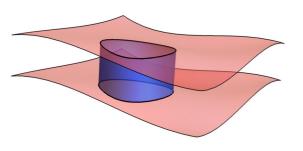
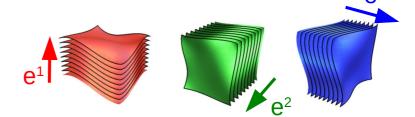
Foliated QFT and Non-Lorenzian Geometry of Fracton Order

Kevin Slagle Caltech

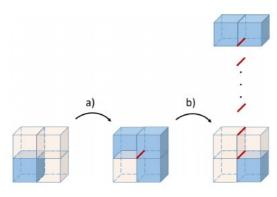
April 7, 2021

arXiv:1807.00827, 2008.03852 slides: tinyurl.com/fracton



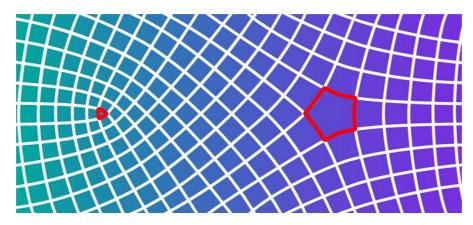


• solvable models of quantum glassiness (Chamon 2005)

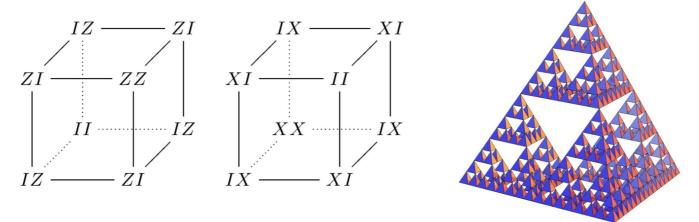


Prem, Haah, Nandkishore 2017

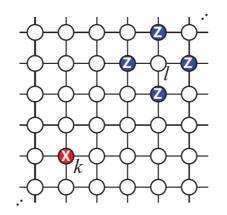
 dualities to elasticity theory of two-dimensional crystals (Pretko, Radzihovsky 2018)



• robust quantum information storage (Haah 2013)



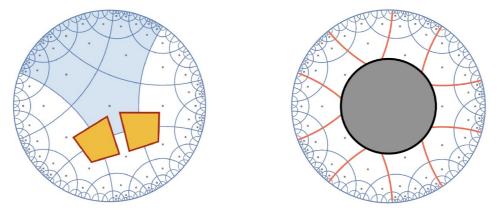
 measurement based quantum computation from ungauged fracton models which have subsystem symmetries (Else, Bartlett, Doherty 2012)



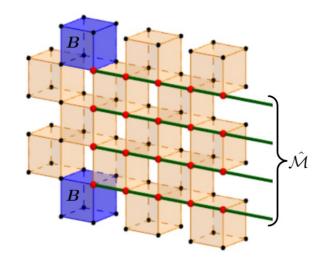
Raussendorf, Okay, Wang, Stephen, Nautrup 2019

slides: tinyurl.com/fracton

• toy model of holography (Yan 2018, ...)



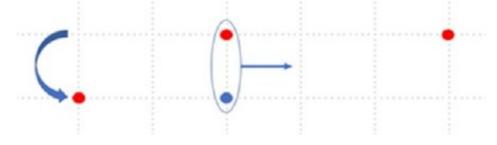
• new phases of matter (Vijay, Haah, Fu 2015)



- Linearized gravity \rightarrow U(1) fracton models
 - Zheng-Cheng Gu, Xiao-Gang Wen (2006, 2009)
 - Cenke Xu (2006, 2006)
 - Cenke Xu, Petr Horava (2010)

• connections to quantum gravity (Pretko 2017)

fractons move via dipole exchange more easily near other fractons, which leads to an effective attractive interaction



Kinds of Fracton Models

(Shao and Karch discussed ungauged versions of the first two kinds)

	U(1) symmetric tensor gauge theory	foliated (type-I)	type-II
example models	scalar charge Pretko 2017	X-cube Vijay, Haah, Fu 2015	Haah's code, Yoshida's fractal liquids
	$H = \int E^2 + B^2$ $B^{ij} = \delta^{jc} \epsilon^{iab} \partial_a A_{bc}$		$\begin{vmatrix} IZ & ZI & IX & XI \\ ZI & ZZ & XI & II \\ & & & II \\ II & IZ & XX & IX \\ IZ & ZI & IX & XI \end{vmatrix}$
spectrum	gapless	gapped	gapped
charge	conserved	conserved on stacks	conserved on
$\operatorname{conservation}$	dipole moment	2D surfaces	fractal subsets
spacetime structure	Einstein manifolds $R_{ab} \propto g_{ab}$	foliated manifolds	discrete groups? Tian, Samperton, Wang 2018

Kinds of Fracton Models

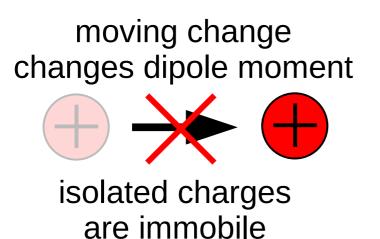
(Shao and Karch discussed ungauged versions of the first two kinds)

	U(1) symmetric tensor gauge theory	foliated (type-I)	type-II	
example models	scalar charge Pretko 2017	X-cube Vijay, Haah, Fu 2015	Haah's code, Yoshida's fractal liquids	
	$H = \int E^2 + B^2$ $B^{ij} = \delta^{jc} \epsilon^{iab} \partial_a A_{bc}$		$\begin{vmatrix} IZ & ZI & IX & XI \\ ZI & ZZ & XI & II \\ & & & & \\ II & & & IZ \\ IZ & ZI & IX & XI \end{vmatrix}$	
spectrum	gapless	gapped	gapped	
charge	conserved	conserved on stacks	conserved on	
$\operatorname{conservation}$	dipole moment	2D surfaces	fractal subsets	
spacetime structure	Einstein manifolds $R_{ab} \propto g_{ab}$	foliated manifolds	discrete groups? Tian, Samperton, Wang 2018	
this talk slides: tinyurl.com/fracton				

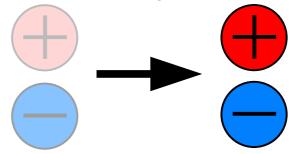
Fractons from U(1) Gauge Theory

Pretko 2017

- Generalize U(1) Maxwell electromagnetism:
- Add dipole moment conservation in addition to charge conservation $P = \int \rho(\vec{r}) \ \vec{r}$



moving a dipole conserves dipole moment

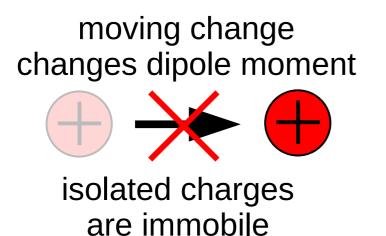


dipoles are mobile

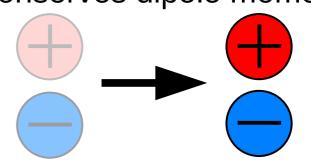
Fractons from U(1) Gauge Theory

Pretko 2017

- Generalize U(1) Maxwell electromagnetism:
- Add dipole moment conservation in addition to charge conservation $P = \int \rho(\vec{r}) \ \vec{r}$

