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Motivations

We have studied at quantum level a non-relativistic version of the
Wess-Zumino model in (2+1)D with /' =2 SUSY

@ In models describing CM systems SUSY has been observed to be an
emergent symmetry, that is it appears in the effective theory
describing the low-energy modes. On the other hand, at these scales
the system is typically in a non-relativistic regime.

Therefore, it is physically relevant to construct NR SUSY models

@ Non-relativistic holography: Non-relativistic generalisation of the
AdS/CFT is of interest for the holographic description of CM systems.
Which is the role of supersymmetry in NR gauge/gravity
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K. Balasubramanian, J. McGreevy, PRL101 (2008);

W.D. Goldberger, JHEP03 (2009);

S. Kachru, X. Liu, M. Mulligan, PRD78 (2008);

M. Taylor, 0812.0530;

S. Janiszewski, A. Karch, JHEPO02 (2013)

M. H. Christensen, J. Hartong, N. A. Obers and B. Rollier, PRD89, JHEPO1 (2014)

@ Supersymmetry often helps in solving exactly the theory



State of the art

NR models with NO SUSY have been extensively studied, which have

—

o Galilean symmetry (H, P,.J,G) or Bargmann symmetry (U(1) central
extension) in (3+1)D J-M. Lévy-Leblond, CMP6 286 (1967)

@ Schroedinger symmetry = NR version of conformal symmetry

C. R. Hagen, PRD5 (1972) 377

- -

o Lifshitz symmetry (H, P, J, D) E. Lifshitz, ZETF11 (1941) 255, 269

@ NR + gauge symmetries: CS-matter theories G. Lozano, PLB283 (1992)

Galilean Electrodynamics
G. Festuccia, D. Hansen, J. Hartong, N. Obers, 1607.01753
S. Chapman, L. Di Pietro, K.T. Grosvenor, Z. Yan, 2007.03033



NR models with SUSY have been studied, in

@ (3+1)D = WZ model, Lifshitz models, NR corners of N=4 SYM
R. Puzalowski, Acta Phys. Austriaca 50 (1978) 45; T. E. Clark and S. T. Love, NPB
231 (1984); J. A. de Azcarraga and D. Ginestar, JMP 32 (1991); P. Fendley, K.
Schoutens, J. de Boer, 0210161; R. Dijkgraaf, D. Orlando, and S. Reffert, 0903.0732;
S. Chapman, Y. Oz, A. Raviv-Moshe, 1508.03338; A. Meyer, Y. Oz, A. Raviv-Moshe,

1703.04740; S. Baiguera, T. Harmark, N. Wintergerst, 2009.03799

@ (24+1)D = N =2 Chern-Simons-matter theory (enhanced
Schroedinger symmetry)
M. Leblanc, G. Lozano, H. Min, AP 219 (1992) 328; O. Bergman, C. B. Thorn, PRD

52 (1995) 5997

= NR curved backgrounds (Newton-Cartan geometry)

D.T. Son, M. Wingate, AoP321 (2008)

R. Auzzi, S. Baiguera, G. Nardelli, JHEPO02 (2016)

K. Jensen, SciPost Phys. 5 (2018)

R. Andringa, E. A. Bergshoeff, J. Rosseel and E. Sezgin, CQG30 (2013)

= NR strings J. Gomis, H. Ooguri, 0009181
T. Harmark, J. Hartong, N.A. Obers, 1705.03535

E. Bergshoeff, J. Gomis, Z. Yan, 1806.06071

J. Gomis, Z. Yan, M. Yu, 2007.01886



From a theoretical point of view there are still interesting open questions:

@ Which are the renormalization properties of NR SUSY theories?

@ Does SUSY conspire with the NR space-time symmetry to mild UV
divergences?

@ Do non-renormalization theorems still work ?

