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Motivation and context

I We are living in a post-duality era. That is we are now aware,
in so many different contexts of duality related perspectives
and equivalences.

I Various formalisms reflecting duality symmetry have been
developed. In supersymmetric quantum field theories the (0,2)
6d theory associated with the M-theory fivebrane is one
example where there is a geometric construction of duality
through dimensional reduction of a chiral theory.

I Double Field theory and Exceptional field theories are the
supergravity versions of such a theory where there is a
generalised geometric construction of duality in supergravity
through dimensional reduction.

I There is much longer history of developing duality manifest
formalisms, most notabley with quantum mechanics.
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I Classical systems are invariant under canonical
transformations.

I In the Hamiltonian formulation of mechanics this is manifest.
It is also pleasantly geometric in that canonical transformation
are symplectomorphisms of phase space.

I However, using the Hamiltonian form breaks Lorentz
symmetry and so we are usual presented with a choice between
manifest Lorentz symmetry or manifest canonical symmetry.

I It is worth remarking that duality symmetries: electromagnetic
duality, T-duality etc. are all canonical symmetries!

I The development of Quantum mechanics even using the
Hamiltonian form still hid canonical symmetries.

I Much work was done to try and restore this: Weyl and Moyal
developed quantum mechanics on noncommutative phase
space from which emerged deformation quantisation.
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Geometric Quantisation is the attempt to put the “usual”
approach to quantisation on a mathematical footing but also to
bring out (and in fact extend) the symplectic structure. This is the
work of Kostant and Souriau in the 1970s. I highly recommend the
books by Woodhouse and Bates and Weinstein.

Plan:
Review geometric quantisation
Apply these techniques to the string
Compare with double field theory
Construct some interesting things along the way!
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Geometric Quantisation
In Hamiltonian mechanics, a classical system (P, ω,H) is defined
by a symplectic manifold (P, ω), describing the phase space of the
system, with ω ∈ Ω2(M) a closed non-degenerate 2-form, called
the symplectic form, and a smooth function H ∈ C∞(P), called
the Hamiltonian.
Locally, ω = dθ, where the local 1-form θ ∈ Ω1(U) is called
Liouville potential. (The definition of the Liouville potential is
gauge dependent) Now, given a path γ : R→ P on the phase
space, we define the Lagrangian LH ∈ Ω1(R) by

LH = γ∗θ −Hdτ . (0.1)

Where we denote the pull-back of the Liouville one-form θ to the
curve γ by γ∗θ. The action SH [γ(τ)] associated to such a
Lagrangian will be given by

SH [γ(τ)] =

∫
R

(γ∗θ −Hdτ) . (0.2)
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Prequantum Bundle
Consider the Lie group U(1)~ := R/2π~Z. The prequantum
bundle Q� P is defined as the principal U(1)~-bundle, whose
first Chern class c1(Q) ∈ H2(M,Z) is the image of the element
[ω] ∈ H2(M,R) of the de Rham cohomology group. We can now
define the associated bundle E � P to the prequantum bundle
with fibre C, i.e.

E := Q×U(1)~C, (0.3)

where the natural action U(1)~ × C→ C is given by the map

(φ, z) 7→ e
i
~φz. Now, the prequantum Hilbert space of the system

is defined by
Hpre := L2(P, E), (0.4)

i.e. the Hilbert space of L2-integrable sections of the bundle E on
the base manifold P. Whenever the first Chern class of Q is trivial,
then the bundle E = P × C is trivial and the prequantum Hilbert
space reduces to Hpre = L2(P;C).



Double Field Theory and Geometric Quantisation based on 2101.12155 [hep-th] with Luigi Alfonsi

Quantum bundle
Denote the tangent bundle of phase space by TP.
A polarisation of the phase space (P, ω) is a Lagrangian subbundle
L ⊂ TP, i.e. an n-dimensional subbundle of TP such that:

ω|L = 0

and [V,W ] ⊂ L for any pair of vectors V,W ∈ L.
Let us consider the square root bundle

√
det(L).