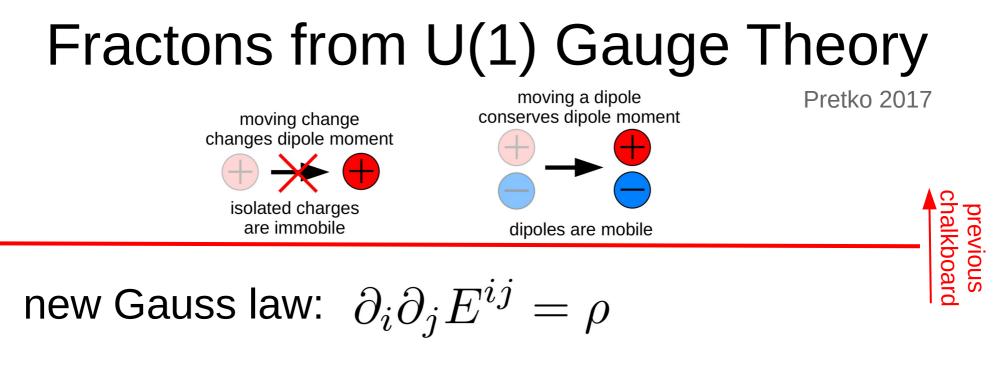


moving a dipole conserves dipole moment



dipoles are mobile

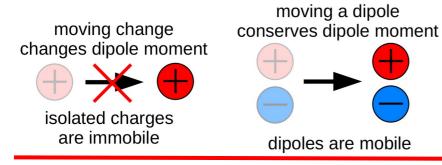
- **fracton**: an immobile particle
 - often a fraction of a mobile particle

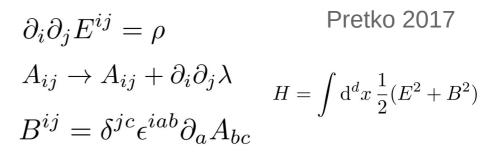


results in charge and dipole moment conservation:

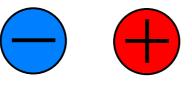
$$\int \mathrm{d}^d x \, \rho = \mathrm{constant} \qquad \int \mathrm{d}^d x \, (\rho \vec{x}) = \mathrm{constant}$$

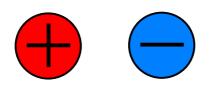
Fractons from U(1) Gauge Theory





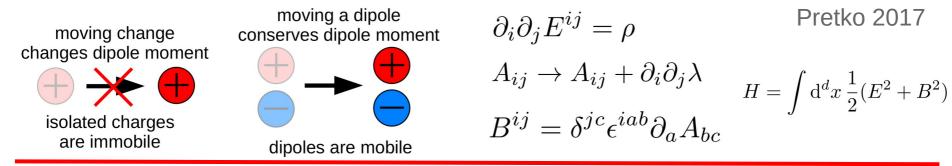
quadrupoles have no charge or dipole moment

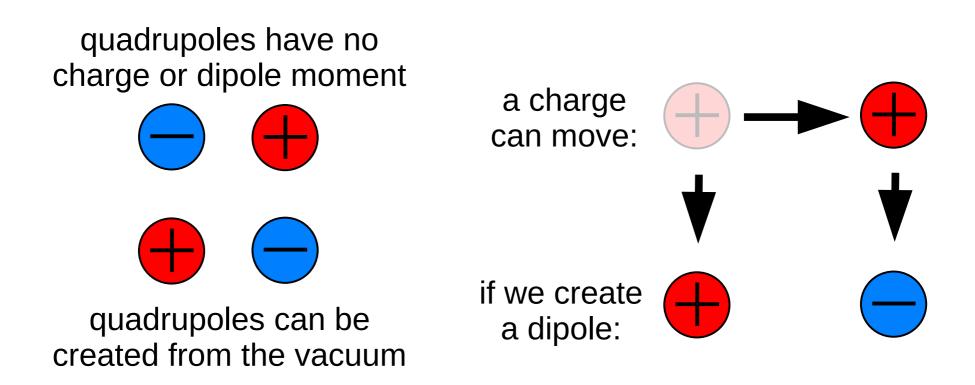




quadrupoles can be created from the vacuum

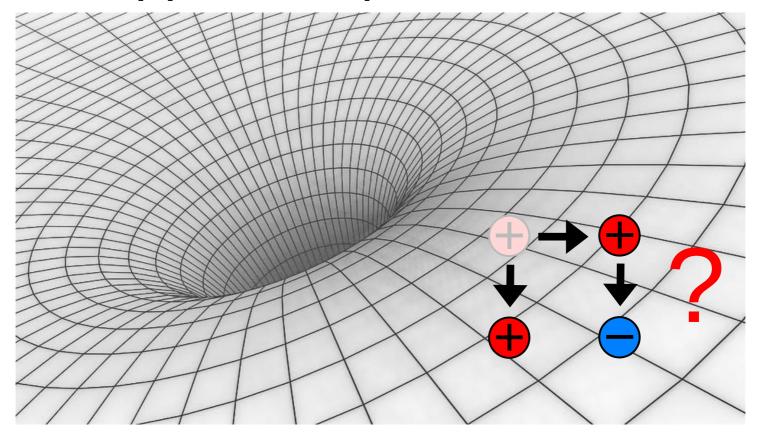
Fractons from U(1) Gauge Theory





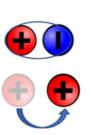
Pretko 2017

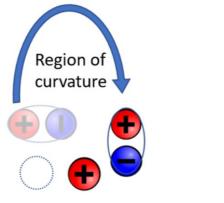
What happens if spacetime is curved?



U(1) Fractons on Curved Space?

- Curvature can grant fractons mobility via dipole mobility
 - dipole rotates via parallel transport





KS, Prem, Pretko 2018

Abhinav Prem

Michael Pretko

slides: tinyurl.com/fracton

U(1) Fractons on Curved Space

- Curvature can grant fractons mobility via dipole mobility
 - also results in a loss of gauge invariance
- Does not occur when on Einstein manifolds for the traceless scalar charge model:

 $R_{ab} \propto g_{ab}$

- i.e. manifolds with no torsion or stress-energy tensor

$$R_{\mu
u}-rac{1}{2}Rg_{\mu
u}+\Lambda g_{\mu
u}= \underbrace{rac{8\pi G}{c^4}T_{\mu
u}}_{ ext{must be zero}}$$

Traceless Scalar Charge Model

- Traceless scalar charge model:
 - $-g_{ij}E^{ij}=0$
 - conserved charge, dipole, and a quadrupole $\int \mathrm{d}^d x \, x^2
 ho$
 - fracton dipoles are planons that only move perpendicular to dipole moment

Traceless Scalar Charge Model

- Traceless scalar charge model:
 - $-g_{ij}E^{ij}=0$
 - conserved charge, dipole, and a quadrupole $\int \mathrm{d}^d x \, x^2
 ho$
 - fracton dipoles are planons that only move perpendicular to dipole moment
- On Einstein manifolds:
 - Dipole moment of planons won't change under closed loops

U(1) Fractons on Curved Space

symmetric tensor gauge theory	gauge invariant manifold	
3D gapless traceless scalar	Einstein $R_{ab} \propto g_{ab}$	
3D gapless traceless vector	Einstein with constant curvature	
$2\mathrm{D}\ \mathrm{gapped}\ \mathrm{traceless}\ \mathrm{scalar}$	constant curvature	
2D gapless traceless scalar	constant curvature	
any-D gapless traceful scalar	flat	
any-D gapless traceful vector	flat	

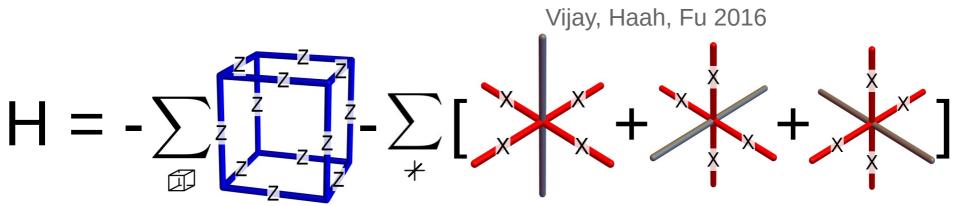
- We only considered spatial curvature
 - U(1) fractons in curved spacetime is an open problem
 - nontrivial generalization due to no Lorentz symmetry

symmetric tensor gauge theory	gauge invariant manifold	
$g_{ij}E^{ij} = 0$ 3D gapless traceless scalar	Einstein $R_{ab} \propto g_{ab}$	
3D gapless traceless vector	Einstein with constant curvature	
2D gapped traceless scalar	constant curvature	
2D gapless traceless scalar	constant curvature	
any-D gapless traceful scalar	flat	
any-D gapless traceful vector	flat	