We focus on (2+1)D field theories



Plan of the talk

1) Construction of the NR N = 2 Superspace

2) NR Wess-Zumino Model. Perturbative analysis, renormalization
properties, one-loop exactness

3) Conclusions and future directions



SUSY Extended Galilean algebra

There are different ways to obtain the Bargmann algebra in (d+1)D

o Taking the Inénti-Wigner contraction of the (d+1)D Poincaré ® U(1)
algebra in the ¢ — oo limit

@ By dimensionally reducing the ((d+1)+1)D Poincaré algebra along a
null direction

Similarly, we can construct the Super-Bargmann algebra in (d+1)D

@ Completing the Galilean algebra with a set of fermionic generators and
impose constraints on the algebra

o Taking the Inonii-Wigner contraction of the (d+1)D super-Poincaré
® U(1) algebra in the ¢ — oo limit

@ By dimensionally reducing the ((d+1)+1)D relativistic SUSY algebra
along a null direction

= To construct a NR Superspace the most convenient approach is null
reduction



N =2 SUSY Bargmann algebra in (2+1)D

[Py, Gk] = i0;M ,  [H,G;] =1iP;,
[Pj, J} = —iEjkPk 5 [Gj, J] = —’i€jka 5 ]7k' = 172

[Q1,J] = 3Qu, {Q1,Q1} = v2H,
[Q2,J] = —1Q2, [Q2,G1—iG2] = —iQ1, {Q2.Q}} =V2M,
{Q1, Q1 = (P —iP2), {Q2,Ql}=—(P+iP)

Null reduction: We start from the (3+1)D super-Poincaré algebra
realized on the spacetime
3 0
~ = + .
(¥, 27, 2="?) =2 =2 light — cone coords.

V2




% compactify £~ on a tiny circle of radius R and rescale 7 — z /R,

z~ — Rx™.

* Define P_ = M and select only the generators which commute with M
= P. =H, P—12, Mi2 =J, M;— =G, bosonic subalgebra

* In the fermionic sector, write the (3+1)D anticommutator

{Qa, Qs = iagéfﬂu in terms of the light-cone coordinates

[ V204 O —ide
{Q. Q=7 (81 + 102 —\/58,)

Field theory realization: Reduce a generic field as
B(z") =™ Bzt =t,2") m — M — eigenvalue (adimensional)

Identify 0 — 0;, 8_ — im Qu = Qa, Qs — Qf



Non-relativistic Superspace

Since the null reduction does not affect the fermionic coordinates
(34 1) N = 1 relativistic superspace = (2 + 1) /' = 2 NR superspace
(z*,27,2",0%,0%) = (t,z",0",0% (6", (6*)")
[t] = =2, [#'] = -1, [0*] =1, [f*] =0
Reduction of a generic superfield

d(z™M,0%,0%) =™ d(t,2",0",0%, (0", (0%)")

* Covariant derivatives

D1 = % — %é (81 — 7,32 \}591@

{Da =2 igPy, . Dy = g5r — £60%(01 +i0:) — 56" 0,
Ds = 595 — 30”034 Dy = 507 — $04 (01 +i8:) — J50°M
Dy = 55 — 561 (01 —ida) — 50°M



* (Anti)chiral superfields Do¥ =0, DY =0

S(wr,0%) = p(xL) + 0"¢a(zL) — 0°F(z1)
S(xr,0%) = @(xr) + 0,97 (xr) — O°F(xR) 23l = Fi0%0°

* Berezin and spacetime integrations

/d4xd46<1> = /d‘*w?@?@] ) (@ =™ D)
6=6=0

27 _
—)/d3xD2D2<i>’ X 1 dx™ e'™”
6

=6=0 27 J,

{ I
= /d?’x d'o & Non — vanishing result only if M(®) =0



Relativistic ' = 1 WZ model in (3+1)D

S:/d4xd4eiz+/d4xd29 <gz2+ %23) +he. =0

@ The WZ model is renormalizable

@ Renormalization in Superspace: UV divergent contributions only to
the Kéahler potential (no chiral divergent terms). Therefore,

L= Lren = /d‘ﬂQZg(i)E)+/d202AZ§2(%E3)

The absence of chiral divergences implies

ZNZY =1 = Zy =257

@ Non-renormalization theorem
— Perturbative M.T. Grisaru, W. Siegel, M. Rocek, NPB 159 (1979) 429
— Non-perturbative N. Seiberg, PLB 318 (1993) 469

Holomorphicity, SUSY and R-symmetry



Non-relativistic Wess-Zumino model in (2+1)D

Particle number conservation requires at least two superfields
S = /d3xd40 (®101 + ©2®2) + g/d3xd20 705 + h.c.
M(®1) =m, M(P2) = —2m
Manifestly invariant under NR N = 2 SUSY
By =y + 0+ 0221 Vmx1 — %9“9&1?1
By = o+ 016 + 6% 25 v/2m o — %eaeaﬁ

