^{c} \delta_{a d}+\delta_{a}^{c} \delta_{b d}\right) \pi^{d} \\
J_{a b} \cdot H=0 & J_{a b} \cdot \eta_{b}=0 \\
B_{a} \cdot P_{b}=0 & B_{a} \cdot \pi^{b}=-\delta_{a}^{b} \eta \\
B_{a} \cdot H=P_{a} & B_{a} \cdot \eta=0
\end{array}
$$

We see that neither V nor V^{*} are irreducible:
$\left\langle P_{a}\right\rangle \subset V$ ard $\langle\eta\rangle \subset V^{*}$ are sobmiodules; but they are indecocoposable, since there are no compleueutany sobmodules.

It is straight-forward to determine the map $\partial: g \otimes V^{*} \rightarrow V \otimes \Lambda^{2} V^{*}$ and we see that

$$
\begin{gathered}
\partial\left(J_{a b} \otimes \pi^{c}\right)=\left(\delta_{b d} P_{a}-\delta_{a d} P_{b}\right) \otimes \pi^{d} \wedge \pi^{c} \\
\partial\left(J_{a b} \otimes \eta\right)=\left(\delta_{b c} P_{a}-\delta_{a c} P_{b}\right) \otimes \pi^{c} \wedge \eta \\
\partial\left(B_{a} \otimes \pi^{b}\right)=P_{a} \otimes \eta \wedge \pi^{b} \\
\partial\left(B_{a} \otimes \eta\right)=0 \\
\therefore \text { er } \partial=\left\langle B_{a} \otimes \eta, J_{a b} \otimes \eta+\left(\delta_{b c} B_{a}-\delta_{a c} B_{b}\right) \otimes \pi^{c}\right\rangle \\
J_{a b} \cdot\left(B_{c} \otimes \eta\right)=\left(\delta_{b c} B_{a}-\delta_{a c} B_{b}\right) \otimes \eta \\
B_{a} \cdot\left(B_{b} \otimes \eta\right)=0 \quad \\
J_{a b} \cdot\left(J_{c a} \otimes \eta+\left(\delta_{d e} B_{c}-\delta_{c e} B_{a}\right) \otimes \pi^{e}\right)=\left(\delta_{b c} J_{a d}-\delta_{a c} J_{b d}-\delta_{b d} J_{a c}+\delta_{a d} J_{b c}\right) \otimes \eta \\
\\
\quad+\delta_{d e}\left(\delta_{b c} B_{a}-\delta_{a c} B_{b}\right)-\delta_{c e}\left(\delta_{b d} B_{a}-\delta_{a d} B_{b}\right) \otimes \pi^{e} \\
\\
\quad+\left(\delta_{d e} B_{c}-\delta_{c e} B_{d}\right) \otimes\left(-\delta_{a}^{e} \delta_{b f}+\delta_{b}^{e} \delta_{a f}\right) \pi^{f}
\end{gathered}
$$

$$
\begin{aligned}
\therefore \quad J_{a b} \cdot\left(J_{c a} \otimes \eta+\left(\delta_{d e} B_{c}-\delta_{c e} B_{d}\right) \otimes \pi^{e}\right)= & \delta_{b c}\left(J_{a d} \otimes \eta+\left(\delta_{d e} B_{a}-\delta_{a e} B_{b}\right) \otimes \pi^{e}\right) \\
& -\delta_{a c}\left(J_{b d} \otimes \eta+\left(\delta_{d e} B_{b}-\delta_{b e} B_{d}\right) \otimes \pi^{e}\right) \\
& -\delta_{b d}\left(J_{a c} \otimes \eta+\left(\delta_{c e} B_{a}-\delta_{a e} B_{c} \otimes \pi^{e}\right)\right. \\
& +\delta_{a d}\left(J_{b c} \otimes \eta+\left(\delta_{c e} B_{b}-\delta_{b e} B_{c}\right) \otimes \pi^{e}\right)
\end{aligned}
$$

$$
\begin{aligned}
B_{a} \cdot\left(J_{c d} \otimes \eta+\left(\delta_{d e} B_{c}-\delta_{c e} B_{d}\right) \otimes \pi^{e}\right)= & \left(\delta_{a c} B_{d}-\delta_{a d} B_{c}\right) \otimes \eta \\
& +\left(\delta_{d e} B_{c}-\delta_{c e} B_{d}\right) \otimes\left(-\delta_{a}^{e} \eta\right) \\
= & 2\left(\delta_{a c} B_{d}-\delta_{a d} B_{c}\right) \otimes \eta
\end{aligned}
$$