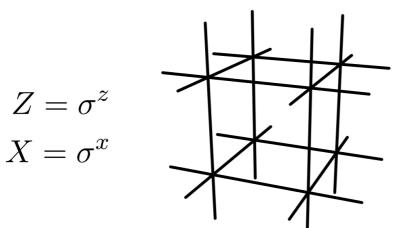
- We only considered spatial curvature
 - U(1) fractons in curved spacetime is an open problem

		Part 2	
	U(1) symmetric tensor gauge theory	foliated (type-I)	type-II
example models	scalar charge Pretko 2017 $H = \int E^2 + B^2$ $B^{ij} = \delta^{jc} \epsilon^{iab} \partial_a A_{bc}$	X-cube Vijay, Haah, Fu 2015	Haah's code, Yoshida's fractal liquids $I = \begin{bmatrix} IZ & IX \\ IX & IZ \end{bmatrix} \begin{bmatrix} IX & XI \\ XI & II \end{bmatrix} \begin{bmatrix} IX & XI \\ XI & II \end{bmatrix}$
spectrum	$D^{\circ} = 0^{\circ} \mathcal{C} O_a A_{bc}$ gapless	gapped	gapped
charge	conserved	conserved on stacks	conserved on
$\operatorname{conservation}$	dipole moment	2D surfaces	fractal subsets
spacetime structure	Einstein manifolds $R_{ab} \propto g_{ab}$	foliated manifolds	discrete groups? Tian, Samperton, Wang 2018

review: X-cube fracton model



• qubits on links of a cubic lattice



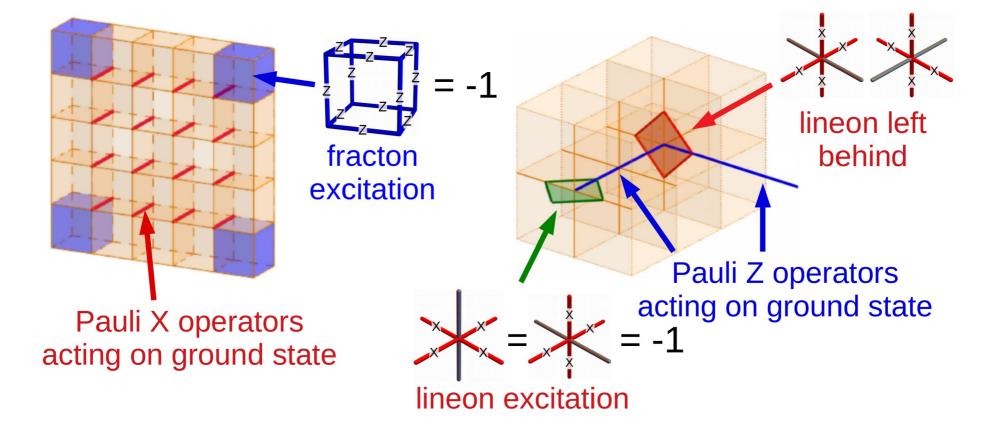
 gapped & exactly solvable

• degen =
$$2^{6L-3}$$

Subdimensional Excitations

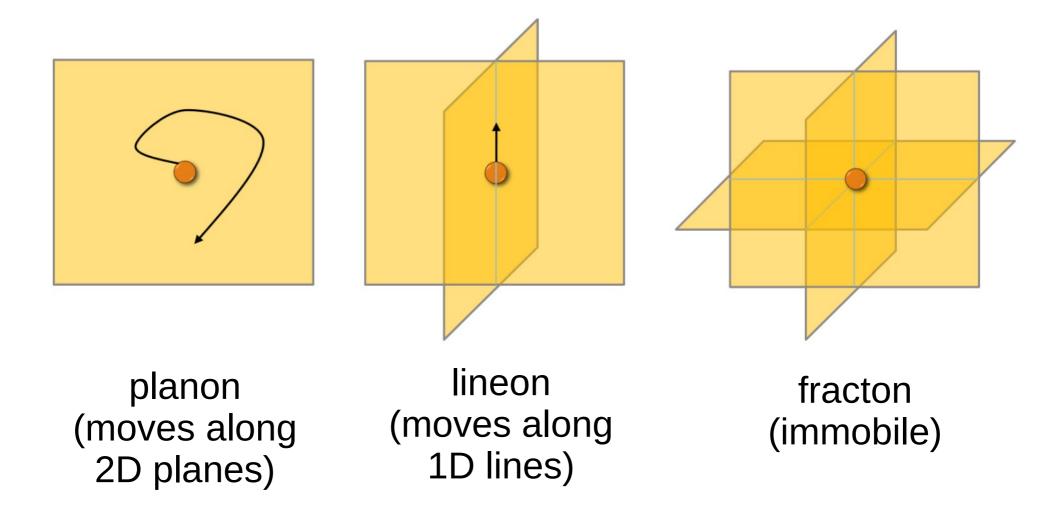
Vijay, Haah, Fu 2016

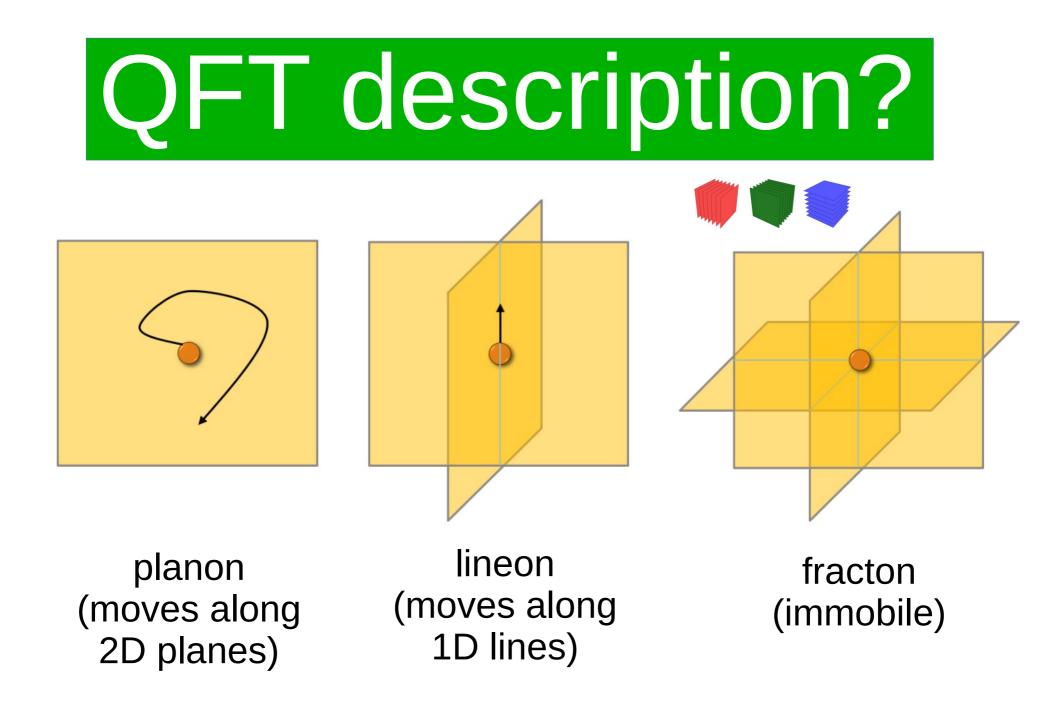
- Create fractons at corners of rectangular operators
- Create lineons at ends of line operators



