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e Large scale atmospheric flow

e In laboratory, a strong
magnetic field or an intense
rotation tend to suppress one
component of motion
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e 2+1turbulence inverse energy cascade

e In non relativistic fluid flows, its origin can be traced back to the existence of
an approximately conserved enstrophy charge

Q= [ ww; d%z

0 = | wY a;?w;ﬂ' dlx — EP

In d=2 spatial dimensions the Vortex-stretching term is vanishing
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Motivation

e 2+1turbulence inverse energy cascade

e In non relativistic fluid flows, its origin can be traced back to the existence of
an approximately conserved enstrophy charge

Q= [ ww; d%z

1
0 = ——=P in d=2 Reynolds number

R
0;=0 when R — o0

[Kraichnan 1967, Leith 1968, Batchelor 1969]

e Relativistic generalization to uncharged, conformal fluid flows

[F. Carrasco, L. Lehner, Robert C. Myers, O. Reula, A. Singh 1210.6702]
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e YES:
[ R. Marjieh, N.P.F., and A. Yarom [2009.03980] ]

o For generic relativistic fluids (relevant for heavy-ion collisions)

o Covariant formulation for Galilean fluids

[ N.P.F., and A. Yarom [to appear] ]

o For non-boost invariant fluids (relevant for flocking behavior)

o For Carrollian fluids
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An algorithm for enstrophy conservation:

Consider relativistic fluids
e |[f there exists a closed two-form QLW CdS) =0

e that is orthogonal to the velocity field under
the equations of motion: £2,,,u” = 0

e andthere exists SH — gyt thatis conserved V5" =0

The current JH = lﬂ2u“

S
0 = 0Qup = 997 Qu Qap

is conserved under the e.o.m. in 2+1 dimensions
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An algorithm for enstrophy conservation:

Consider relativistic fluids
e If there exists a closed two-form () Tk dS) =0

e thatis orthogonal to the velocity field under
the equations of motion: QW’LLV =0

e andthere exists SH — gyt thatis conserved V5% =0

is conserved under the e.o.m. in 2+1 dimensions

- Enstrophy current conservation




Finding €2, :

e The most general closed 2-form:
Q =0, (Tf(T, p1u/Tuy) — 0,(Tf(TL, n/T)uy) + cFu

e |t must satisfy under the equations of motion: QWuV — ()
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Finding €2, :

e The most general closed 2-form:
Q =0, (Tf(T, p1u/Tuy) — 0,(Tf(TL, n/T)uy) + cFu

e |t must satisfy under the equations of motion: QWUV — ()

uﬁ_ IOT B 8f ) L . a_f L _< ,0T —C) uﬁ
Qaﬂ - (fP—I—E a(,u/T) TDoz(:u/T) TaTDaT fP—|—E Faﬂ
af '
O_T_O

In the absence of external sources: P(T, u) = p(T f(u/T))

Otherwise:  f = ¢ + C,LL/T



Enstrophy current for Galilean fluids:

Consider Galilean fluids
e Construct a two-form:
o closed
o orthogonal to the velocity field under the equations of motion

o covariant under Galilean boosts

1
e The current JH :—Q2ué
S

is conserved under the e.o.m. in 2+1 dimensions

where Qz — QMVQ'LW = huahljﬁﬂul/ﬂaﬁ
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Enstrophy current for Galilean fluids:

Consider Galilean fluids
e Construct a two-form:

o closed
o orthogonal to the velocity field under the equations of motion
o covariant under Galilean boosts

1
e The current JH :—Q2ué
S

is conserved under the e.o.m. in 2+1 dimensions

where 0% = QM Q,, = h**h"PQ Q0
[ K. Jensen [1408.6855, 1411.7024], J. Hartong, N. Obers [1504.07461] ]

(V,—Gu)JE =0 * Be careful about boundary terms
2 2 G * )
Be careful about torsion
* Use a Galilean invariant connection



(), for Galilean fluids:

e The Newton-Cartan data:  [we use K. Jensen [1408.6855] ]
I/ J—
hH*" | ny nt, A,
e Fluid dynamics in Newton-Cartan geometry:

ug = (1,7)

e We ensure Galilean covariance via Milne boosts symmetry
e The most general closed 2-form that is Milne and U(1) gauge invariant:

Q= ~/u/ + Ou(gny) — Ou(gny)
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(), for Galilean fluids:

e The Newton-Cartan data:  [we use K. Jensen [1408.6855] ]
I/ J—
hH*" | ny nt, A,
e Fluid dynamics in Newton-Cartan geometry:

ug = (1,7)

e We ensure Galilean invariance via Milne boosts symmetry
e The most general closed 2-form that is Milne and U(1) gauge invariant:

Q= ~/w + Ou(gny) — Ou(gny)

e |t satisfies Quyué — 0 under the equations of motion iff:

o In the absence of torsion, barotropic e.o.s: P = P(n)andg = —u + ¢o(7T)
o With torsion we require in addition: n = n(u + ¢(T))
o Incompressible limit: always satisfied (in the absence of torsion)



Mini summary & comments

e Enstrophy current for relativistic/Galilean fluids

o Relativistic fluids: P(T, ) = p(T f(u/T))
o Non relativistic: P = P(n)
o Incompressible fluids

e Approximate conservation equation in 2d: VMJ“ — 0(84)
e Afamily of conserved currents:  J!' = h(s/n, Qz/sz)su“

e Enstrophy for Aristotelian fluids



2. Can it be derived from a symmetry principle?

e YES:
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o Using effective actions for fluid dynamics



The ideal fluid effective action

e The leading order effective action for (relativistic) fluid dynamics
__ d+1
Seff—/\/—QP(T,u)d o

e The invariants

1
T = —
\/—525]9@'

e The pullback sources

M/T — 5iBz' + Aﬂ
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The ideal fluid effective action

e The leading order effective action for (relativistic) fluid dynamics

Sef f :/\/—QP(T> p)d o

Initial state data
e The invariants

1
T = —
\/—525]9@'

e The pullback sources

u/T = B'Bi + Ag

External sources

9ij(0) = 0;.X"0; X" g (X (0))
Bi(o) = 0, X"B,(X (o)) + 0;:C(0)

Dynamical fields



Enstrophy from symmetry

e The leading order effective action for (relativistic) fluid dynamics
d+1
Seff = /\/—QP(T> p)d= o

® The variation of the effective action

total
§xSets = — / d o/~ |gii] ((VMT,,“ ~ PR+ AV,JMSXY 4V, TR0 + ( o ))

derivative

(V,TF — FFJo, + ANV, JM6XY 4+ V,JHC = V8"

e The off-shell enstrophy conservation equation is

1 2 4 4 1 OB E
= Lo 2 eno s Loger bv(ten)n 0w, (D)
S Sp Sp p S pbs




Enstrophy from symmetry

e The leading order effective action for (relativistic) fluid dynamics
__ d+1
Seff—/\/—gp(T,u)d o

e The transformation of the dynamical fields

1 2 4 4 1
0XH = —OPut — —E"0 — — P"Qgea® + PV, | =0
T's? sp'? sp’ p' S
60 = 20 — A.5x°
Ts
e |eads to the conserved Noether current
0? 4
JI'UJ = —ut —+ —,Q'UVEV
S Sp

Equations of motion



Galilean enstrophy from symmetry

e The leading order effective action for (Galilean) fluid dynamics

Serf = / d" oA P(T, i)

e The invariants

1 e
T'= — =TpB'A; + TA
e The pullback sources
ni(o) = 0; X"n,(X) ul(X) =Tp'0; X

Ai(0) = 9, XHA(X) + 9;C

Milne invariant 1
1 1. o 2
A, =A,+hug — 57w

e |[tis possible to show that a symmetry of the effective action exists
that leads to a conserved enstrophy current as a Noether current
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Outlook:

o V,JFLS0 2
e Does that imply inverse energy cascade in 2d?
e The corresponding bulk symmetry in AdS47?

e What is the corresponding geometric quantity that decreases?



Thank you!

Natalia Pinzani Fokeeva - KU Leuven |
Non Lorentzian onllne zoom meeting - November2020

with R. Marjieh, and A. Yarom [hep
+ w.i.p. with A. Yarom [hep-th: 2011.»



Inverse energy cascade

e Consider the energy and enstrophy spectrum

1

e Equations of motion tell us

P g 1
S (T) = /E(k)dk ~{w

— / k|2E(k)dk

dE 1 1
S <) ) =——=P
dt R t
e Experimentally
P
lim — = const d_E_ @<O
R—oo R dt dt
° The area under the curve E(k) is constant while the integral k*2 E(k)
decreases. \E bE \E

e E(k) should - =
and become - E k

depleted at large k

-

[Kraichnan 1967, Leith 1968, Batchelor 1969]



