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● Large scale atmospheric flow

● In laboratory, a strong 
magnetic field or an intense 
rotation tend to suppress one 
component of motion
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Motivation

● 2+1 turbulence             inverse energy cascade

● In non relativistic fluid flows, its origin can be traced back to the existence of 
an approximately conserved enstrophy charge

● Relativistic generalization to uncharged, conformal fluid flows

Reynolds number       in d=2 

 [Kraichnan 1967, Leith 1968, Batchelor 1969]

when 

 [F. Carrasco, L. Lehner , Robert C. Myers, O. Reula, A. Singh 1210.6702]
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● YES: 
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○ Covariant formulation for Galilean fluids
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Consider relativistic fluids
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the equations of motion:
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An algorithm for enstrophy conservation:

Consider relativistic fluids

● If there exists a closed two-form           :    

● that is orthogonal to the velocity field under 
the equations of motion:

● and there exists                           that is conserved    

            The current

                    is conserved under the e.o.m. in 2+1 dimensions 

Enstrophy current conservation
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Finding         : 

● The most general closed 2-form:

● It must satisfy under the equations of motion:

In the absence of external sources: 

Otherwise: 
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Galilean covariant 
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Consider Galilean fluids

● Construct a two-form:   

○ closed
○ orthogonal to the velocity field under the equations of motion
○ covariant under Galilean boosts

● The current 

        is conserved under the e.o.m. in 2+1 dimensions

        where 

Enstrophy current for Galilean fluids: 

* Be careful about boundary terms
* Be careful about torsion
* Use a Galilean invariant connection

 

 [ K. Jensen [1408.6855, 1411.7024], J. Hartong, N. Obers [1504.07461] ]
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● The Newton-Cartan data:

● Fluid dynamics in Newton-Cartan geometry:

● We ensure Galilean covariance via Milne boosts symmetry
● The most general closed 2-form that is Milne and U(1) gauge invariant: 
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        for Galilean fluids: 

● The Newton-Cartan data:

● Fluid dynamics in Newton-Cartan geometry:

● We ensure Galilean invariance via Milne boosts symmetry
● The most general closed 2-form that is Milne and U(1) gauge invariant:

● It satisfies                                  under the equations of motion iff: 

○ In the absence of torsion, barotropic e.o.s:                     and
○ With torsion we require in addition: 
○ Incompressible limit: always satisfied (in the absence of torsion)

 [we use K. Jensen [1408.6855] ]



Mini summary & comments

● Enstrophy current for relativistic/Galilean fluids

○ Relativistic fluids:

○ Non relativistic:

○ Incompressible fluids

● Approximate conservation equation in 2d:

● A family of conserved currents:  

● Enstrophy for Aristotelian fluids



2.  Can it be derived from a symmetry principle?

● YES:

○ Using effective actions for fluid dynamics

 [ R. Marjieh, N.P.F., and A. Yarom [2009.03980] ]
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● The leading order effective action for (relativistic) fluid dynamics

● The invariants

● The pullback sources



The ideal fluid effective action

● The leading order effective action for (relativistic) fluid dynamics

● The invariants

● The pullback sources External sources

Initial state data

Dynamical fields



Enstrophy from symmetry

● The leading order effective action for (relativistic) fluid dynamics

● The variation of the effective action

● The off-shell enstrophy conservation equation is



Enstrophy from symmetry

● The leading order effective action for (relativistic) fluid dynamics

● The transformation of the dynamical fields

● Leads to the conserved Noether current

Equations of motion



● The leading order effective action for (Galilean) fluid dynamics

● The invariants

● The pullback sources

● It is possible to show that a symmetry of the effective action exists
that leads to a conserved enstrophy current as a Noether current

Galilean enstrophy from symmetry

Milne invariant 
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Outlook:

●                          ?

● Does that imply inverse energy cascade in 2d?

● The corresponding bulk symmetry in AdS4?

● What is the corresponding geometric quantity that decreases?
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Inverse energy cascade

● Consider the energy and enstrophy spectrum

● Equations of motion tell us

● Experimentally

●           The area under the curve E(k) is constant while the integral k^2 E(k) 
decreases.

● E(k) should
Grow at small k 
and become 
depleted at large k  [Kraichnan 1967, Leith 1968, Batchelor 1969]