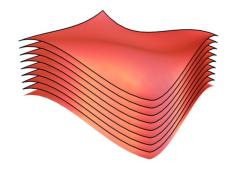
Subdimensional Excitations

• Mobility restrictions determined by a layering structure

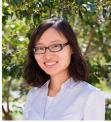




Shirley, KS, Wang, Chen 2018

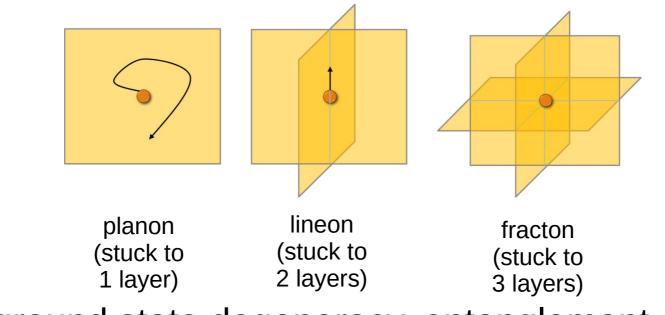


Foliation



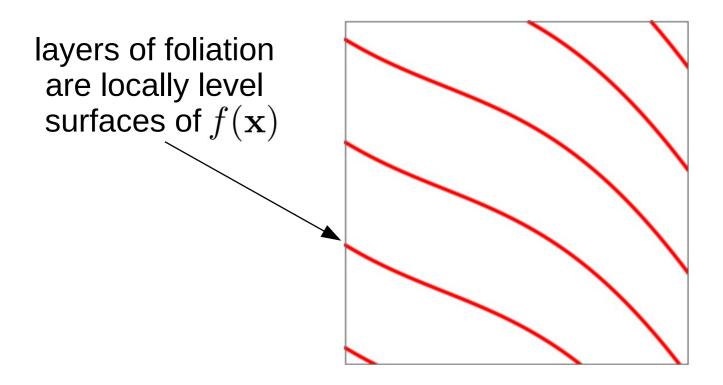
Wilbur Shirley Zhenghan Xie Chen Wang

- Foliation (i.e. layered structure) determines:
 - mobility constraints:

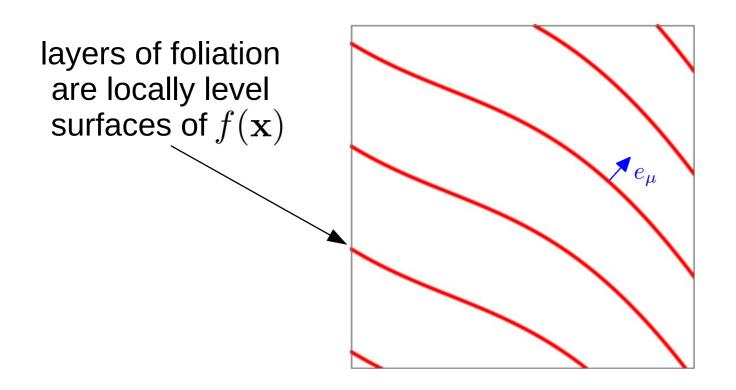


- ground state degeneracy, entanglement, ...

Foliation Intuition



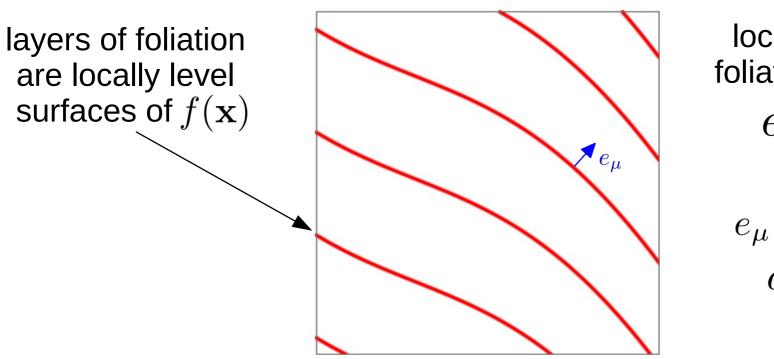
Foliation Field Intuition



locally define foliation field as e = df

 e_{μ} is closed: de = 0

Foliation Field Intuition

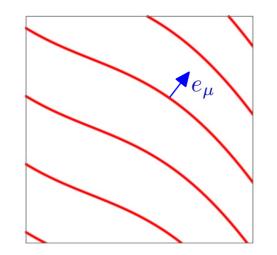


locally define foliation field as e = df

 e_{μ} is closed: de = 0

- To define foliation field globally, forget about $f(\mathbf{x})$
- Define layers to be orthogonal to e_{μ} and require de=0
 - i.e. tangent vectors v^{μ} of layers are null vectors: $v^{\mu}e_{\mu}=0$

Foliation Field



• Define layers to be orthogonal to e_{μ} and require de = 0

- More generally: $de = e \land \beta$ [technical note]
 - where β is a 1-form
 - results from $e \to \gamma e$ transformation
 - cohomology class of $\beta \wedge d\beta$ is the Godbillon-Vey invariant of the foliation
 - often $\beta=0$

nalkboar

Foliation Field

- Foliating layers are orthogonal to 1-form e_{μ}

$$de = e \wedge eta _{{
m often } eta = 0}$$

• Multiple foliation fields e^k

- $k = 1, 2, ..., n_f$ indexes different foliations - e.g. $e_{\mu}^k = \delta_{\mu}^k$ for flat X-cube foliation k=1 k=2 k=3 e^3

Foliation Field

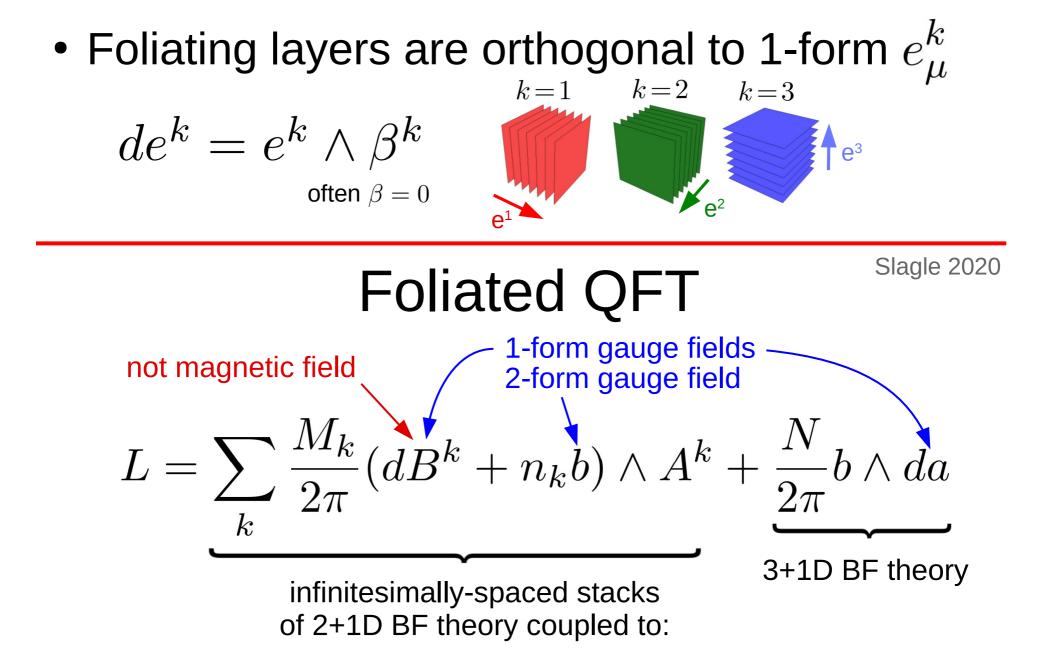
- Foliating layers are orthogonal to 1-form e_{μ}

