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Prologue

— Ever since the birth of General Relativity, Riemannian geometry has been the mathematical
paradigm for modern physics. The metric, g.., is privileged to be the only fundamental
variable that provides a concrete tool to address the notion of ‘spacetime’.

— However, string theory suggests to put a two-form gauge potential, B,,.,, and a scalar dilaton,
¢, on an equal footing along with the metric: Forming the closed string massless sector, they
are ubiquitous in all string theories, and are transformed to one another under T-duality.

— Postulating O(D, D) symmetry as the fundamental principle, Double Field Theory, initiated by
Siegel 1993; Hull, Zwiebach 2009, augments GR including the Einstein field equations in an
unambiguous manner, geometrising or gravitising the whole closed string massless sector:

DFT = gravitational theory that string theory predicts

— Besides, formulated a priori in terms of O(D, D) covariant variables, (S)DFT as well as
doubled (super)string action describe not only the conventional Riemannian geometry but
also non-Riemannian ones where the notion of Riemannian metric ceases to exist.

Essentially, it is a matter of how one parametrises the O(D, D) covariant variables in terms of
either Riemannian {g, B, ¢} or alternatively non-Riemannian component fields.



O(D, D) Symmetry Principle
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e Working hypothesis is to view an O(D, D) invariant metric, Jyn = ,and

10
an O(D, D) covariant generalised metric, Hyy, as fundamental entities.

e The generalised metric should satisfy defining properties:
Hun = Hnm » HuHN T = T -
e Combing the two, we have a pair of projectors (orthogonal and complete),
Pun = 5(Tun + Huw) » Pun = 5(Tun — Huw) »
e Further, taking the ‘square root’ of each projector,
Pun = VP Vn9npq , Pun = VP Vg
we obtain a pair of DFT-vielbeins for twofold local Lorentz symmetries, Spin(1, D—1) x Spin(D—1,1),
VMp VMq = Npq » \_/Mf) \_/Ma = ﬁpa s VMp \_/Ma =0.
= Jun and Hyy are simultaneously diagonalisable as diag(n, 77) and diag(n, —7).
e Besides, there is an O(D, D) singlet dilaton, d, giving the integral measure, e—29,

We shall see 3 various ways of parametrising these O(D, D) covariant fields: Riemann vs. non-Riemann.



Semi-covariant formalism w/ Imtak Jeon and Kanghoon Lee 2010, 2011

e In GR, the Christoffel symbol is the unique metric-compatible connection, V5 g,., = 0, which
satisfies either a torsionless condition, or an alternative condition that the metric is the only
ingredient to form the connection.

e Similarly, the connection in DFT can be uniquely fixed
FLun=2(POLPP) +2(Pyr Py K = Praa? Pr") 0 Pi — 5 (PugmPan+Puym P ) (O a+(PO? PP i )
while the compatibility holds,
Viduwn =0, ViHun =0, vid= —%GZde (972‘1) =0,
e Further, spin connections for twofold local Lorentz symmetries can be determined
Pupg = VNpVmVig Supg = VNpVm Vg
by requiring that a master derivative,
DM:8M+I—M+¢M+4_>M:VM+¢’M+4_>M
should be compatible with the vielbeins,
Dum VNp =Vum VNp + ¢'Mpq VNq =), Dy \_/Nb =Vm \_/Nb + éMﬁa _VN{;, =0,

These spin connections are essentially the ‘generalised fluxes’ a la Aldazabala, Marques, Nunez, and Grana.



Semi-covariant formalism w/ Imtak Jeon and Kanghoon Lee 2010, 2011

e Semi-covariant Riemann curvature :

1 _
Skimn = Sikumng = Smvke = 5 (Rkemn + Ruwke — T kelom) > Sikemn =0,
where Rugcp denotes the ordinary “field strength”, Repas=0aT oo — 98T aco+T act Tep—TBcET AED -

By construction, it varies as 6Sagcp = Va0l gicp + V(o pjas, hence good for variational principle.

e Semi-covariance means, with 0™ = 0 and PLuwEe = PLEPIF Py + pk i P Pu ! POIE,

e (ViTrtyotty) = L (ViThtyotty) + 301 2(P+P) 1, NEFCOEOFEG Tty -ty M, 1My
8¢ Skimn = Le Skumn + 2V [k [(P+P) ypum EFC0e0r ] + 2V [(P+P) iy FFC 0 0 &6
8eTcap = LeTonp + 2[(P + P)cas™F — 6 £6,P5,F0r0pte

where [:5 vy M, = §N8NTM1...M,, + wr aNgNTM...M,, + 27:1 (OmEN — ONEM) Thy M, NM/+1“-Mn .