Then the quantum Hilbert space is defined by the space of
sections:

H :=
{
ψ ∈ L2

(
P, E ⊗

√
det(L)

) ∣∣∣ ∇V ψ = 0 ∀V ∈ L
}
. (0.5)

If the Lagrangian subbundle L is integrable, we can write L = TM
for some n-dimensional submanifold M⊂ P of the phase space.
Then, quantum states |ψ〉 ∈ H can be uniquely chosen of the form

|ψ〉 = ψ ⊗
√

volM, (0.6)

where ψ ∈ L2(M, E) is a polarised section and√
volM ∈ Γ(P,

√
det(L)) is the half-form whose square is a fixed

volume form volM ∈ Ωn(M).
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To illustrate the ideas in this section lets look at a simple example
with (M,ω) = (R2n, dpµ ∧ dxµ), take θ = pµdxµ for the Liouville
potential. We have two perpendicular polarisations defined by the

Lagrangian fibrations Lp := Span
(

∂
∂pµ

)
and Lx := Span

(
∂
∂xµ

)
.

The covariant derivative is related to the Liouville potential which
gives:

∇ ∂
∂xµ

=
∂

∂xµ
− i

~
pµ

∇ ∂
∂pµ

=
∂

∂pµ
.

(0.7)

Therefore, for the polarisation Lp and Lx, we obtain respectively
the sections

|ψ〉 = ψ(p)e−ipµx
µ ⊗

√
dnp

|ψ〉 = ψ(x)⊗
√

dnx,
(0.8)

where
√

dnp is the half form such that
√

dnp⊗
√

dnp = dnp and
analogously for

√
dnx.
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Canonical tranformations

A symplectomorphism between two manifolds (P, ω)
f−→ (P ′, ω′)

is a diffeomorphism f : P → P ′ which maps the symplectic form of
the first manifold into the symplectic form of the second one, i.e.
such that it satisfies ω = f∗ω′. What in Hamiltonian physics is
known under the name of canonical transformation with generating
function F is equivalently a symplectomorphism
f : (P, ω)→ (P ′, ω′) such that the Liouville potential is
gauge-transformed by θ − f∗θ′ = dF .
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There exists a powerful way to formalise a canonical
transformation by using the notion of Lagrangian correspondence.
To define a Lagrangian correspondence we first need to introduce
the graph of a symplectomorphism f : (P, ω)→ (P ′, ω′), which is
the submanifold of the product space P × P ′ given by

Γf :=
{

(a, b) ∈ P × P ′
∣∣ b = f(a)

}
. (0.9)

Let us call ι : Γf ↪→ P ×P ′ the inclusion in the product space.
The submanifold Γf ⊂ P × P ′ can be immediately recognised as a
Lagrangian submanifold of (P × P ′, π∗ω − π′∗ω′), i.e. the total
symplectic form vanishes when restricted on Γf .

ι∗
(
π∗ω − π′∗ω′

)
= 0. (0.10)

To formalise a canonical transformation, we need to add another
condition: the correspondence space (P × P ′, π∗ω − π′∗ω′) must
be symplectomorphic to a symplectic manifold (T ∗M, ωcan).
This implies that we can write the combination of Liouville
potentials π∗θ − π′∗θ′ as the Liouville 1-form on P × P ′ ∼= TM.
Since Γf is Lagrangian.
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Consider a simple example. Let us start from symplectic manifolds
which are cotangent bundles of configuration spaces, i.e.
P = T ∗M and P ′ = T ∗M ′. Write the Liouville potential as

pµdxµ − p′µdx′µ = dF (0.11)

in local coordinates on the correspondence space
P × P ′ = T ∗(M ×M ′). We immediately notice that, in the
notation of the previous paragraph, we have M := M ×M ′. Now
the generating function F = F (x, x′) of the canonical
transformation can be properly seen as the pullback of a function
of the product manifold M ×M ′.

pµ =
∂F

∂xµ
, p′µ = − ∂F

∂x′µ
. (0.12)