As q-modules er $\partial \cong \wedge^{2} V^{*}$
Proof The g action on $\Lambda^{2} V^{*}$ is given by the obvious action of so $(n-1)$ and then

$$
\begin{aligned}
& B_{c} \cdot \pi^{a} \wedge \pi^{b}=-\delta_{c}^{a} \eta \wedge \pi^{b}-\delta_{c}^{b} \pi^{a} \wedge \eta \\
& B_{c} \cdot \pi^{a} \wedge \eta
\end{aligned}
$$

So define the following linear map $\operatorname{ker} \partial \xrightarrow{\varphi} \Lambda^{2} V^{*}$:

$$
\begin{aligned}
B_{a} \otimes \eta & \stackrel{\varphi}{\varphi} \delta_{a b} \pi^{b} \wedge \eta \\
J_{a b} \otimes \eta+\left(\delta b c B_{a}-\delta_{a c} B_{b}\right) \otimes \pi^{c} & \stackrel{\varphi}{\longmapsto}
\end{aligned} \delta_{a c} \delta b d \pi^{c} \wedge \pi^{d} .
$$

The map φ is cleanly $O(n-1)$-equrvariaut. To check x is 9 equivariaut, we show it commutes with the action of B :

$$
\left.\begin{array}{rl}
B_{a} \cdot\left(J_{c d} \otimes \eta+\left(\delta_{d e} B_{c}-\delta_{c e} B_{d}\right) \otimes \pi^{e}\right)= & 2\left(\delta_{a c} B_{d}-\delta_{a b} B_{c}\right) \otimes \eta \\
\varphi & I_{y} \varphi \\
2\left(\delta_{a c} \delta_{d e}-\delta_{a b} \delta_{c e}\right) \pi^{e} \wedge \eta
\end{array}\right] \begin{aligned}
B_{a} \cdot\left(2 \delta_{c e} \delta_{d f} \pi^{e} \wedge \pi^{f}\right) & =2 \delta_{c e} \delta_{d f}\left(-\delta_{a}^{e} \eta \wedge \pi^{f}-\pi^{e} \wedge \delta_{a}^{f} \eta\right) \\
& =2\left(\delta_{a c} \delta_{d e}-\delta_{a d} \delta_{c e}\right) \pi^{e} \wedge \eta
\end{aligned}
$$

The cokenel of ∂ is spanned by the image in cobber ∂ of

$$
\left\langle H \otimes \pi^{a} \wedge \pi^{b}, H \otimes \eta \wedge \pi^{a}\right\rangle
$$

Lemma 5
As q-modules coker $\partial \cong \Lambda^{2} V^{*}$
Proof Define $\varphi:$ cher $\partial \longrightarrow \Lambda^{2} v^{*}$ by

$$
\begin{aligned}
& {\left[H \otimes \pi^{a} \wedge \pi^{b}\right] \longmapsto \pi^{a} \wedge \pi^{b}} \\
& {\left[H \otimes \eta \wedge \pi^{a}\right] \longmapsto \eta \wedge \pi^{a}}
\end{aligned} \quad\binom{\text { ie: contracting }}{\text { with } \eta}
$$