e The red-colored anomalies can be easily projected out to give fully covariant objects, e.g.
Dp Ta =V.Ty VLp \_/Ma 9 Spa = Sun VMp \_/Na ( Ricci ) 9 S(u) = Spqpq = Sp[?ﬁa (scalar)

YPDpp, Dpp (Dirac), D+C=~PDCEYPHIDECHP, (D+)?=0 = F =D,C (bispinorial RR)



O(D, D) symmetric ‘minimal’ coupling

e D= 10, N = 2 SDFT (full order 32 SUSY) w/ Imtak Jeon, Kanghoon Lee, Yoonji Suh 1210.5078

Liypen = €729 [ $S0) + 3T(FF) + ipFp' + idpr1aFAPY'I + i3 pyPDpp — i35 AP Dpp’
—i%PDpp — i3 P19 Davsp + id'PDpp’ + i5#'PFIDgu'p |
which unifies IIA and 11B SUGRAs (Riemannian/non-Riemannian) as different solution sectors.

e D =4 DFT minimally coupled to the Standard Model w/ Kangsin Choi 1506.05277

r o—2d 167:GN S(U) + ZA Tr(Fp?]FpEi) + Z¢ 1;7ppp¢ + Zwl &lﬁpIDﬁw,
sM =

—H"N(Dy¢) Dnp — V(¢) +YaGod+yuGdu+yel-¢e

— Every single term above is completely covariant, w.r.t. O(D, D), diffeomorphisms, and twofold
local Lorentz symmetries.



Einstein Double Field Equations w/ Stephen Angus, Kyungho Cho 1804.00964
e Let us consider a DFT action coupled to generic matter, T4,
Action = / e 2d [ 161?8(0) + Lmatter (Ta, Py Tp) ]
JE

and its arbitrary variation by all the fields, 6d, 6 Viyp, 5\7,\/,,3, 6Ta,

" 1/ a Lma er
SAction = /Ze,zd [M‘rfe VM35 VP (Spg — 8mGKpg) — 5250d(Se) — 87GTo)) + oral ﬂ: ]
where we naturally set
- — 5(e 291, )
| Ilmatter _Olmatter | — _dlmatter . g2d ( matter
Kog = E(VMP S~ Vg Sy ) = =2V Vg S350t T = €% 5d
e Like the General Covariance in GR, the diffeomorphic invariance of the DFT action,
_ - - 6Lma er
0 :/Ze 2d [ﬁfww{wwpv,v]a(sp@ — 87GKyg) — 5 Tun(So) — BTFGT(O))} + 5@@%]
then guides us to identify the Einstein curvature, w/ S. Rey, W. Rim, Y. Sakatani 2015

G = 4VinP Vi 9Spg — 3 TunSoo) VmG"N =0  (off-shell)
and the Energy-Momentum tensor,
T = 4VinP Vi 7Kg — 3 Tun To) » VuT"N =0  (on-shell

e Equating them, we obtain the Einstein equations in DFT: Gy = 87GTyy



Question: Is DFT a mere reformulation of SUGRA in an O(D, D) manifest manner?

The answer would be (and had been) yes, if we employ a
well-known parametrisation, Giveon, Rabinovici, Veneziano '89, Duff ‘90

ALL FOR ONE
AND
ONE FOR ALL!

I need
to be more
involved

—1 —1
9 -g B
Hun = s e % = ‘g|672¢
Bg~' g-Bg'B
Upon this parametrisation, EDFEs, Gyny = 87 GTyp, unify
Ruv +2v,(00¢) — $Hupo H P = 87GK,,)

&4 (672 Hpp ) = 167GKin)

R+40¢ — 40,$0" ¢ — 5Hxu HM = 87GT )

e However, the truth is that, DFT works perfectly fine with any generalised metric that satisfies
the defining properties: Hyw = Ham, HuSHNETke = Jun (or the DFT-vielbeins for SDFT).
And the above famous parametrisation is not the most general solution to them.