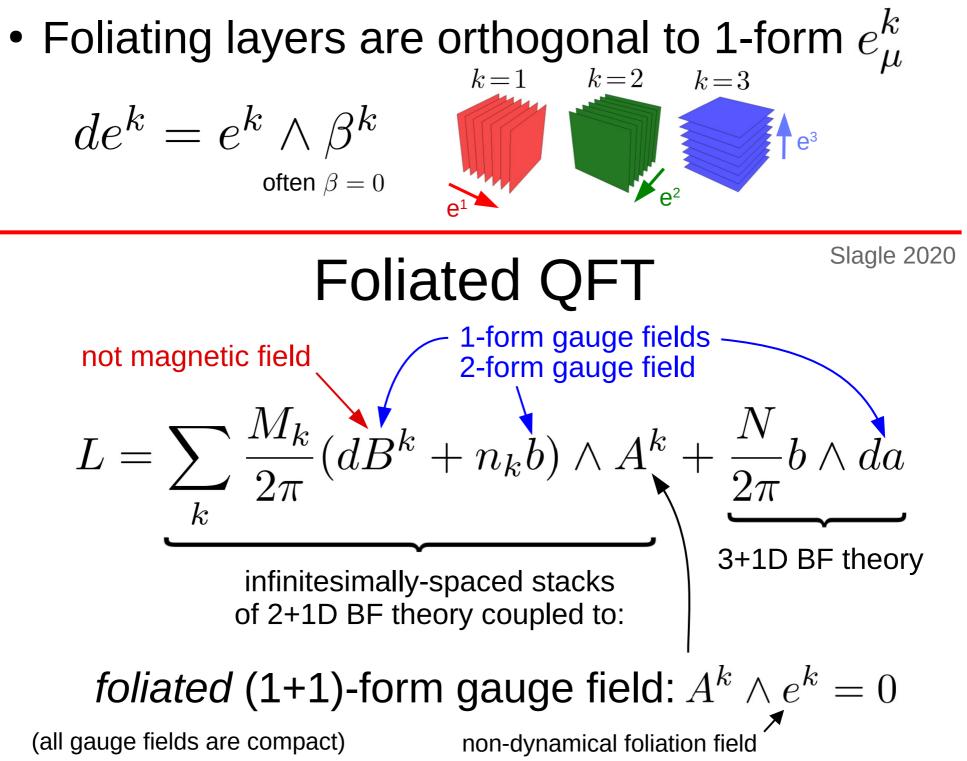
$$de = e \wedge eta _{{}_{{{
m often }}eta = 0}}$$

• Multiple foliation fields e^k

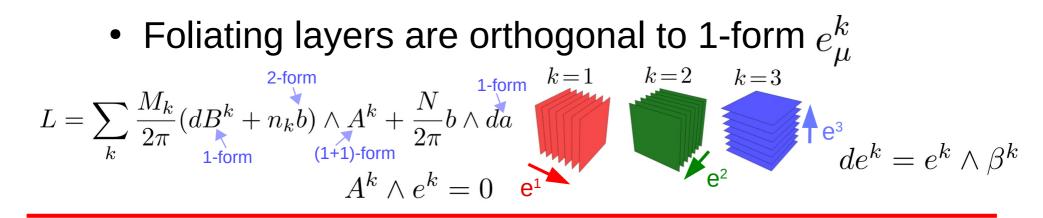
- $k = 1, 2, ..., n_f$ indexes different foliations - e.g. $e_{\mu}^k = \delta_{\mu}^k$ for flat X-cube foliation k=1 k=2 k=3 e^3

- All compact orientable three-manifolds admit total foliations (Hardorp 1980)
 - ➡ These manifolds admit a foliated QFT with fractons





slides: tinyurl.com/fracton



Intuition: Foliated Gauge Field

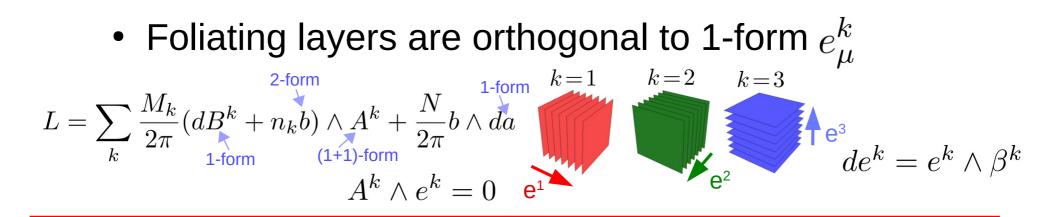
• Similar to an independent gauge field on every layer

 $-A^{(\text{layer }\#1)}$

 $A^{(\text{layer } \#2)}$ $A^{(\text{layer } \#3)}$

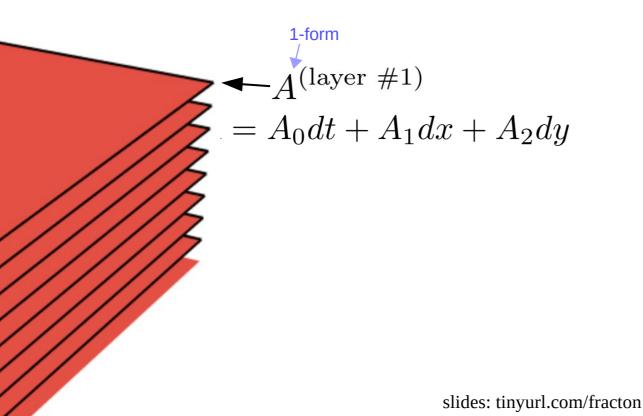
(but in the continuum)

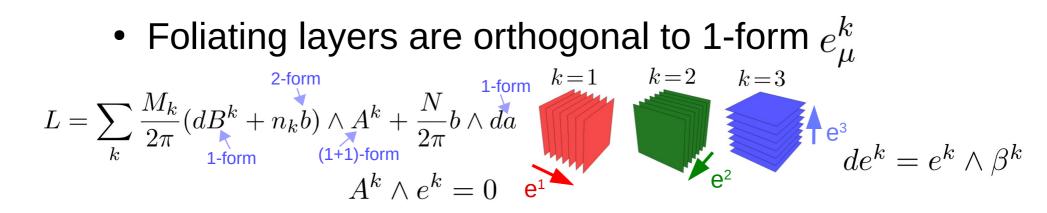
lides: tinyurl.com/fracton



Intuition: Foliated Gauge Field

• Consider flat foliation example: e = dz (i.e. $e_{\mu} = \delta_{\mu}^{3}$)





Intuition: Foliated Gauge Field

• Consider flat foliation example: e = dz (i.e. $e_{\mu} = \delta_{\mu}^{3}$)

1-form

 $-A^{(\text{layer }\#1)}$

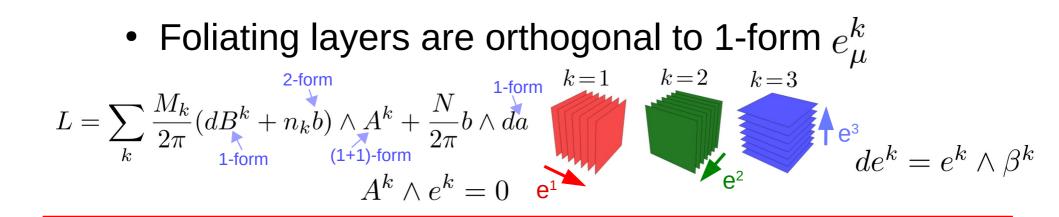
 $= A_0 dt + A_1 dx + A_2 dy$

foliation constraint

$$A \wedge e = 0$$

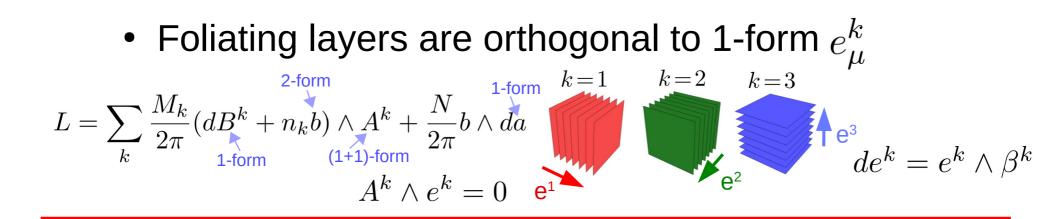
implies
$$A = (A_{03}dt + A_{13}dx + A_{23}dy)dz$$

same degrees of freedom as 1-form in 2+1D!