It is manifestly so(n-1)-equrvariaut. In addition,

$$
\begin{aligned}
& B_{c} \cdot\left[H \otimes \pi^{a} \wedge \pi^{b}\right]= {\left[B_{c} \cdot H \otimes \pi^{a} \wedge \pi^{b}\right] } \\
&= {\left[P_{c} \otimes \pi^{a} \wedge \pi^{b}+H \otimes\left(-\delta_{c}^{a} \eta \wedge \pi^{b}-\delta_{c}^{b} \pi^{a} \wedge \eta\right)\right] } \\
&=\left(-\delta_{c}^{a} \delta_{d}^{b}+\delta_{c}^{b} \delta_{d}^{a}\right)\left[H \otimes \eta \wedge \pi^{d}\right] \\
& \stackrel{\varphi}{\longrightarrow}\left(-\delta_{c}^{a} \delta_{d}^{b}+\delta_{c}^{b} \delta_{d}^{a}\right) \eta \wedge \pi^{d} \\
& {\left[H \otimes \pi^{a} \wedge \pi^{b}\right] \stackrel{\varphi}{\longmapsto} \pi^{a} \wedge \pi^{b} \xrightarrow{B_{c}}\left(-\delta_{c}^{a} \delta_{d}^{b}+\delta_{c}^{b} \delta_{d}^{a}\right) \eta \wedge \pi^{d} . }
\end{aligned}
$$

As G-module, $\Lambda^{2} V^{*}$ is indecowposable, but not imeducible:

$$
0 \subset\left\langle\eta \wedge \pi^{a}\right\rangle \subset \Lambda^{2} V^{*} \quad \text { (frittered module) }
$$

\therefore There are three types of galilean structures depending on whether the intrinsic torsion samishes, lauds in the sobmodule of tyre $\left\langle\eta \wedge \pi^{a}\right\rangle$ or is generic.

Notice that the sequence

$$
0 \rightarrow \operatorname{im} \partial \longrightarrow V \otimes \wedge^{2} V^{*} \rightarrow \text { conker } \partial \rightarrow 0
$$

does not split (as G-modules); although it does split as vector spaces. This means that whereas it is possible to find a vector sobspace of $V \otimes \Lambda^{2} V^{*}$ complementary to im 2 , it is not possible to dewared in addition that it should be stable under G.

In this example, we have chosen the span of $\left\langle H \otimes \pi^{a} \wedge \pi^{b}, H \otimes \pi^{a} \wedge \eta\right\rangle$ as the complement of $\operatorname{im} \partial$ in $V \otimes \Lambda^{2} V^{*}$. Bot this is not preserved under G on the nose, but only modulo in ∂. This has the following geometrical consequence. Having intrinsic torsion in the sobmodule $\mathcal{F}:=\left\langle H \otimes \pi^{a} n \eta\right\rangle$ does NOT mean that there exists an adapted convection ∇ whose torsion T^{∇} is a section of $P X_{G} E$. What it does mean is that relative to some local moving frame (in P), the torsion 2 -form will be nepneseuted by a function

$$
T^{\nabla}: U \longrightarrow \mathcal{Z}
$$

If me change the frame, then since F is not stable under G this will stop being the case, but one can then modify the connection st. relative to the new adapted connection, the torsion 2 -form is represented again by a function $T^{\nabla}: U \longrightarrow \mathcal{F}^{\prime}$. This is why it is important to derive consequences of the fact that the intrinsic torsion lauds in \mathcal{E} which are independent of the choice of adapted connection.

This is something one celdormsees in viewanniau G-sturctires, since if $G<O(n)$ then G is reductive and sequences split and modules are folly reducible into ureducibles. This is why the results of this kind are typically simpler to state.

Since cover $\partial \cong \Lambda^{2} V^{*}, P x_{G}$ cher $\partial \cong \Lambda^{2} T^{*} M$ and therefore the intriusictorsion is captured by a 2-form. It should not come as a surprise that t is $d \tau$, where $z \in \Omega^{1}(M)$ is the clock ore-form.

Let ∇ be an adapted affine connection. Then $\nabla_{\tau}=0$. This sap that $\forall X, Y \in X(M), \quad\left(\nabla_{x} \tau\right)(Y)=0$, which expands to

$$
x \cdot \tau(y)=\tau\left(\nabla_{x} Y\right)
$$

Therefore

$$
\begin{aligned}
X \cdot \tau(y)-Y \cdot \tau(x) & =\tau\left(\nabla_{x} y-\nabla_{y} x\right) \\
& =\tau\left([x, y]+T^{\nabla}(x, y)\right)
\end{aligned}
$$

$$
\therefore d \tau(x, y)=X \cdot \tau(y)-Y \cdot \tau(x)-\tau([x, y])=\tau\left(T^{\nabla}(x, y)\right)
$$

ar $d \tau=\tau 0 T^{\nabla}$ but τ is represented by
the constant function $P \longrightarrow V^{*}$ sending $u \longmapsto \eta$ ard the isomorphism cher $\gamma \longrightarrow \Lambda^{2} V^{*}$ is precisely contracting with η ．

