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Plan for today:

Carroll fluids

Curved space and hydrostatic partition function

Friedmann equations



Carroll boost
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Carroll boost versus other boosts

[H,Cj ] = 0

Seminal work on Carroll: [Levy-Leblond ‘65][Bacry, Levy-Leblond’68]



Looking at Carroll through fluid

Perfect uncharged relativistic fluid: Tµ
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Ẽ + P

c2
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Fluid can be studied in absence of specific microscopics

Relativistic boost Ward identity:

Carroll boost Ward identity:
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Covariant transformation Carroll EMT:

Generalized mass density: T 0
i =: ⇢vi Total energy: E = Ẽ + ⇢v2

Related work on Carrol fluids: [de Boer, Hartong, Obers, WS, Vandoren’17][Ciambelli, Marteau, Petkou, Petropoulos, Siampos’18x2]
[Campoleoni, Ciambelli, Marteau, Petropoulos, Siampos’18][Poovuttikul, WS’19][Ciambelli, Marteau, Petropoulos, Ruzziconi’20]

Just consider symmetries and thermodynamics



Resting Carroll

Generalized mass density:
Relativistic
EMT
explicitly:
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Velocity must vanish 
quicker than c:
(v ~ c^a)
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Moving Carroll

Velocity must be 
greater than c:
(v > c )

Carroll EMT
(restless frame):
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hydrostatic partition function + curved space

Thermal partition function on weakly curved stationary background: Z = Tr
h
e�H/T

i

Time translation symmetry implies timelike Killing vector: L�gµ⌫ = 0

Preferred choice of temperature and velocity: gµ⌫�
µ�⌫ = � c2

�2T 2

Leading order hydrostatic partition function action:

Using curved spacetime to compute perfect fluid EMT In passing insight into NL geometry
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Metric variation + thermo identities: �SHPF ⇠
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Seminal HPF work: [Banerjee, Bhattacharya, Bhattacharyya, Jain, Minwalla, Sharma’12][Jensen, Kaminski, Kovtun, Meyer, Ritz, Yarom’12]
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a closer look into NL geometry + HPF

Thermal partition function on weakly curved stationary background: Z = Tr
h
e�H/T
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Geometric identification temperature and velocity:
(relativistic case)
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gµ⌫ = �c2⌧µ⌧⌫ + hµ⌫Split in metric: In flat space: ⌧µ = �0µ hµ⌫ = diag(0, 1, 1, 1)
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Carroll and the Friedmann equations

Equation of state:

FLRW metric: ds2 = �dt2 + a2(t)
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General perfect fluid at rest:

Conservation of energy yields:
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Carroll perfect fluid at rest:

Matter Radiaton Vacuum energy
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Carroll as organizing principle

Carroll limit as organizing principle:

Slow roll inflation:
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Single scalar inflation:

Reading off EMT in homogeneous setting:
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Observable universe within Hubble radius: Reflects ultralocal behaviorrH = c
a

@ta

E =
1

2
c2⇡2

� + V , P =
1

2
c2⇡2

� � V

Opposite limit as organizing principle has been considered in: [Van den Bleeken’17][Hansen, Hartong, Obers’19+’20]



Carroll Microscopics

partition function of a Boltzmann gas of N relativistic particles: H1 = c|p| Z ⇠
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Relation to EMT:

Carroll limits:

T 0
j = hnpji

partition function not finite :(

For v<c in order to have EMT
with right covariance:

Some works on specific Carroll systems: [Bergshoeff, Gomis, Longhi’14][Duval, Gibbons, Horvathy, Zhang’14][Bagchi, Mehra, Nandi’19x2]
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Reflects the fact that c->0 limit of microscopic systems is often tricky
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Some closing statements
Assuming Carroll boost, there are two Carroll fluids which can’t be boosted into one another

Carroll fluids have a w=-1 equation of state. This might be used to explore e.g. inflation.

Can we understand Carroll microscopics better?

Thank you for tuning in!