Gauge Field

• Require dA well-defined



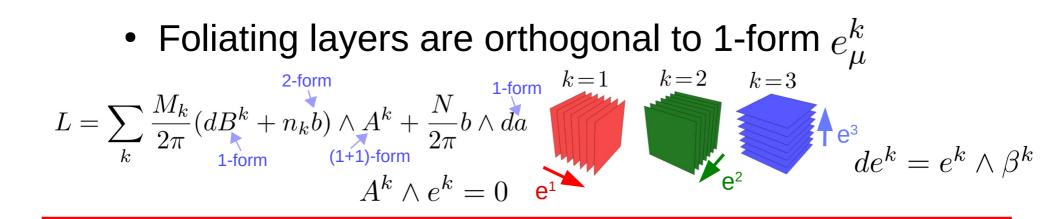
Gauge Field

• Require dA well-defined

Foliated Gauge Field

- Require dA well-defined
 - Does not imply continuity between layers (as desired)!

 $e = dz \implies A = (A_{03}dt + A_{13}dx + A_{23}dy)dz$



Gauge Field

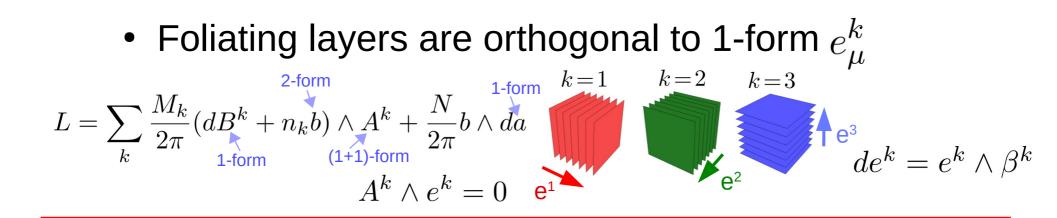
• Require dA well-defined

Foliated Gauge Field

- Require dA well-defined
 - Does not imply continuity between layers (as desired)!

 $e = dz \implies A = (A_{03}dt + A_{13}dx + A_{23}dy)dz$

- Allow delta-functions
 - e.g. $A = x \, \delta(z) \, dy \wedge dz$ is allowed for e = dz



Gauge Field

Questions?

• Require dA well-defined

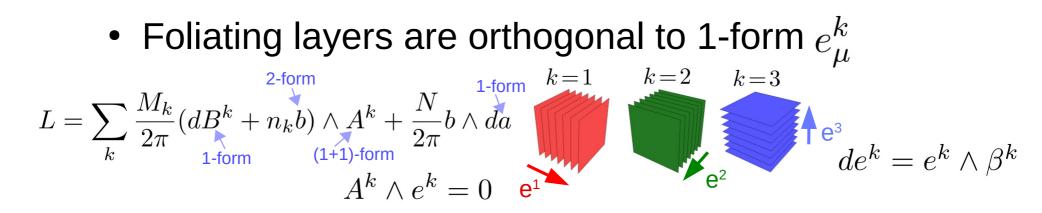
Foliated Gauge Field

- Require dA well-defined
 - Does not imply continuity between layers (as desired)!

 $e = dz \implies A = (A_{03}dt + A_{13}dx + A_{23}dy)dz$

• Allow delta-functions

- e.g. $A = x \, \delta(z) \, dy \wedge dz$ is allowed for e = dz



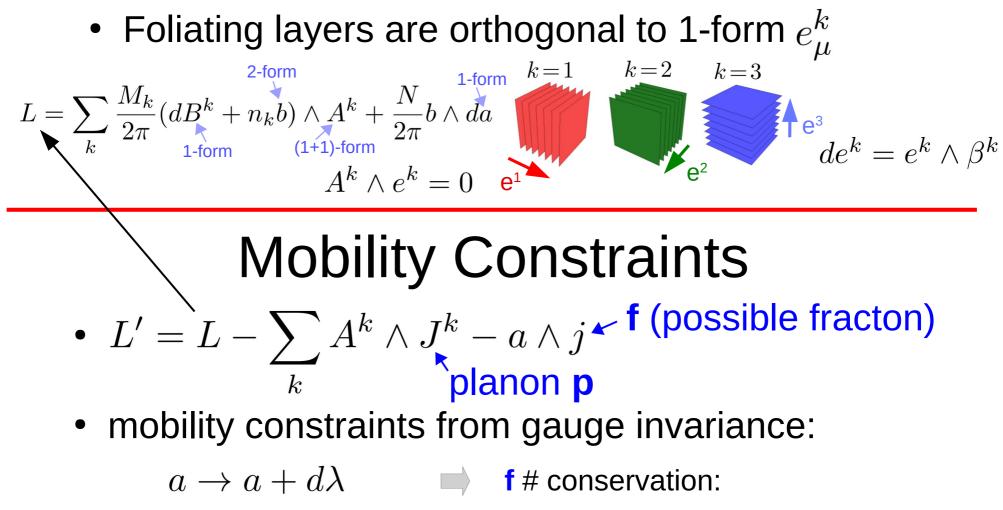
Review: Charge Conservation

- Z_N BF theory (Z_N toric code): $L = \frac{N}{2\pi} B \wedge dA - A \wedge J - B \wedge I$
- gauge invariance:

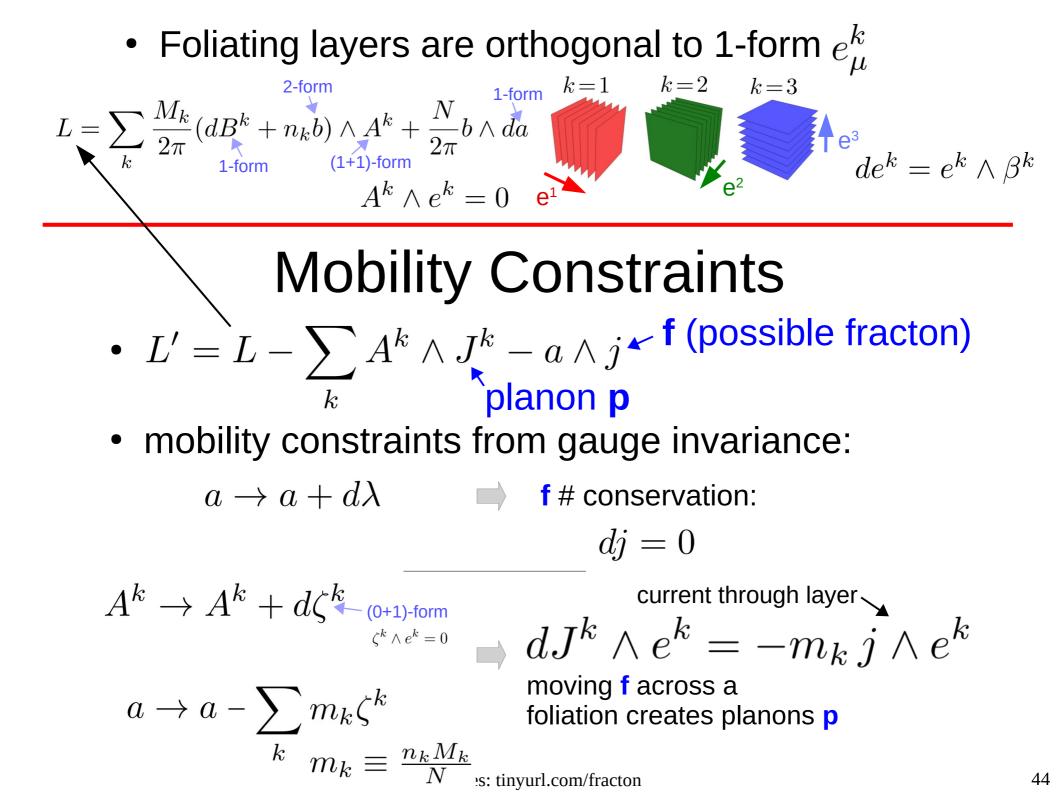
$$A \to A + d\zeta$$
$$B \to B + d\chi$$

