

Carroll symmetry and the Friedmann equations

@4th NL zoom meeting, September 3rd 2020

Watse Sybesma

University of Iceland/Háskóli Íslands

Based on work (in progress) with:

Jan de Boer, Jelle Hartong, Niels Obers, and Stefan Vandoren

Plan for today:

Carroll fluids

Curved space and hydrostatic partition function

Friedmann equations

Carroll boost

Carroll boost versus other boosts

Carroll boost:

$$t' = t - b_i x^i, \quad x'^i \rightarrow x^i.$$

Generator:

$$L_i \equiv \frac{1}{c} x^i \partial_t + ct \partial_i, \quad C_i \equiv cL_i \rightarrow x^i \partial_t.$$

$$[P_i, C_j] = \delta_{ij} H$$
$$[H, C_j] = 0$$

Velocity:

$$v'^i = \frac{dx'^i}{dt'} = \frac{v^i}{1 - b_i v^i}.$$

$$n^i \equiv \frac{v^i}{|\vec{v}|}, \quad n'^i = n^i.$$

Looking at Carroll through fluid

Fluid can be studied in absence of specific microscopics

Just consider symmetries and thermodynamics

Perfect uncharged relativistic fluid:

$$T^{\mu}_{\nu} = \frac{\tilde{\mathcal{E}} + P}{c^2} U^{\mu} U_{\nu} + P \delta^{\mu}_{\nu} \quad U^{\mu} U_{\mu} = -c^2$$

Relativistic boost Ward identity:

$$\partial_{\mu} \left(T^{\mu}_{\nu} L_i^{\nu} \right) = 0 \quad \rightarrow \quad \frac{1}{c} T^i_0 + c T^0_i = 0$$

Carroll boost Ward identity:

$$\partial_{\mu} \left(T^{\mu}_{\nu} C_i^{\nu} \right) = 0 \quad \rightarrow \quad T^i_0 = 0$$

Covariant transformation Carroll EMT:

$$T'^0_0 = T^0_0 - b_i T^i_0 , \quad T'^i_j = T^i_j + b_j T^i_0 ,$$

$$T'^i_0 = T^i_0 , \quad T'^0_i = T^0_i + b_i T^0_0 - b_i b_j T^j_0 - b_j T^j_i ,$$

Generalized mass density:

$$T^0_i =: \rho v^i$$

Total energy:

$$\mathcal{E} = \tilde{\mathcal{E}} + \rho v^2$$

Related work on Carroll fluids: [de Boer, Hartong, Obers, WS, Vandoren'17][Ciambelli, Marteau, Petkou, Petropoulos, Siampos'18x2][Campoleoni, Ciambelli, Marteau, Petropoulos, Siampos'18][Poovuttikul, WS'19][Ciambelli, Marteau, Petropoulos, Ruzziconi'20]

Resting Carroll

Relativistic
EMT
explicitly:

$$T^0{}_0 = -(\tilde{\mathcal{E}} + P)\gamma^2 + P \quad T^i{}_0 = -(\tilde{\mathcal{E}} + P)v^i\gamma^2$$

$$T^0{}_j = \frac{\tilde{\mathcal{E}} + P}{c^2}v^j\gamma^2 \quad T^i{}_j = \frac{\tilde{\mathcal{E}} + P}{c^2}v^i v^j \gamma^2 + P\delta^i{}_j$$

$$\gamma^2 = \frac{1}{1 - v^2/c^2}$$

Generalized mass density:
 $T^0{}_j =: \rho v^j$

Velocity must vanish
quicker than c :
 $(v \sim c^a)$

Carroll EMT
(rest frame): $T^0{}_0 = P \quad T^i{}_0 = 0$
 $T^0{}_j = 0 \quad T^i{}_j = P\delta^i{}_j$

Moving Carroll

Relativistic
EMT
explicitly:

$$T^0{}_0 = -(\tilde{\mathcal{E}} + P)\gamma^2 + P \quad T^i{}_0 = -(\tilde{\mathcal{E}} + P)v^i\gamma^2$$

$$T^0{}_j = \frac{\tilde{\mathcal{E}} + P}{c^2}v^j\gamma^2 \quad T^i{}_j = \frac{\tilde{\mathcal{E}} + P}{c^2}v^i v^j \gamma^2 + P\delta^i{}_j$$

Velocity must be
greater than c:
($v > c$)

$$\gamma^2 = \frac{1}{1 - v^2/c^2}$$

Generalized mass density:
 $T^0{}_j =: \rho v^j$

Carroll EMT
(restless frame):

$$T^0{}_0 = P \quad T^i{}_0 = 0$$

$$T^0{}_j = \rho v^j \quad T^i{}_j = \rho v^i v^j + P\delta^i{}_j$$

hydrostatic partition function + curved space

Using curved spacetime to compute perfect fluid EMT

In passing insight into NL geometry

Thermal partition function on weakly curved stationary background:

$$\mathcal{Z} = \text{Tr} \left[e^{-H/T} \right]$$

Time translation symmetry implies timelike Killing vector:

$$\mathcal{L}_\beta g_{\mu\nu} = 0$$

Preferred choice of temperature and velocity:

$$\beta^\mu = \frac{U^\mu}{\gamma T} \quad g_{\mu\nu} \beta^\mu \beta^\nu = -\frac{c^2}{\gamma^2 T^2} \quad g_{\mu\nu} U^\mu U^\nu = -c^2$$

Leading order hydrostatic partition function action:

$$-i \log \mathcal{Z} = S_{HPF} = \int d^{3+1}x \sqrt{-g} P(T) + \mathcal{O}(\partial^1)$$