If the intriusictorsion vanishes，$d z=0$ ．
If the intrinsic torsion lands in $\left\langle\eta \wedge \pi^{a}\right\rangle$ ，then $d \tau$ is represented by a G－equrvariaut function $P \xrightarrow{\sigma}\left\langle\eta \wedge \pi^{a}\right\rangle$ so $\sigma(u)=\sigma_{a}(u) \eta \wedge \pi^{a}=\eta \wedge \sigma_{a}(u) \pi^{a}$ which when viewed as a 2 －form on M has the form $\tau \wedge \alpha \exists \alpha \in \Omega^{1}(M)$ ． Therefore $d \tau=\tau \wedge \alpha \Leftrightarrow \tau \times d \tau=0$

Anally，the generic case is such that end $z \neq 0$ ．

Theorem 6
There are three tyres of galilean sturctures according their intrinsic torsion：
－）$d \tau=0$
torsion－free Newton－Cartau geometry
○ гへdr＝0 twistlens torsional NC geometries
○ てへdてキ○ torsional NC geometries．

Examples All spatially isotron pic homogeneous galilean spacetime have $d \tau=0$ ， bot there are homogeneous examples of all three binds． Null reductions of＂supersymmetric spacetimes＂ $\mathbb{R} \times A S_{3}, \mathbb{R} \times S^{3}$ and NW_{4} along the Dirac cument of a Kiting spinor give examples of TTNC，TNC \＆TNC，respectindy．
hutriusic torsion of a carrollian G-stuecture

A carvollian sturcture on a manifold M^{n} cause defined in at least tho equivalent ways:

- my specifying $\xi \in X(M)$ \& $h \in\left(-\left(\odot^{2} T^{*} M\right)\right.$ with ξ wowlere-vanishing, $\operatorname{ker} h^{\downarrow}=\langle\xi\rangle$ aud h positive-sewi-definte.
© by a G-structure $P \xrightarrow{\pi} M$ where $G<G L(V)$ is congregate to the sobgroup

$$
\left\{\left(\begin{array}{c|c}
A & 0 \\
\hline v^{\top} & 1
\end{array}\right) \left\lvert\, \begin{array}{l}
A \in O(n-1) \\
v \in \mathbb{R}^{n-1}
\end{array}\right.\right\}
$$

The he algebra 9 of G is conjugate to $\left\{\left(\begin{array}{l|l}X & 0 \\ \hline v^{\top} & 0\end{array}\right) \left\lvert\, \begin{array}{l}x^{\top}=-X \\ v \in \mathbb{R}^{n-1}\end{array}\right.\right\}$
with the same notation for the bases of q, V and V^{*}, the only differences with the galilean example is that now

$$
\begin{array}{ll}
B_{a} \cdot P_{b}=\delta_{a l} H & B_{a} \cdot \pi^{b}=0 \\
B_{a} \cdot H=0 & B_{a} \cdot \eta=-\delta_{a b} \pi^{b}
\end{array}
$$

Again, V \& V^{*} are indecowposable but not irreducible

$$
0 \subset\langle H\rangle \subset V \quad 0 \subset\left\langle\pi^{a}\right\rangle \subset V^{*}
$$

Let us introduce the notation $\quad\langle H\rangle^{\circ}$ (annihilator) W for the 9 -module $\left\langle\pi^{a}\right\rangle$.