In particular, If we choose M,M ′ = Rd and F (x, x′) = δµνx
µx′ν ,

we recover the symplectic linear transformation
(x, p) 7→ f(x, p) = (p,−x).
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Canonical transformation on the Hilbert space
We need to show how these symplectomorphisms give rise to
isomorphisms of the corresponding quantum Hilbert spaces.
Let us call HL and HL′ the quantum Hilbert spaces corresponding
respectively to the L and L′ polarisations of the phase space.
We can lift sections ψ ∈ HL and ψ′ ∈ HL′ to the Hilbert space
HTΓf and consider their products 〈π∗ψ |π′∗ψ′〉 in this space. This
is then naturally defines a pairing (( · , · )) : HL ×HL′ → C
between the two polarised Hilbert spaces given by

(( · , · )) :=
〈
π∗ ·

∣∣π′∗ · 〉 (0.13)

such a pairing is equivalently a linear isomorphism

f∗ : HL′
∼=−−→ HL such that

(( · , · )) = 〈 · | f∗ · 〉 (0.14)
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Looking at this in more mundane langauge gives:
The pairing given by

((ψ,ψ′)) =

∫
M

dnx dnx′ ψ†(x)ψ′(x′)e−
i
~F (x,x′) (0.15)

where we called M the manifold such that T ∗M∼= P ×P. Finally
the isomorphism f∗ : HL → HL′ induced by the diffeomorphism f
will be given in coordinates by

(f∗ψ′)(x) =

∫
M ′

dnxψ′(x′)e−
i
~F (x,x′) (0.16)
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For example, choose M,M ′ = Rn and let the symplectomorphism
f : (R2n, dpµ ∧ dxµ)→ (R2n, dp′µ ∧ dx′µ) be the linear
transformation f(x, p) = (p,−x). This is generated by generating
function F (x, x′) = δµνx

µx′ν . Thus, if we substitute
(x′, p′) = f(x, p) = (p,−x), we recover that (f∗)−1 is exactly the
Fourier transformation of wave-functions:

(f∗ψ′)(x) =

∫
M ′

dnpψ′(p)e−
i
~pµx

µ

(
(f∗)−1ψ

)
(p) =

∫
M

dnxψ(x)e
i
~pµx

µ
(0.17)

Thus the same quantum state |ψ〉 ∈ H can be represented as a
wave-function 〈x |ψ〉 = ψ(x) or as its Fourier transform
〈p |ψ〉 = ψ(p) in the two basis

{
〈x|
}
x∈M and

{
〈p|
}
p∈M ′ given

by the Lagrangian correspondence.
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The String

Consider a surface of the form Σ ' R× S1 with coordinates
σ ∈ [0, 2π) and τ ∈ R. The fields Xµ(σ, τ) of the σ-model can
now be seen as curves C∞(R,LM) on the loop space
LM := C∞(S1,M) of the original manifold M . This will be
denoted as follows:

R ↪−→ LM
τ 7−→ Xµ(σ, τ)

(0.18)

where Xµ(σ, τ) is a loop for any fixed τ ∈ R. In other words we
have

C∞(R,LM) ∼= C∞(Σ,M) (0.19)

This is why the configuration space for the closed string can be
identified with the free loop space LM of the spacetime manifold
M .
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The phase space of the closed string.
The phase space of a string on spacetime M will be the free loop
space of T ∗M . By definition, this can be used as a definition of
the cotangent bundle of LM , i.e.

T ∗LM := L(T ∗M) (0.20)

i.e. the smooth space of loops (X(σ), P (σ)) in the cotangent
bundle of T ∗M . This space comes equipped with a canonical
symplectic form:

Ω :=

∮
dσ δPµ(σ) ∧ δXµ(σ) ∈ Ω2(T ∗LM) (0.21)

We can now define a Liouville potential Θ such that its derivative
is the canonical symplectic form Ω ∈ Ω2(T ∗LM). Thus we have

Θ :=

∮
dσ Pµ(σ) δXµ(σ) ∈ Ω1(T ∗LU) (0.22)
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The Hamiltonian
Formally pack together the momentum P (σ) and the derivative
X ′(σ) in the following doubled vector:

PM (σ) :=

(
X ′µ(σ)
Pµ(σ)

)
(0.23)

with M = 1, . . . , 2n. Notice that PM (σ) is uniquely defined at any
given loop (X(σ), P (σ)) in the phase space.
Thus, we can rewrite the Hamiltonian of the string as