Metric variation + thermo identities:

$$\delta S_{HPF} \sim \sqrt{-g} \left[\frac{\tilde{\mathcal{E}} + P}{c^2} U^\mu U^\nu + P g^{\mu\nu} \right] \delta g_{\mu\nu}$$

a closer look into NL geometry + HPF

Thermal partition function on weakly curved stationary background: $\mathcal{Z} = \text{Tr} \left[e^{-H/T} \right]$

Split in metric: $g_{\mu\nu} = -c^2 \tau_\mu \tau_\nu + h_{\mu\nu}$ In flat space: $\tau_\mu = \delta^0_\mu$ $h_{\mu\nu} = \text{diag}(0, 1, 1, 1)$

Geometric identification temperature and velocity:
(relativistic case) $g_{\mu\nu} \beta^\mu \beta^\nu = -\frac{c^2}{\gamma^2 T^2}$ $g_{\mu\nu} U^\mu U^\nu = -c^2$

Carroll limit $ v < c$ (rest frame)	Carroll limit $ v > c$ (restless frame)
$\gamma^2 \rightarrow 1$ $(\tau_\mu \beta^\mu)^2 = \frac{1}{T^2}$ $h_{\mu\nu} \beta^\mu \beta^\nu = 0$	$\gamma^2 \rightarrow -\frac{c^2}{v^2}$ $(\tau_\mu \beta^\mu)^2 = 0$ $h_{\mu\nu} \beta^\mu \beta^\nu = \frac{v^2}{T^2}$

Variation wrt geometry: $\delta S_{\text{HPF}} \sim -T^\mu \delta \tau_\mu + \frac{1}{2} T^{\mu\nu} \delta h_{\mu\nu}$ Relation to EMT: $T^\mu_{\nu} = -T^\mu \tau_\nu + T^{\mu\rho} h_{\rho\nu}$

Carroll and the Friedmann equations

FLRW metric: $ds^2 = -dt^2 + a^2(t) \left[\frac{dr^2}{1 - \kappa r^2} + r^2 d\Omega_\kappa^2 \right]$ Einstein equations: $G^\mu{}_\nu = T^\mu{}_\nu$

General perfect fluid at rest:

$$\begin{aligned} T^0{}_0 &= -\mathcal{E} & T^i{}_0 &= 0 \\ T^0{}_j &= 0 & T^i{}_j &= P\delta^i{}_j \end{aligned}$$

Equation of state: $P = w\mathcal{E}$

Conservation of energy yields:

$$\mathcal{E} \sim a(t)^{-3(1+w)}$$

Matter	Radiaton	Vacuum energy
$w=0$	$w=1/3$	$w=-1$

Carroll perfect fluid at rest:

$$-\mathcal{E} := T^0{}_0 = P$$

Carroll as organizing principle

Single scalar inflation:

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{2}g^{\mu\nu}\nabla_\mu\phi\nabla_\nu\phi - V(\phi) \right]$$

Reading off EMT in homogeneous setting:

$$\mathcal{E} = \frac{1}{2}c^2\pi_\phi^2 + V, \quad P = \frac{1}{2}c^2\pi_\phi^2 - V$$

Conjugate momentum:

$$\pi_\phi := \frac{1}{c^2}\partial_t\phi$$

Slow roll inflation:

$$w = \frac{\frac{1}{2}c^2\pi_\phi^2 - V(\phi)}{\frac{1}{2}c^2\pi_\phi^2 + V(\phi)} \approx -1$$

Carroll limit as organizing principle:

$$w = \frac{\frac{1}{2}c^2\pi_\phi^2 - V(\phi)}{\frac{1}{2}c^2\pi_\phi^2 + V(\phi)} = -1 + \frac{\pi_\phi^2}{V}c^2 + \mathcal{O}(c^4)$$

Observable universe within Hubble radius:

$$r_H = c \frac{a}{\partial_t a}$$

Reflects ultralocal behavior

Carroll Microscopics

partition function of a Boltzmann gas of N relativistic particles:

$$H_1 = c|p| \quad Z \sim [V\gamma(T/c)^3]^N$$

Relation to EMT:

$$T^0{}_0 = \langle nH_1 \rangle$$

$$T^i{}_0 = \left\langle nH_1 \frac{\partial H_1}{\partial p_j} \right\rangle$$

$$T^0{}_j = \langle np_j \rangle$$

$$T^i{}_j = \left\langle np_i \frac{\partial H_1}{\partial p_j} \right\rangle$$

Carroll limits:

	relativistic	$ v < c$	$ v > c$
\mathcal{E}	$\frac{n}{\beta} \frac{dc^2 + v^2}{c^2 - v^2}$	$d \frac{n}{\beta}$	$-\frac{n}{\beta}$
$T^i{}_0$	$-\frac{n}{\beta} \frac{(d+1)c^2}{c^2 - v^2} v^j$	0	0
$T^0{}_j$	$\frac{n}{\beta} \frac{d+1}{c^2 - v^2} v^j$	0	$-n \frac{d+1}{\beta} \frac{v_j}{v^2}$
P	$\frac{n}{\beta}$	$\frac{n}{\beta}$	$\frac{n}{\beta}$

For $v < c$ in order to have EMT with right covariance: $\mathcal{E} = -P$

partition function not finite :(

Reflects the fact that $c \rightarrow 0$ limit of microscopic systems is often tricky

Some closing statements

Assuming Carroll boost, there are two Carroll fluids which can't be boosted into one another

Carroll fluids have a $w=-1$ equation of state. This might be used to explore e.g. inflation.

Can we understand Carroll microscopics better?

Thank you for tuning in!