The map $\partial: g \otimes V^{*} \longrightarrow V \otimes R^{2} V^{*}$ is such that

$$
\begin{aligned}
& \partial\left(J_{a b} \otimes \eta\right)=\left(\delta_{b c} P_{a}-\delta_{a c} P_{b}\right) \otimes \pi^{c} \wedge \eta \\
& \partial\left(J_{a b} \otimes \pi^{c}\right)=\left(\delta_{b d} P_{a}-\delta_{a d} P_{b}\right) \otimes \pi^{d} \wedge \pi^{c} \\
& \partial\left(B_{a} \otimes \eta\right)=\delta_{a b} H \otimes \pi^{b} \wedge \eta \\
& \partial\left(B_{a} \otimes \pi^{b}\right)=\delta_{a c} H \otimes \pi^{c} \wedge \pi^{b}
\end{aligned}
$$

Therefore per $\partial=\left\langle\left(\delta_{b c} B_{a}+\delta_{a c} B_{b}\right) \Delta \pi^{c}\right\rangle \cong \Theta^{2} W$

$$
\left(\delta_{b c} B_{a}+\delta_{a c} B_{b}\right) \otimes \pi^{c} \longmapsto \delta_{a c} \delta_{b d} \pi^{c} \pi^{d}
$$

Similarly, cover ∂ is spanned by the image in conker ∂ of

$$
\left\langle\left(\delta_{b c} P_{a}+\delta_{a c} P_{b}\right) \otimes \eta \wedge \pi^{c}\right\rangle
$$

Therefore cover $\partial \cong \Theta^{2} W$ as well.
The module $\odot^{2} W$ breaks up into two sib modules:

$$
\begin{aligned}
& \underbrace{\left\langle\left[\left(\delta_{b c} P_{a}+\delta_{a c} P_{b}-\frac{2}{n-1} \delta_{a b} P_{L}\right) \otimes \eta \pi \pi^{1}\right]\right\rangle}_{\begin{array}{l}
\text { symmetric } \\
\text { tracelen } \\
\text { cover } \partial
\end{array} \oplus \underbrace{\mathbb{R}}_{\text {trace }} \text { and hence so does color } \partial:} \oplus \underbrace{\left\langle\left[P_{a} \otimes \eta \wedge \pi^{a}\right]\right\rangle}_{\zeta_{1}}
\end{aligned}
$$

In summary, there are four types of carnolliau geometries depending on which submodule of coleerd the intrinsic torsion lauds: $0, \xi_{1}, \xi_{2}, \xi_{1} \oplus \zeta_{2}$.

To characterise them geometrically, observe that the intrinsic torsion is captured by the symmetric tensor
or equivalently by the h-symmetric endomorphism S of $T M /\langle\xi\rangle$ defined by

$$
S([x]):=T^{\nabla}(\xi, x)
$$

Then the four types of carrollian structures comespond to $S=0, S$ scalar, S traveler, S wore of the above.

Notice that since ξ is parallel, $T^{\nabla}(\xi, X)=\nabla_{\xi} X-[\xi, X]$ and since h is parallel

$$
0=\left(\nabla_{x} h\right)(Y, Z)=X \cdot h(Y, Z)-h\left(\nabla_{x} y, Z\right)-h\left(Y, \nabla_{x} Z\right)
$$

Put $x=\xi: \quad 0=\xi \cdot h(y, z)-h\left(\nabla_{\xi} y, z\right)-h\left(y, \nabla_{\xi} z\right)$

$$
\begin{aligned}
&=(\mathcal{L} \xi h)(y, z)+h([\xi, y], z)+h(y, \xi, z) \\
&-h(\nabla \xi y, z)-h(y, \nabla \xi z) \\
&=(\mathcal{L} \xi h)(y, z)-h(s(y), z)-h(y, s(z)) \\
& \therefore \mathcal{L}_{\xi} h=2 \Sigma
\end{aligned}
$$

If $s=0, \mathcal{L}_{s} h=0$
If S is scalar, $\mathscr{L}_{\xi} h=f h \quad \exists f \in C^{\infty}(M)$
If S is h-tracelen, then $\mathcal{L}_{\xi} \mu=0$, where μ is the (perhaps only locally defined) volume form on M comesponding to the g-invariant tensor

$$
\eta \wedge \pi^{1} \wedge \cdots \wedge \pi^{n-s} \in \wedge^{n} v^{*}
$$

This is only G_{0}-invariant, where G_{0} is the identity component of G. If the G-structure caul be reduced to G_{0} (e.g., M orientable or simply-connected), then $\mu \in \Omega^{n}(M)$ exist o. Otherwise only locally, but in any case the condition $\mathcal{L}_{\frac{1}{3}} \mu=0$ makes seuss.
In summary,
Theorem 7
There are 4 types of camolliau G-stucctures according to their intrinsic torsion:
$\odot \mathcal{L}_{\xi} h=0$