H[X(σ), P (σ)] =

∮
dσ

1

2
PM (σ)HMN (X(σ))PN (σ) (0.24)

where the matrix HMN is defined by

HMN :=

(
gµν −BµλgλρBρν Bµλg

µν

−gµλBλµ gµν

)
. (0.25)
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Background gauge fields
Consider an ordinary particle, in presence of an electromagnetic
field with a minimally coupled 1-form potential A, the canonical
momentum pµ which is defined from the Lagrangian perspective by
pµ = ∂L

∂ ˙qµ
is given by: pµ = kµ + eAµ. The Liouville potential is

θ = kµdxµ + eA, and so the symplectic form is
ω = dkµ ∧ dxµ + eF .
Notice that, in canonical coordinates, we have a Hamiltonian
H = gµν(pµ − eAµ)(pν − eAν) and the commutation relations

[x̂µ, x̂ν ] = 0, [p̂µ, x̂
ν ] = i~δνµ, [p̂µ, p̂ν ] = 0. (0.26)

On the other hand, in terms of the kinetic non-canonical
coordinates, we have the commutation relations

[x̂µ, x̂ν ] = 0, [k̂µ, x̂
ν ] = i~δνµ, [k̂µ, k̂ν ] = i~eFµν . (0.27)
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String background fields

Similarly to the charged particle, for a string, we find that the
symplectic form can be expressed by

Ω =

∮
dσ δ

(
Kν(σ) +Bµν

(
X(σ)

)
X ′µ(σ)

)
∧ δXν(σ) (0.28)

where Kν(σ) := Pν(σ)−Bµν
(
X(σ)

)
X ′µ(σ) is the non-canonical

momentum of the string and Pµ(σ) is its canonical momentum.
This we lead to a deformation of the algebra.[

K̂µ(σ), X̂ν(σ′)
]

= 2πi~δ νµ δ(σ − σ′),[
X̂µ(σ), X̂ν(σ′)

]
= 0,[

K̂µ(σ), K̂ν(σ′)
]

= Hµνλ

(
X(σ)

)
X ′λ(σ) δ(σ − σ′).

(0.29)
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T-duality as a symplectomorphism.
We now interpret T-duality as a symplectomorphism of phase
spaces of two closed strings of the form

f : (T ∗LM, Ω) −→ (T ∗LM̃, Ω̃)(
Xµ(σ), Pµ(σ)

)
7−→

(
X̃µ(σ), P̃µ(σ)

)
.

(0.30)

By considering the generating functional

F [X(σ), X̃(σ)] =
1

2

∮
dσ
(
X ′µ(σ)X̃µ(σ)−Xµ(σ)X̃ ′µ(σ)

)
(0.31)

we obtain exactly T-duality on the phase space:

Pµ(σ) = X̃ ′µ(σ), P̃µ(σ) = X ′µ(σ). (0.32)

The Lagrangian correspondence space is then the loop space of the
doubled space of DFT. We can notice that, in this simple case, the
doubled space can be identified with the correspondence space of a
topological T-duality over a base point.
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T-duality as change of basis on the Hilbert space.
The Lagrangian correspondence induces a map of quantum Hilbert
spaces
The expansions in different basses will be then related by the
Fourier-like transformation (f∗)−1 of string wave-functionals, given
by

Ψ̃[X̃(σ)] =

∫
LM
DX(σ) e

i
~F [X(σ),X̃(σ)] Ψ[X(σ)] (0.33)

We can also explicitly write the matrix of the change of basis on H
by

〈X(σ)|X̃(σ)〉 = e
i
~F [X(σ),X̃(σ)] (0.34)

Interestingly, this isomorphism is naturally defined by lifting the
polarised wave functionals Ψ[X(σ)] ∈ HL and Ψ̃[X̃(σ)] ∈ H

L̃
to

wave-functionals Ψ[X(σ)] on the doubled space and by considering
their Hermitian product in the Hilbert space of the doubled space.
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The phase space and the doubled space.
To describe doubled strings, we introduce new coordinates X̃µ(σ)

which satisfy the equation Pµ(σ) = X̃ ′µ(σ). Let us define the
following doubled coordinates:

XM (σ) :=

(
Xµ(σ)

X̃µ(σ)

)
. (0.35)

Therefore, for a doubled string the doubled momentum PM (σ)
coincides with the derivative along the circle of the doubled
position vector XM (σ). Thus, instead of encoding the σ-model of
the closed string by an embedding (Xµ(σ), Pµ(σ)) into the phase
space, we can encode it by an embedding
XM (σ) = (Xµ(σ), X̃µ(σ)) into a doubled position space. Our
objective is, then, be able to reformulate a string wave-functional
Ψ[Xµ(σ), Pµ(σ)] in terms of doubled fields as a wave-functional of
the form Ψ

[
XM (σ)

]
.

However, notice that, since the new coordinates X̃µ(σ) are the

integral of the momenta of the string, specifying X̃µ(σ) is a

stronger statement than specifying Pµ(σ) = X̃ ′µ(σ). This
observation is crucial when considering the possible boundary
conditions of the doubled string σ-model.
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Let us define the following zero-modes of the doubled loop-space
vectors:

xM :=
1

2π

∮
dσXM (σ), pM :=

1

2πα′

∮
dσX′M (σ), (0.36)

which, in components, read

xM =

(
xµ

x̃µ

)
, pM =

(
p̃µ

pµ

)
≡
(
wµ

w̃µ

)
(0.37)

By using the new coordinate X̃µ, we can rewrite the action of a
closed string by

Sstring[X(σ, τ), P (σ, τ)] =
1

2πα′

∫
dτ

∮
dσ

(
ẊµX̃ ′µ −

1

2
X′MHMN X′N

)
(0.38)
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Let us use the following notation for the derivatives

Ẋ(σ, τ) :=
∂X(σ, τ)

∂τ
X′(σ, τ) :=

∂X(σ, τ)

∂σ
(0.39)

Since in the action of the closed string the field XM (σ) never
appears, but only its derivatives X′M (σ), we only need to require
that the latter are periodic, i.e.

X′M (σ + 2π) = X′M (σ) (0.40)

This implies that the generalised boundary conditions are

XM (σ + 2π, τ) = XM (σ, τ) + 2πα′pM (τ), (0.41)

where the quasi-period pM (τ) can, in general, be dynamical and
depend on proper time.
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Let us define the quasi-loop space LQM of a manifold M as it
follows:

LQM :=
{
X : [0, 2π)→M

∣∣ dX(2π) = dX(0)
}

(0.42)

The phase space of the doubled string will be a symplectic
manifold (LQM,
) where the symplectic form 
 ∈ Ω2(LQM) will
be determined.
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The duality augmented abbreviated action is:

Sabb =
1

4πα′

∫
dτ

∮
dσ
(
ẊµPµ +

˙̃
XµP̃

µ
)

(0.43)

which becomes

Sabb =

∫
dτ

∮
dσ

1

4πα′

(
ẊMηMNX′N

)
. (0.44)

Combining this with the Hamiltonian to produce the total action
S = Sabb −H gives the Tseytlin action:

STsey[X(σ, τ)] =
1

4πα′

∫
dτ

∮
dσ
(
ẊMηMNX′N − X′MHMNX′N

)
.

(0.45)
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Now, one can ask about the role of the quasi periodic boundary
conditions, in fact being careful with boundary peices gives rise to
an extra term (see paper for the discussion on this):

Sabb = STsey,abb +

∫
dτ

πα′

2
ṗMωMNp

N . (0.46)

Note that, ṗM = 0 on toroidal backgrounds so its absence would
not be spotted in usual toroidal T-duality.
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To get the symplectic form of the string we use:

S[X(σ, τ)] +

∫
dτH[X(σ, τ)] =

∫
dτ ιVH� (0.47)

to determine the Liouville potential � on the phase space of the
doubled string and, hence, the its symplectic structure.