Hence the answer to the question can be negative.

e Early non-Riemannian examples, followed by a complete classification, include

) H==+T = :t( o J i) T-dual of F1 over the two longitudinal directions ~ w/K. Lee 1307.8377
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iii) Gomis—Ooguri non-relativistic string flat background  w/S. Ko, C. Melby-Thompson, R. Meyer 1508.01121



Classification of DFT geometries w/ Kevin Morand 1707.03713

The most general parametrisations of the generalised metric, Hyn = Ham, HuHN Tk = Tuns

can be classified by two non-negative integers, (n,n), 0 < n+n < D:

HHY —HMT B, + YEXL — VEXS
Hun = _
B HPY + XYY — XTYY Kix — BepH?7 Box +2X(, By, Y/ — 2X0 By, Y7
10 H Yi(XHT — ¥(XH)T 1 -B
B 1 X)) = X)) K 0
i) Symmetric and skew-symmetric fields: H*” = HY#, K, = Koy, Buw = —Bupu;
ii) Two kinds of zero eigenvectors:  with i,j=1,2,--- ,n and 7,7=1,2,---,n,
Hwv Xl =0 = HW X2 KunYF = 0=Ku Y2 ;

iii) Completeness relation: ~ HFPK,, + YIX) + YEXT = 61,.

It follows that ¥ X/,= 6/, Y X)=6:7, Y'X] =0 = Y'Xl,, HKH = H, and KHK = K.



Classification of DFT geometries

w/ Kevin Morand 1707.03713

PO Hev X =0 = Huv XE
10 H Yi(X))T — V(X7 1 -B v v
. o ' K Y = 0= K V2,
B 1 Xi(Y)T — X7 (V;)T K 0 1 o
HEP Ky + YEXE + VEXT = 61, .

e H(n,7) is invariant under

i)

ii)

local GL(n) x GL(n) rotations: with R € GL(n) and R € GL(n),

X, = Rpxl,, Y s YR, XD o RGX v¢ - VR,
‘Milne-shift’ symmetries: with local parameters, V,,;, V,z,
Yi = YR+ HEYV, O R

K = Ky — 2X[, Ky HP O Vi — 2X0, Ky o HP Voz 4 (X, Vi + X5, Vo )HP? (X Vi + X Vi),

By — By — 2X[, Vi + 22X, Vis 42X, X2} (Y] Vpr + Y2V, + Vi HP Vo)

e The corresponding DFT-vielbeins, { Vy,, _VM,—)}, can also be easily obtained with the twofold
local Lorentz symmetries identified as  O(t+n, s+n)xO(s+n, t+n), for which H*¥ and K,,,

have the signature, (t,s, n+ n), for time, space, and non-Riemannian dimensions.

e In fact, GL(n)xGL(n) and the Milne-shift symmetries are parts of O(t+n, s+n)xO(s+n, t+n).

e The trace is given by HyM = 2(n—n) which the O(D, D) rotations cannot change.



Classification of DFT geometries w/ Kevin Morand 1707.03713

. . 0(D,D) P ; 2 )2
e The underlying coset is O 1577 xO(FA.ITT) with dimensions D= — (n — n)
Berman, Blair, and Otsuki 2019; w/ K. Cho 2019

e As we shall see later, string becomes chiral and anti-chiral over the n and n dimensions:
XL8+X”(T,U):0, )_(ZO_X‘U’(T,O') =0.

I. (n,n) = (0,0) corresponds to the Riemannian case or Generalized Geometry a la Hitchin.

Il. (n,n) # (0,0) : Non-Riemannian, e.g.

— (1,0) Newton—Cartan gravity, ds® = —c?dt? + dx?, Jim g~ " is finite & degenerate

- (D—1,0) ultra-relativistic Carroll gravity, dr? = df? — ¢c72dx?, lim g~ is finite & degenerate
Cc—

— (1, 1) Stringy/torsional Newton—Cartan including Gomis—Ooguri, cimoo Ho,0) = Hi,1)

Andringa, Bergshoeff, Gomis, de Roo 2012; Harmark, Hartong, Obers 2017 and many NL audiences;
w/ Melby-Thompson, Meyer, Ko 2015; Blair 2019. DFT suggests GL(1)xGL(1), Spin(1,9)xSpin(9, 1),
and also explains lim¢_, .o NS-NS a la Bergshoeff, Lahnsteiner, Romano, Rosseel, Simsek 2021.

— (D, 0) and (0, D) are uniquely given as H = +.7 with the trivial coset, oﬁu D;

These two are the perfectly O(D, D)-symmetric vacua of DFT with no moduli.