- $\mathcal{L} \xi h=f h \quad\left(\exists 0 \neq f \in C^{\infty}(M)\right)$
$\odot \mathcal{L} s \mu=0$
- none of the above
ξ is h-kiting
ξ is h-conformal killing
ξ is volume-preserving
ξ is none of the above
Examples: symmetric camolliau spaces ($C, d S C$, AdS) have $\mathcal{L}_{s} h=0$ The carrollian lightcone has $\mathcal{L}_{\xi} h=2 h$.
I know no explicit homogeneous examples of the last two types.

Intrinsic torsion of an aristotelian stuecture

Rather than bore you with the detailed calculations, let me newark that here $G=O(n-1)<G L(V)$, and hence it sits inside O(V) for some lorentzian or euclidean inner product on V. And hence by Lena 3 her $\partial=0$. $\operatorname{since} G$ is reductive, V, V^{*} \& conker ∂ are fully reducible into irreducibles:

$$
V=W \oplus\langle H\rangle \quad V^{*}=W^{*} \oplus\langle\eta\rangle
$$

where $W=\left\langle P_{a}\right\rangle$ \& $W^{*}=\left\langle\pi^{a}\right\rangle$.

Then conker $\partial \cong \mathbb{R} \oplus \odot_{0}^{2} W \oplus \Lambda^{2} W \oplus W$ and hence there are $2^{4}=16$ aristotelian geometries. To characterise then, we may use what we lamont from the galilean and carrolliau cases:

$$
\mathcal{L}_{\xi} h=\Sigma \quad \mathcal{L}_{\xi} \mu=\operatorname{tr}(S) \mu \quad d \tau=20 T^{\nabla}
$$

where $S(x)=J^{\nabla}(\xi, x)$ and $\sum(x, y)=h(S(x), Y)$ but we now also have an additional in redieut:

$$
\begin{aligned}
\mathcal{L}_{\xi} \tau & =\tau_{\xi} d \tau_{1}+d{\widetilde{\tau_{\xi}}}_{\frac{1}{\tau}} \\
& =\tau_{\xi}\left(\tau \cdot T^{\nabla}\right) \\
& =\tau \cdot S
\end{aligned}
$$

\Rightarrow if $d \tau=0$ or $d r \wedge \tau=0$, then $\mathcal{L}_{\xi} \tau=0$ automatically. if $d r \wedge r \neq 0$ then $\mathcal{L}_{\xi} r$ is not constrained.
For each of the four cases

$$
\begin{array}{ll}
d z=0 & \\
d \tau \wedge \tau=0 & \\
d z \wedge \tau \neq 0 & \mathscr{L}_{\xi} \tau=0 \\
d \tau \wedge \tau \neq 0 & \mathscr{L} \xi z \neq 0
\end{array}
$$

we have

$$
\begin{aligned}
& \mathcal{L}_{\xi} h=0 \\
& \mathcal{L}_{\xi} h=f h \\
& \mathcal{L}_{\xi} \mu=0
\end{aligned}
$$

cone ob the above
giving a total of 16 aristotelian geometries.

Summary: hutriustic torsion allows us to nefive the clanfication of spacetime goometros, while still heaping a sense of 'gurericity' and a manageable small list:

3 types of galilean geometries
4 types of carrollian geometries
16 types of aristotelian geometries
which can be characterised in terms of the tensors defining the G-stucture.

Contrary to what I claimed in the first lecture, the Barguann case is cabstantially more couplicated and I do not have a nice succinct statement in that case. That will have to wait.

MH Christensen + J Hartong + NA Obers + B Rollier, Phys. Rev. D89 (2014) 061901
KT Grosvenor + J Hartong + C Keeler + NA Obers, Class. Quant. Grav. 35 (2018), no. 17, 175007 P de Medeiros + JMF + A Santi, Non-relativistic Killing spinors (working title), in progress. JMF, On the intrinsic torsion of spacetime structures, in progress.