(&1, F1) (&2, F2) —  auxiliary (non-dynamical) fields



Technical subtely: M (p2) < 0, M(x2) <0

S = /d3$ {Qimgﬁl&wl + (,51V2g01—4im<,523ﬁ02 + @QVQQDQ + ...
————

Integrate by parts and exchange 2 > @2 (the same for fermions)

S :/d3w [4,51 (22’th + VZ) Y1+ P2 (4im8t + Vz) ©2

+ X1 (2imdy + V?) x1 + X2 (4imdy + V?) xg] + Sing

Sus = [ d%a [~ algPloreal® = lollonl*
—ig (\/§<P1X1(61 —i02)X2 — 2@2x1(01 —i02)x1 + 2\/5@1((81 - i82)X1)>22) +h.c.

+2|g/? (‘\‘Pl\%‘(le — 41 x2x2 + 22> X1x1 + 2V20102X1X2 + 2\/5@@2)(2)(1) ]



Renormalization in Superspace

@ Superfield propagators

(®a(w, 7, 01,01)Pa(—w, =P, 02,02)) = ! 5(4)(91—92) a=1,2

T 2maw — P +ie

In configuration space

=———"¢

R d2pdw_ (5(4>(91 — 92) —i(wt—p-F) ’L@(t) imafz (4)
Da(,¢) _/ 1) 2maw — P2 +ic e ¢ o 0T (i=0)

@ Supervertices
[ @

o, (2ig) @y (2ig")

@y [

Number of incoming arrows = Number of outgoing arrows



Selection rules

Loop diagrams are formally the same as in the relativistic 2-field WZ
model, but....

@ Selection rule 1 - Particle number conservation at each vertex

@ Selection rule 2 - Arrows inside a Feynman diagram cannot form a
closed loop. O. Bergman, PRD 46 (1992) 5474




* In momentum space

T (By,81) — 4|g / dez ! —0
[4mw —k2+ ia} [Qm(w Q) —(k—p)2+ ie}

* In configuration space it would be proportional to ©(t)©(—t) =0

The model is renormalizable for power counting.

6 = 2 — F and w-integrations always convergent



Results
Self-energy corrections - The only non-vanishing diagram at one loop

@y

Vertex corrections - No one-loop. At two loops

N A A A

They vanish due to circulating loops.

No non-vanishing diagrams arise at higher loops = One-loop
exactness



x Non-relativistic non-renormalization theorem

We have proved the NR perturbative non-renormalization theorem (no
vertex corrections allowed)

Seiberg’s argument can be easily imported and a non-perturbative
non-renormalization theorem holds

* Exact beta-function

L~ Lren = /d40 (218181 + Z2D2®2) —|—g/d20 747,75 B30 + hec.

with Z1 =1, Zy=1- 14

There are no UV divergent vertex corrections. Therefore,

_ 21 g°
7,273/ =1 Zy=z;2 14 9L =
9o — % 2 +87rms = | P 4mm

The model is classically scale invariant, but scale invariance is lost due to
quantum corrections. It is restored at the IR fixed point g = 0.
Similar behavior in the bosonic case (o. Bergman, PRD46 (1992))



Conclusions
We have studied quantum properties of the simplest NR susy model
in (2+1)D. Working in NR Superspace we have found that:

@ The model is one-loop exact. Scale invariance is broken by one-loop
effects.

@ At quantum level the model cannot be obtained as the null reduction
of the quantum (3+1)D relativistic model. In particular, the (2+1)D
NR theory has much nicer properties compared to its (3+1) parent
theory.

Future directions
@ Coupling to gauge fields

@ Coupling to supergravity. Models coupled to NC supergravity as null
reduction of relativistic models coupled to Poincaré supergravity in

Bergshoeff, Chatzistavrakidis, Lahnsteiner, Romano, Rosseel, 2005.09001

© Theories with more SUSY (eX: NR ABJM, v. Nakayama 0902.2267; K.-M.

Lee, S. Lee, S. Lee 0902.3857)
@ Integrability in NR systems
@ Opposite limit (¢ — 0) - super-Carroll models



