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CLASSICAL HYDRODYNAMICS

➤ Hydrodynamics is an effective description for low-energy 
long-wavelength fluctuations in a macroscopic system 
around the equilibrium thermal state. 

➤ At macroscopic scales, all the microscopic excitations have 
effectively dissipated and the dynamics is dominated by the 
macroscopic conserved charges (e.g. energy, momentum, 
particle number) that cannot dissipate locally. 

➤ Hydrodynamics is described by transport coefficients (e.g. 
viscosities, conductivity) that characterise how fluxes (e.g. 
energy current, stress tensor, particle flux) respond to 
variations in the conserved densities. 

➤ Dynamic evolution of the conserved charges is governed by 
the respective conservation equations.
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CLASSICAL HYDRODYNAMICS

➤ The classical formulation of hydrodynamics is incomplete. 
➤ The non-linear hydrodynamic equations account for mutual 

interactions between conserved charge modes, but not for 
possible interactions with the background thermal noise 
arising due to the ignored microscopic excitations. 
 
 
 

➤ There isn’t a first principle derivation of the hydrodynamic 
equations in the classical framework. It isn’t even clear what 
are the correct degrees of freedom out of equilibrium. 

➤ One would like a better understanding of how the second 
law of thermodynamics emerges from the underlying 
effective degrees of freedom and symmetries. 3



SCHWINGER-KELDYSH FRAMEWORK

➤ Schwinger-Keldysh (SK) framework provides a consistent 
path-integral based formulation of hydrodynamics. [1] 

➤ SK framework allows us to classify the most generic (non-
Gaussian) stochastic noise into the hydrodynamic setup. [2] 

➤ The framework proposes a set of effective degrees of 
freedom and symmetries that can be used to construct an 
effective action for hydrodynamics from scratch. 

➤ The SK framework provides a derivation of the second law 
of thermodynamics within the context of the hydrodynamic 
effective field theory. [3]
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SCHWINGER-KELDYSH FRAMEWORK

➤ SK framework of hydrodynamics is setup as a sigma model 
with two copies of target spacetime fields living on the fluid 
worldvolume. 

➤ The system respects various 
worldvolume and target spacetime 
symmetries. In particular, there is  
a discrete KMS symmetry that  
implements fluctuation-dissipation  
theorem. 

➤ The original models were adapted  
specifically to relativistic fluids. The 
aim of the present talk is to revisit  
these ideas in the absence of  
Lorentz boost symmetries. [1]
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CONSERVATION EQUATIONS

➤ The dynamical equations of classical hydrodynamics are a set of conservation equations 
associated with the global symmetries that the system enjoys. 
 
 
 

➤  is symmetric due to rotational invariance 
 

➤ For a relativistic theory with Lorentz boost symmetry 
 

➤ For Galilean hydrodynamics, we have Milne boost symmetry

τij
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∂t n + ∂i ji = 0
∂t ϵ + ∂i ϵi = 0

∂t πi + ∂j τij = 0

Particle number conservation:
Energy conservation:

Momentum conservation:

∂t (π[ixj]) + ∂k (τk[ixj]) = τ[ ji]Angular momentum conservation:

∂t (m n xi − πit) + ∂k (m jkxi − τkit) = m ji − πiCenter-of-mass conservation:

∂t (c−2ϵ xi − πit) + ∂k (c−2ϵkxi − τkit) = c−2ϵi − πiCenter-of-energy conservation:



COUPLING TO SOURCES

➤ We can introduce the background sources [1] 
 
 
 

➤ The coupling structure is given as 
 
 
 
We can use the symmetry-invariance of  to obtain the covariant conservation equations. 

➤ One derivative Galilean fluids

W
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δW = ∫ dt d3x γ [jμδAμ − ϵμδnμ + (vμπν +
1
2

τμν) δhμν]

(n
ji) → Aμ, (ϵ

ϵi) → nμ, (−nkπk /nt

πi ), (nknlτkl /n2
t −nkτkj /nt

−nkτki/nt τij ) → hμν with det h = 0

jμ ϵμ πμ τμν

γ = det nμnμ + hμν

vμhμν = 0

jμ = n uμ, ϵμ = (ϵ + p)uμ − p vμ + T2κhμνLβnν −
1
2

TημνρσūνLβhρσ

πμ = ρ uμ, τμν = ρ uμuν + p hμν −
1
2

Tημνρσ (Lβhρσ − 2ū(ρLβnσ))

vμnν + hμλhλν = δμ
ν

ūμ = hμνuν, ūμ = hμνūν

βμ =
uμ

T

uμnμ = 1

ηαβγδ = 2η hα(γhδ)β + (ζ− 2
d

η) hαβhγδ



SCHWINGER-KELDYSH SIGMA MODEL

➤ Schwinger-Keldysh (SK) field theory for hydrodynamics is naturally formulated on the fluid 
worldvolume characterised by coordinates . 