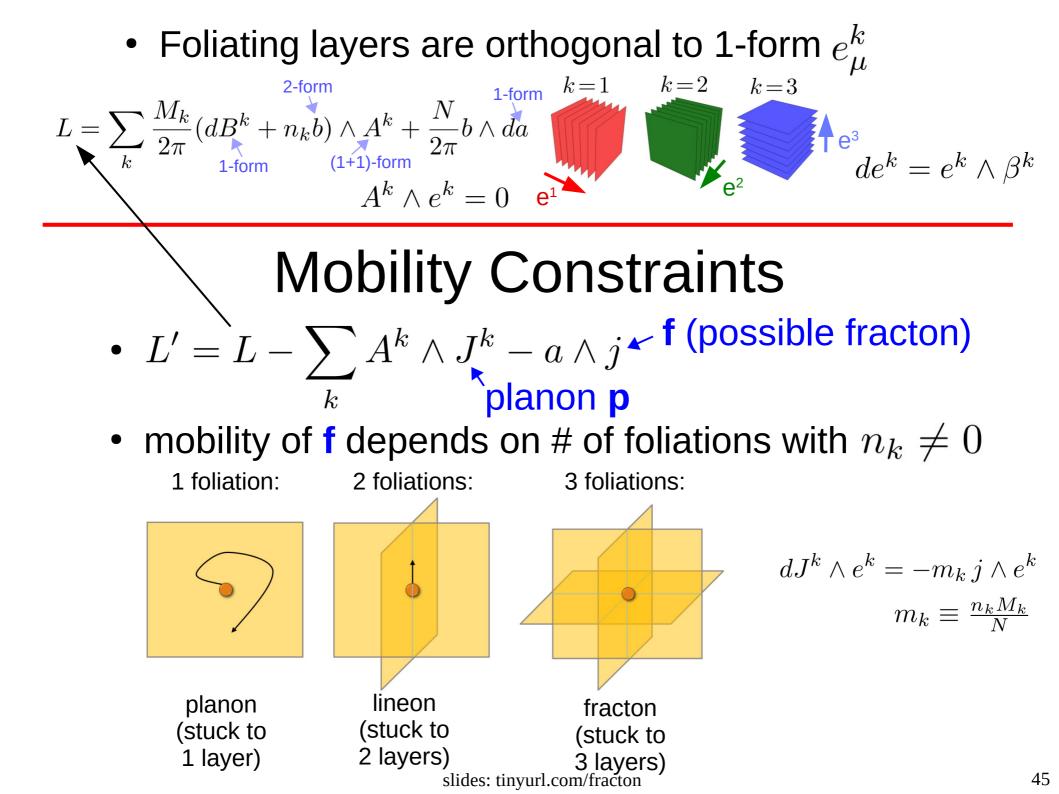
• conservation of charge and flux:

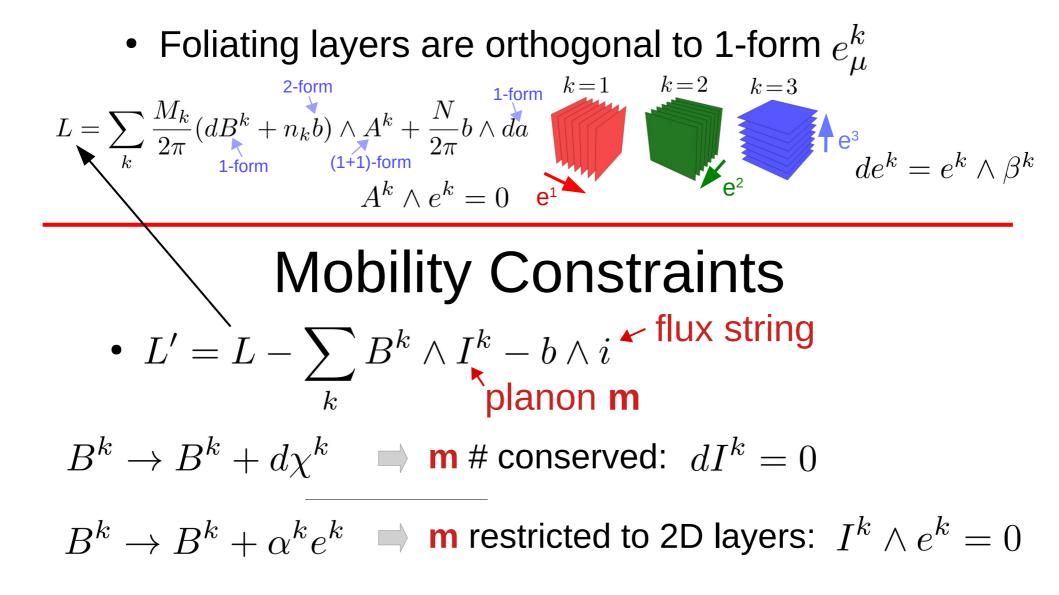
$$dJ=dI=0$$
 also constrains gauge invariant operators, eg $\,e^{{\rm i}\,\int A\wedge J}$