“(0,0) spacetime emerges after SSB of O(D, D), identifying {g, B} as Nambu—Goldstone boson moduli."
Berman, Blair, and Otsuki 2019



Non-Riemannian parametrisations of DFT w/ Kyungho Cho 1909.10711

e In principle, Gyn = 87 GTyn should govern all the dynamics of various non-Riemannian
geometries. What remains to be done is to insert the (n, n) parametrisations and to organise
the expressions. Here, based on the (semi-)covariant formalism of DFT, we propose an
undoubled upper-indexed covariant derivative, w.r.t. diffeomorphisms and GL(n)xGL(n),

]Du:Hupap_i_Qu_;'_Tu_,_'f‘u,
which satisfies generalised compatibility relations,
D A + 2V HPDAX! + 2V HYPDAXT = 0, YPDHEX], =0,
D K, +2X(,K,), D Y + 2X,K,),D VP =0, YPDHX] =0
and enables us to express the DFT action:

)p

/e—Z"S(o, )(n ) :/e—Zd [R— 5 HAP HET HYTH o Hlpor — g HAP (Y/DY X — VEDYXE) + 4K, DHA DV d |

c.f. the usual i.e. Riemannian NS-NS sugra and also D. Gallegos, U. Gursoy, S. Verma, N. Zinnato 2020

We also identify a diffeomorphism covariant, GL(n) x GL(n) and Milne-shift invariant H-flux,
HMY = HA?HA HYTH o + 6HP YADYIXD — 6HP VEDYIXT

e However, analysis of infinitesimal variations 6y around a generic (n, n) background shows
that 6Hpn's include nxn number of degrees which can decrease the ‘non-Riemannianity’,
e.g. (n,n) — (n—1,n—1), allowing Riemannian spacetime to emerge. If we keep (n, n) fixed,
nxn number of EDFEs will be missing. c.f. Bergshoeff, Lahnsteiner, Romano, Rosseel, Simsek 2021
This seems to suggest that, various non-Riemannian gravities with nxn # 0 should better be
identified as different solution sectors of DFT rather than viewed as independent theories.



Non-Riemannian isometries w/ Chris Blair and Gerben Oling 2012.07766

e Analysing the DFT Killing equations, Z¢Hun = 8PlK PyyH1V &, = 0, we may address the
notion of Non-Riemannian isometries. A constant (n, n) generalised metric is generically
given by a direct product of H g o) and O(n, n), O(n, n) invariant metrics, H = +.7.

nt 0 0 0 0 0 Killing vector, &y = (€#,A\)

0 o0 0 0o &, 0 €3 = wapxb + ¢3(xJ) + 3(X7)

0 0 0 0 0 -5 o o
Hapg = g=), &=0K),

0 0 0 Nab 0O 0

o 6 0 0 0 0 Aa = Ca(¥) = CalX7),

0 0 -& 0 0 0 Nio=pilx), = p(x7).

where we have set the coordinates to read x* = (x2, x', x*). The appearance of the arbitrary
functions of x/ or X7 means the supertranslational nature of the non-Riemannian isometries.
Duvel 1993; Batlle, Gomis, and Not 2016; Bergshoeff, Gomis, Rosseel, Simsek, and Yan 2019

e For consistency, the Killing spinors in SDFT also depend arbitrarily on the non-Riemannian
directions, leading to ‘supersupersymmetries’ that square to the above supertranslations.



Section condition = Doubled-yet-gauged JHP 1304.5946

o DFT necessarily imposes the section condition for xV = (X,,, x*),
oM = 8,8 + 548, =0
which can be generically solved by letting 5# = 0, up to global O(D, D) rotations.

e The section condition is mathematically equivalent to a certain translational invariance:
dg(x) = ds(x + A), AM = oMo, ,

where &g, &, &y € { d, Hyn , M, - -+ }, arbitrary functions appearing in DFT,
and AM is said to be ‘derivative-index-valued'.

» ‘Physics’ should be invariant under such a shift of the doubled coordinates, suggesting

The doubled coordinates are gauged by derivative-index-valued shifts, satisfying AMd,, = 0,
xM ~ xM 4 AM(x) . Coordinate Gauge Symmetry

Each equivalence class, or gauge orbit in RP+P, corresponds to a single physical point in RP.

o With 9# = 0and AM = ¢, dMxH, we note (X, , x*) ~ (Xu +Cu, X¥).