S[X(σ, τ)] +

∫
dτH[X(σ, τ)]

=

∫
dτ

pM ẋM − πα′

2
ωMNpM ṗN + i

∑
n∈Z\{0}

1

n
ωMN �̇M−n�

N
n


(0.48)
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So:

� = pMdxM − πα′

2
ωMNpMdpN + i

∑
n∈Z\{0}

1

n
ωMN d�M−n�

N
n .

(0.49)
By calculating the differential 
 = δ�, we finally obtain the
symplectic form


 = dpM∧dxM−πα
′

2
ωMNdpM∧dpN+i

∑
n∈N\{0}

1

n
ωMN d�M−n∧d�Nn .

(0.50)
This is, therefore, the symplectic form of the phase space
(LQM, 
) of the doubled string.
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From this we can get the algebra of observables:

[
X̂M (σ) , X̂N (σ′)

]
= iπ~α′ωMN − i~ηMNε(σ − σ′) (0.51)

where the function ε(σ) is the quasi-periodic function defined by

ε(σ) := σ − i
∑

n∈Z\{0}

einσ

n
(0.52)

and it satisfies the following properties: firstly, its derivative
ε′(σ) = δ(σ) is the Dirac comb; secondly, it satisfies the boundary
condition ε(σ + 2πn) = ε(σ) + 2πn and, finally, it is an odd
function, i.e. ε(−σ) = −ε(σ).
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The zero-modes of a doubled string XM (σ, τ) can be thought as a
particle in a doubled phase space (xM (τ),pM (τ)). Similarly we
expect that the wave-functional Ψ[X(σ)] at zero modes is just a
wave-function ψ(x,p) on the doubled phase space of zero modes:

Ψ[X(σ)]
0 modes−−−−−→ ψ(x,p), 


0 modes−−−−−→ � (0.53)

The phase space of the zero-modes of a doubled string is,
therefore, a 4n-dimensional symplectic manifold (P,�) with
symplectic form

� = ηMN dpM ∧ dxN − πα′

2
ωMN dpM ∧ dpN (0.54)

and underlying smooth manifold P = R4n.
Now, we can apply the machinery of geometric quantisation to this
symplectic manifold (P,�) to quantise the zero-modes of a
doubled string.
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The algebra of zero modes

Explicitly, in undoubled notation, we have the following
commutation relations:

[x̂µ, x̂ν ] = 0, [x̂µ, ˆ̃xν ] = πi~α′δµν , [ˆ̃xµ, ˆ̃xν ] = −2πi~α′Bµν ,

[k̂µ, k̂ν ] = 0, [k̂µ,
ˆ̃
kν ] = 0, [

ˆ̃
kµ,

ˆ̃
kν ] = 0,

[x̂µ,
ˆ̃
kν ] = [ˆ̃xµ, k̂ν ] = 0, [x̂µ, k̂ν ] = i~δµν , [ˆ̃xµ,

ˆ̃
kν ] = i~δ νµ .

(0.55)
Examining this algebra from the perspective of the limits we
discussed earlier we see that ~ controls the noncommutativity of
the position with the momentum and ~α′ the noncommutativity of
the coordinates and their duals. Finally, α′B the noncommutativity
of the spacetime coordinates.
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Following standard text book techniques we can immediately show
that any position coordinate xµ and its dual x̃µ satisfy the
following uncertainty relation:

∆x∆x̃ ≥ π~
2
α′. (0.56)

This means that xµ and x̃µ cannot be measured with absolute
precision at the same time, but there will be always a minimum
uncertainty proportional to the area ~α′. This provides support to
the intuition of a minimal distance scale in string theory. The
standard lore is that for small distances one goes to the T-dual
frame and the distances will always be larger than the string scale.
In addition, both the couples (x, p) and (x̃, p̃) satisfy the usual
uncertainty relation between position and momentum:

∆x∆p ≥ ~
2
, ∆x̃∆p̃ ≥ ~

2
. (0.57)

However, it is worth noticing that the momentum and its dual can
be measured at the same time:

∆p∆p̃ ≥ 0. (0.58)
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Relation with the symplectic structure of the doubled
space.