➤ On this worldvolume, lives the double copy 
dynamical fields 
 

➤ We also introduce two copies of background sources 
 

➤ The theory is invariant under background diffeomorphisms and gauge transformations on the 
two SK spacetimes. All the dependence must arise through the invariants

σα
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ρβ

t → − ∞ t → ∞
Xμ

1 (σ), Xμ
2 (σ), φ1(σ), φ2(σ)

A1μ, A2μ, n1μ, n2μ, h1μν, h2μν

B1,2α = ∂αXμ
1,2 A1,2μ + ∂αφ1,2, N1,2α = ∂αXμ

1,2 n1,2μ, H1,2αβ = ∂αXμ
1,2 ∂βXν

1,2h1,2μν



WORLDVOLUME SYMMETRIES

➤ The worldvolume features a reference thermal vector  and reference chemical shift 
, characterising the global thermal state. 

➤ Theory is invariant under  preserving local diffeomorphisms and gauge 
transformations on the worldvolume 
 

➤ Finally, we have a discrete KMS symmetry which acts on the invariants as 
 
 
 
 
 
This non-local symmetry is quite challenging to implement at the full quantum level, but can 
be made manifest in the statistical limit ( ).

βα
0 = 1/T0δα

τ
Λβ0 = μ0/T0

(βα
0 , Λβ0)

ℏ → 0
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σα → σα + f α such that ∂τ f α = 0, φ1,2 → φ1,2 + λ such that ∂τλ = 0

Xμ
1 (σ) → − Xμ

1 (−σ), Xμ
2 (σ) → − Xμ

2 (−τ − iℏ/T0, − ⃗σ ) − iℏ/T0δ
μ
t

φ1(σ) → − φ1(−σ), φ2(σ) → − φ2(−τ − iℏ/T0, − ⃗σ ) + iℏμ0/T0

B1α(σ) → B1α(−σ), B2α(σ) → B2α(−τ − iℏ/T0, − ⃗σ )

N1α(σ) → N1α(−σ), N2α(σ) → N2α(−τ − iℏ/T0, − ⃗σ )

H1αβ(σ) → H1αβ(−σ), H2αβ(σ) → H2αβ(−τ − iℏ/T0, − ⃗σ )



SCHWINGER-KELDYSH EFFECTIVE ACTION

➤ The effective action for hydrodynamics is written as 
 
 
 
 
 
Here “r” and “a” are average and difference combinations of invariants respectively. 

➤ The action is required to satisfy the SK constraints
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ℒ[Brα, Nrα, Hrαβ; Baα = 0,Naα = 0,Haαβ = 0] = 0

S[Xμ
1,2, φ1,2; A1,2μ, n1,2μ, h1,2μν] = ∫ dt d3x γr ℒ[B1,2α, N1,2α, H1,2αβ]

= ∫ dt d3x γr ℒ[Brα, Nrα, Hrαβ; Baα, Naα, Haαβ]

ℒ*[Brα, Nrα, Hrαβ; Baα, Naα, Haαβ] = − ℒ[Brα, Nrα, Hrαβ; − Baα, − Naα, − Haαβ]

Im ℒ[Brα, Nrα, Hrαβ; Baα, Naα, Haαβ] ≥ 0



RESTORING BOOST SYMMETRY

➤ To restore Lorentz boost symmetry, one requires that the dependence on invariants only enters 
via the combinations 
 
 
These are pullbacks of the relativistic metric on the SK spacetimes. 

➤ To restore Milne boost symmetry, one requires that the dependence on invariants enters only 
via the higher-dimensional combinations 
 
 
 
The worldvolume diffeomorphisms and gauge-shifts combine to become higher-dimensional 
diffeomorphisms. 