O(D, D) then rotates the gauged directions and hence the section.
c.f. Alfonsi 2019, 2020 for formal discussion



Section condition = Doubled-yet-gauged JHP 1304.5946

o In DFT, the usual coordinate basis of one-forms, dx*, is not covariant:
— Neither diffeomorphic covariant,

SxM = &M S(dxMy = dxNoyeM # dxN(oneM — aMey)
— Nor invariant under the coordinate gauge symmetry,

" — d(xM+AM) # dx.

» The naive contraction, dxMdxN# y, is not an invariant scalar nor proper length.

e These problems can be all cured by gauging the one-forms, dx*, explicitly,
DxM .= dxM — AM AM9y =0 (derivative-index-valued) .
DxM is covariant:
oM =M sAM = qpM = §(Dx") =o0;

XM =M s AM = oMep(dxN — AN) = §(DxM) = DxV(aneM — aMep) .

— Concretely, setting 9* = 0 and AM = A, 0Mx* = (A,,0), we get DxM = (d%, — A,,dx").



Proper Length w/ S. Ko, M. Suh 2016 and w/ T. Basile, E. Joung 2019

e With DxM = dxM — AM, we may define a proper length in DFT, through a path integral,

Proper Length := —In {/DA exp (—/\/DXMDXN’HMN)] .

- With §#= 0, AM = (A,,0), and the decomposition, A, = (KH + X'Y; + X" ¥;).” Au,
DXMDxN My = dx*dx¥ Ky, + [dX, —B,,,.dx" —(KHA), ] [d%, — B, »dx> —(KHA), ] H**
+2X!, dx* [d%, — B, ,dx? —(X-YA), ] V¥ — 2X",dx* [dX, —B, ,dx* —(X-YA), ] V¥

— Essentially, (KHA),, leads to Gaussian integral, while (X-YA), and (X-YA),, are Lagrange
multipliers to freeze the non-Riemannian dimensions: X[de“ =0, )_(de“ =0

The Proper Length then reduces to a rather familiar form, /\ /dxrdx” Ky, (x), which is
independent of X,,. Hence, it measures the distance between two gauge orbits, as desired.



Proper Length w/ S. Ko, M. Suh 2016 and w/ T. Basile, E. Joung 2019

e With DxM = dxM — AM, we may define a proper length in DFT, through a path integral,

Proper Length := —In {/DA exp (—/\/DXMDXN’HMN)] .

- With §#= 0, AM = (A,,0), and the decomposition, A, = (KH + X'Y; + X" ¥;).” Au,
DXMDxN My = dx*dx¥ Ky, + [dX, —B,,,.dx" —(KHA), ] [d%, — B, »dx> —(KHA), ] H**
+2X!, dx* [d%, — B, ,dx? —(X-YA), ] V¥ — 2X",dx* [dX, —B, ,dx* —(X-YA), ] V¥

— Essentially, (KHA),, leads to Gaussian integral, while (X-YA), and (X-YA),, are Lagrange
multipliers to freeze the non-Riemannian dimensions: X[de“ =0, )_(de“ =0

The Proper Length then reduces to a rather familiar form, /\ /dxrdx” Ky, (x), which is
independent of X,,. Hence, it measures the distance between two gauge orbits, as desired.

e This line of thought readily leads to an O(D, D) symmetric particle action (Faddeev—Popov),
2
Sparticle :/dT 367 ' DXMD XNy (x) — SmPe + kyAM + k(e — 1) + FOuOM + > J0a0°
a=1

where 0¥ = (C,,, B¥) and 92 = (c, b). This is a constrained system, and the relevant Dirac
bracket coincides with the graded Poisson bracket introduced by Deser and Samann 2016.



Doubled-yet-gauged (super)string
e The formalism extends to string: Chris Hull 2006; w/ Kanghoon Lee 2013

Sitring = 7007 /d% — 3/ —hh*B Do xM D xNH yn (x) — €B DaxM Agy

which is manifestly O(D, D) symmetric, worldsheet diffeomorphism invariant, the coordinate
gauge symmetry invariant, and doubled target spacetime diffeomorphism covariant as

SxM=eM 5 Aqy= DaxNoMey = §Suring = 3 — 3V/=hhP Do xMDgxN £

Thus, any (supertranslational) Killing vectors induce (infinitely many) Noether symmetries.