Let us now focus on the subalgebra generated by the operators x̂µ

and ˆ̃xµ. This will be given by the following commutation relations:

[x̂µ, x̂ν ] = 0, [x̂µ, ˆ̃xν ] = πi~α′δµν , [ˆ̃xµ, ˆ̃xν ] = 0 (0.59)

Notice that this can be seen as an ordinary 2n-dimensional
Heisenberg algebra h(2n). This means that such an algebra is
immediately given by a symplectic manifold (M, $) with
M∼= R2n and symplectic form $ := π~α′dxµ ∧ dx̃µ. This
symplectic structure on the doubled space as introduced by
Vaisman.
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Back to T-duality
We will obtain the following generating function on the phase
space of the zero-mode doubled string:

F (x,p) = p̃µx̃µ − pµxµ + πα′pµp̃
µ

= ωMNp
MxN +

πα′

2
ηMNp

MpN .
(0.60)

Such a symplectomorphism is simply the O(n, n) transformation of
the doubled coordinates and momenta by
(xM ,pM ) 7→ (ηMNx

N , ηMNp
N ).

Now apply the machinary of geometric quatisation, to get the map
between Hilbert spaces gives the following, stringy Fourier
transformation:

ψ̃w̃(x̃) =

∫
L

dnx dnw exp
i

~

(
ωMNp

MxN +
πα′

2
ηMNp

MpN
)
ψw(x) .

(0.61)
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This is the transformation between the wavefunctions in different
duality frames. Mathematically it is the isomorphism
L2(L,C) ∼= L2(L̃,C). In undoubled coordinates we can explicitly
rewrite such a stringy Fourier transformation as it follows:

ψ̃w̃(x̃) =

∫
L

dnx dnw exp
i

~
(
w̃µx

µ − wµx̃µ + πα′w̃µw
µ
)
ψw(x),

(0.62)
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A phase term in the change of polarisation.
Finally, notice that, if we restrict our generalised winding to
ordinary integer winding w, w̃ ∈ Zn, we will obtain a change of
polarisation of the form

ψ̃w̃(x̃) =
∑
w∈Zn

e
i
~πα

′w̃µwµ
∫
M

dnx e
i
~(w̃µx

µ−wµx̃µ)ψw(x). (0.63)

In this context, as already observed using different arguments,
T-duality does not simply act as a ”double” Fourier transformation
of the wave-function of a string, because there will be an extra
phase contribution given by exp

(
iπα

′

~ w̃µw
µ
)

for any term with
w, w̃ 6= 0. Since we are restricting now to the case where w, w̃ are
integers and

√
~/α′ is just the unit of momentum, we immediately

conclude that the only possible phase contributions are
exp
(
iπα

′

~ w̃µw
µ
)
∈ {+1,−1}, depending on the product

w̃µw
µ ≡ pµwµ being even or odd.
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Minimal scale of the doubled space

In analogy with usual quantum mechanics we can form a double
coherent state in doubled space.

|z〉 =

∫
d2np

(2π)2n
exp

(
i

~
pMxM − πα′

4~
δMNpMpN

)
|p〉 (0.64)

where xM is the mean doubled position of the coherent state |z〉.
Now we can transform wave-functions ψ(p) := 〈p |ψ〉 on the
doubled momentum space to wavefunctions ψ(x) := 〈z |ψ〉
expressed in the basis of the coherent states. (Here xM denotes
the mean position of |z〉 and is not a coordinate.)



Double Field Theory and Geometric Quantisation based on 2101.12155 [hep-th] with Luigi Alfonsi

Let us now choose the free particle state |ψ〉 = |p〉, on the doubled
momentum space which will have wave-function ψ(p) = 1.

ψ(x) = exp

(
−
∣∣xM ∣∣2
π~α′

)
(0.65)

which is a Gaussian distribution on the doubled space and not a
delta function. This means that, even if the doubled momentum is
maximally spread, the uncertainty on the doubled coordinates
cannot be zero. This is because each couple of T-dual coordinates
can shrink only to a minimal area proportional to `2s = ~α′. Thus
α′ is the parameter which controls the fuzziness of doubled space
between physical and T-dual coordinates.
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Conclusions

Geometric Quantisation is a natural formalism for the doubled
string.

The doubled space is naturally a phase space itself with a
deformation controlled by the string length.