➤ This theory can also be obtained directly as an uncharged higher-dimensional relativistic fluid 
in the presence of a null Killing vector — null fluid.
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G1,2αβ = − c2N1,2αN1,2β + H1,2αβ, B1,2α

G1,2AB = (
0 −N1,2β

−N1,2α
1
m B1,2αN1,2β + 1

m N1,2αB1,2β + H1,2αβ)



EXPLICIT EFFECTIVE ACTION

➤ The explicit effective action for dissipative hydrodynamics at one-derivative order is given as 
 
 
 
 
 
 
 
 
 
All coefficients are functions of , , . We have constraints 
 
 
 
We have only included dissipative corrections for Galilean hydrodynamics for simplicity.

T μ ū2 = ūαūα
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ℒ = n uαBaα − ϵ uαNaα + p ( 1
2

Hαβ
r Haαβ − uαHr

β
αNaβ) +

1
2

ρ uαuβHaαβ

+iT

Baα

−Naα
1
2 Haαβ

T
0 0 0
0 Tκ Hαγ

r ηαβγδūβ

0 ηαβγδūδ ηαβγδ

Baγ + i
T0

∂τBrγ

−Naγ − i
T0

∂τNrγ

1
2 Haγδ + 1

2
i

T0
∂τHrγδ

+ 𝒪(ℏ)

uα =
δα

τ

Nrτ
, T =

T0

Nrτ
, μ =

μ0 + Brτ

Nrt
ηαβγδ = 2η Hα(γ

r Hδ)β
r + (ζ− 2

d
η) Hαβ

r Hγδ
rūα = Hrαβ uβ, ūα = Hαβ

r ūβ

ϵ + p = T
∂p
∂T

+ μ
∂p
∂μ

+ 2ū2 ∂p
∂ū2

, n =
∂p
∂μ

, ρ = 2
∂p
∂ū2

, η, ζ, κ ≥ 0



WHY SHOULD YOU CARE?

➤ Schwinger-Keldysh framework provides a first principle 
derivation of classical hydrodynamic equations via a 
variational principle. 

➤ It provides a symmetry-based understanding of the second 
law of thermodynamics. 

➤ The formalism can be used to consistently introduce various 
patters of spontaneous and explicit symmetry breaking, 
leading to effective theories of a host of real world systems 
e.g. superfluids, crystals [1], boost-non-invariant fluids etc. 

➤ Upon consistently introducing stochastic noise corrections 
within the EFT, one finds that classical transport coefficients 
do not universally characterise the long-distance late-time 
behaviour of near-equilibrium thermal systems. [2]
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NON-UNIVERSAL STOCHASTIC CORRECTIONS

➤ Tree-level retarded two-point Green’s function can be recovered using the mixed propagator 
 

➤ One loop correction to this comes from the diagrams [1,2] 
 
 
 
 
 
 
 
 
Hydrodynamic correlation functions get non-universal corrections that are not fixed by 
classical transport coefficients. [2]
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GR,cl
nn (ω, k) =

ik2 σ
ω + iDk2

+ …

GR
nn(ω, k) =

ik2

ω + iDk2 [χD +
ωk2

ω + iDk2

χ2T
32πD ( ∂D

∂n )
2

k2 − 2iω/D + …

−
ωk2T

1024π2D2 ( ∂D
∂n )

2

(k2 − 2iω/D) ( 1/6 ϑ1k4

ω + iDk2
+

2/3 ϑ1 + ϑ2

D2
(ω + iDk2)) + …]

(ω, k) (ω, k) (ω, k) (ω, k)



OUTLOOK

➤ Classical hydrodynamics is an incomplete description of 
long-wavelength low-energy description of near-equilibrium 
thermal systems. 

➤ A better and more complete description is offered by the 
Schwinger-Keldysh effective field theory framework. 

➤ While the original construction of SK EFTs assumes Lorentz 
boost symmetry, the framework can be generalised to 
Galilean hydrodynamics or the absence of any boost 
symmetry altogether. 

➤ This is helpful for a plethora of applications to real world 
scenarios, where the setting is typically non-relativistic 
(Galilean). The formalism also applies to systems with a 
preferred frame of reference leading to no boost invariance 
in the effective theory such as active matter.
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