Classically, upon a generic (n, n) non-Riemannian backgrounds, after integrating out the
auxiliary gauge potential —quadratic in (KHA),, and linear in (X-YA),,, (X-YA),—

Sitring = 5o /dza — 2V/=hhB 06X X" Ky + 5€P 00X 05XY Buy + 5P 00X, 0px"

and string becomes chiral and anti-chiral over the n and n dimensions respectively,

X, (Oaxt + F=eaPBpxt) =0, X2 (Daxt — €aPOsxH) =0.

1
\/7 v—h

e Extension to k-symmetric Green—Schwarz superstring unifies II1A & IIB JHP 1609.04265
Sas = 77 /d?-’a — 3V =Ny — €28 DaxM (Agy — iZaum)

where MM = Do xM — ixM ¥M — 9yM5,0 + 6'7M8,0'. See also Chris Blair 1908.00074 for RNS



String quantization w/ Shigeki Sugimoto 2008.03084

e BRST quantization on a constant (n, 1) background boils down to n pairs of chiral {5;,~'},
7 pairs of anti-chiral {3z,5"}, and ordinary (left-right combined) D—n—7 number of x4, s.t.

cr =D+ (n—n)—26 (bosonicstring); cLr=D=%(n—n)—10 (superstring)
These central charges should vanish. Thus, necessarily we require n = nand D = 26 or 10.

e Furthermore, the BRST string spectrum agrees with the linearised EDFEs, Gyy = 0.
— Concretely for n+n = D (maximally non-Riemannian), the physical states consist of four sectors only:

SHir v [T Ik L) SH* Y11k L) ®B—13lk; L)
Mz Bo1ilk L) ©YL ks ), SH B_1ilkG 1) ®B—12]ks L)
which should satisfy on-shell relations for Qg-closedness :
kioH'z =0, koM’ =0, kioH'" =0, kioH'* =0
and equivalence relations for Qg-exactness :
OH'; ~ SH'; — ke, SH® ~ SH* + ki&*, SHiz ~ 6Hiz + kidg — kA

— Remarkably, the 4nfi of {§Hz, 6H,*, 5H'z, 5H* } are precisely the moduli of the assumed
maximally non-Riemannian generalised metric, while the Qg-closedness and the Qg-exactness
match with the linearised EDFEs and the DFT-diffeomorphisms, i.e. £¢ Hun, respectively.

In view of the supertranslational Killing isometries and also a classical intuition for chiral
strings, X/ (7, o) = x/(0, 7 + &), namely that they are fixed in space and hardly interact,
it would be worthwhile to investigate non-Riemannian geometries as an alternative to
string compactifications, which might enlarge the string theory landscape far beyond
the Riemannian paradigm.




String quantization w/ Shigeki Sugimoto 2008.03084

e BRST quantization on a constant (n, 1) background boils down to n pairs of chiral {5;,~'},
7 pairs of anti-chiral {3z,5"}, and ordinary (left-right combined) D—n—7 number of x4, s.t.

cr =D+ (n—n)—26 (bosonicstring); cLr=D=%(n—n)—10 (superstring)
These central charges should vanish. Thus, necessarily we require n = nand D = 26 or 10.

e Furthermore, the BRST string spectrum agrees with the linearised EDFEs, Gyy = 0.
— Concretely for n+n = D (maximally non-Riemannian), the physical states consist of four sectors only:

SHir v [T Ik L) SH* Y11k L) ®B—13lk; L)
Mz Bo1ilk L) ©YL ks ), SH B_1ilkG 1) ®B—12]ks L)
which should satisfy on-shell relations for Qg-closedness :
kioH'z =0, koM’ =0, kioH'" =0, kioH'* =0
and equivalence relations for Qg-exactness :
OH'; ~ SH'; — ke, SH® ~ SH* + ki&*, SHiz ~ 6Hiz + kidg — kA

— Remarkably, the 4nfi of {§Hz, 6H,*, 5H'z, 5H* } are precisely the moduli of the assumed
maximally non-Riemannian generalised metric, while the Qg-closedness and the Qg-exactness
match with the linearised EDFEs and the DFT-diffeomorphisms, i.e. £¢ Hun, respectively.

In view of the supertranslational Killing isometries and also a classical intuition for chiral
strings, X/ (7, o) = x/(0, 7 + &), namely that they are fixed in space and hardly interact,
it would be worthwhile to investigate non-Riemannian geometries as an alternative to
string compactifications, which might enlarge the string theory landscape far beyond
the Riemannian paradigm. Thank you.