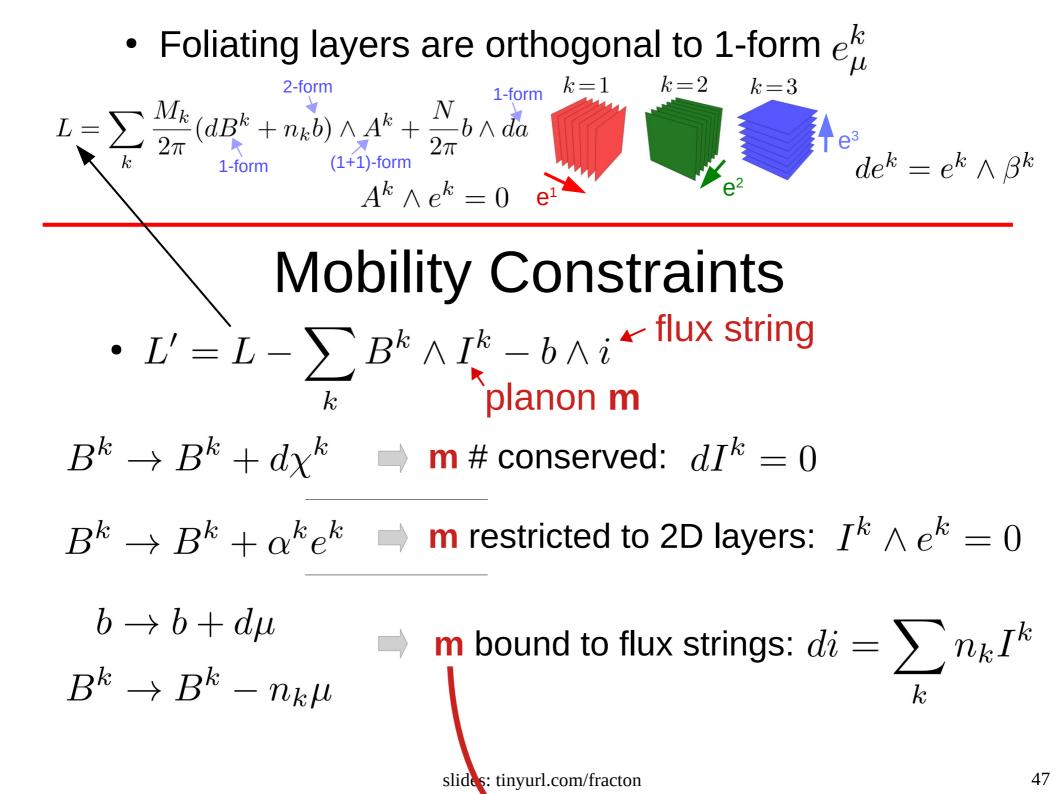


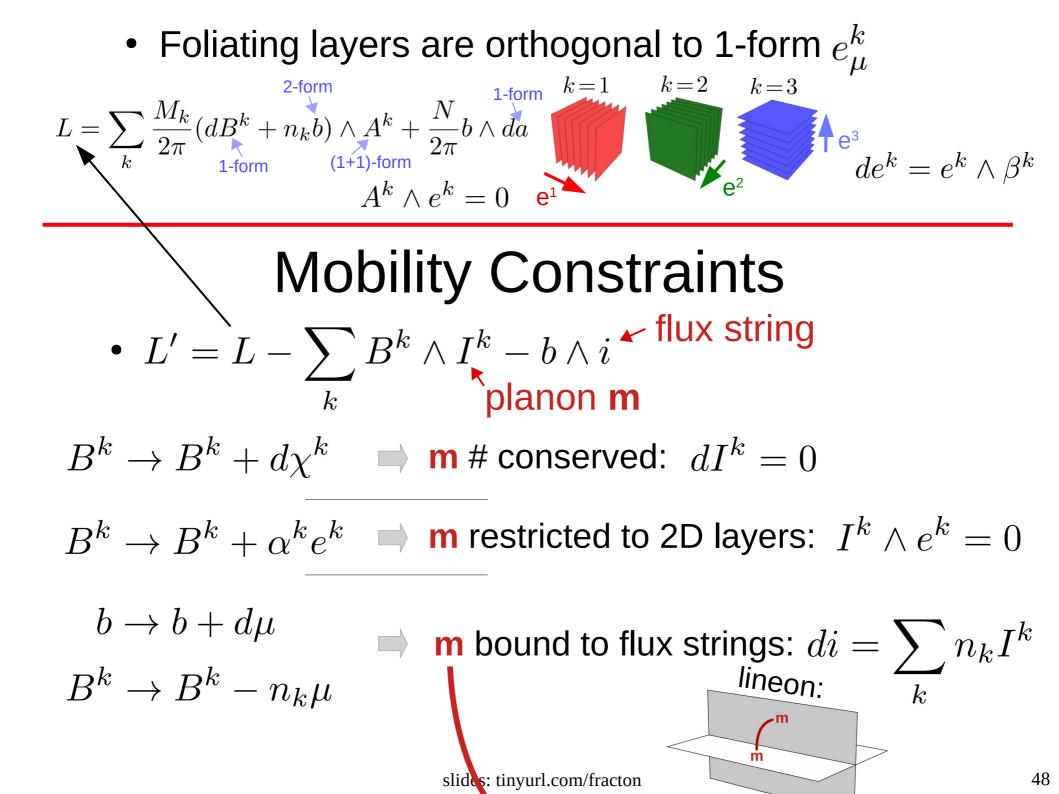
$$dj = 0$$

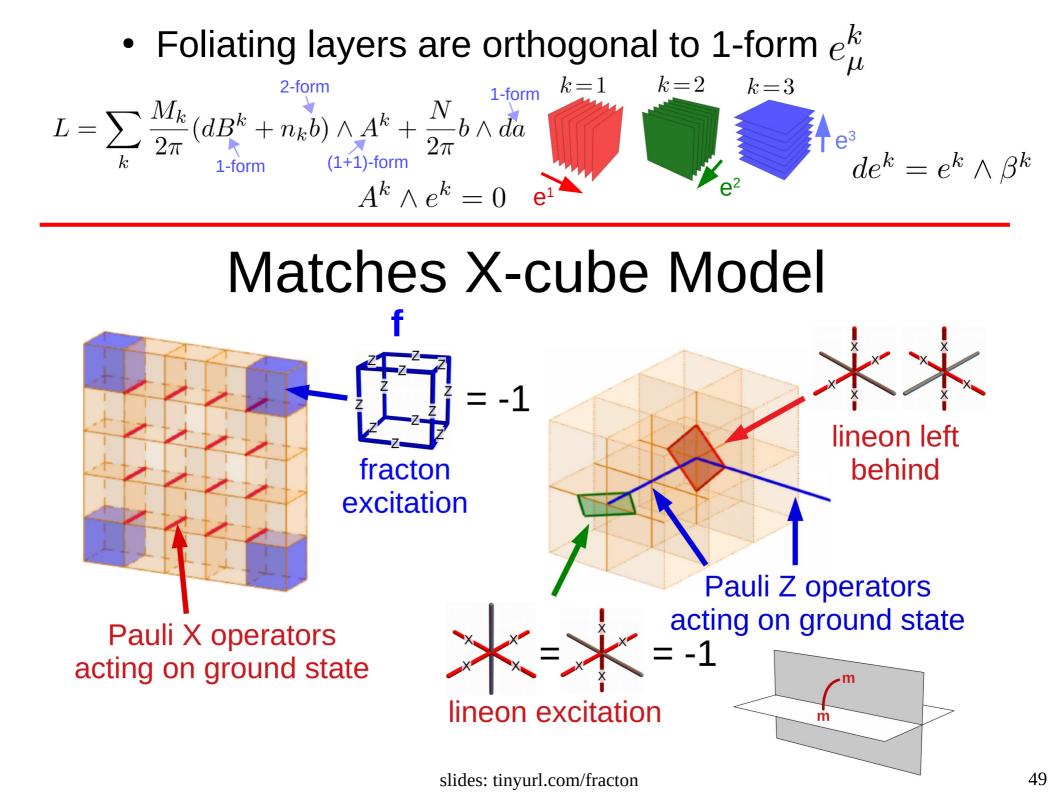


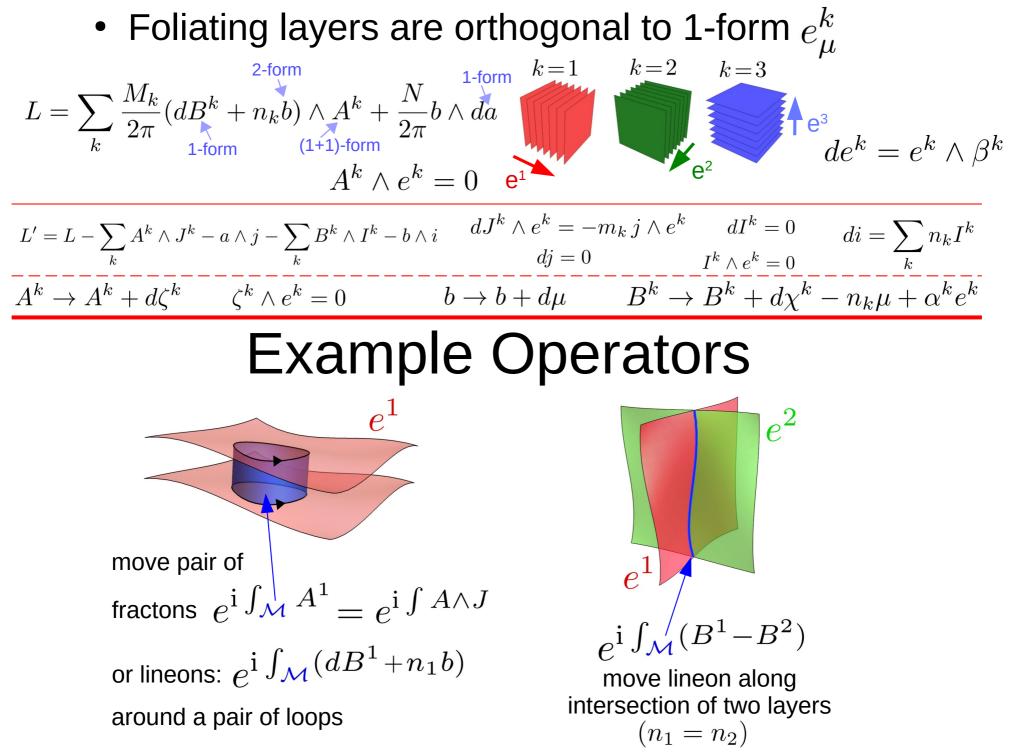


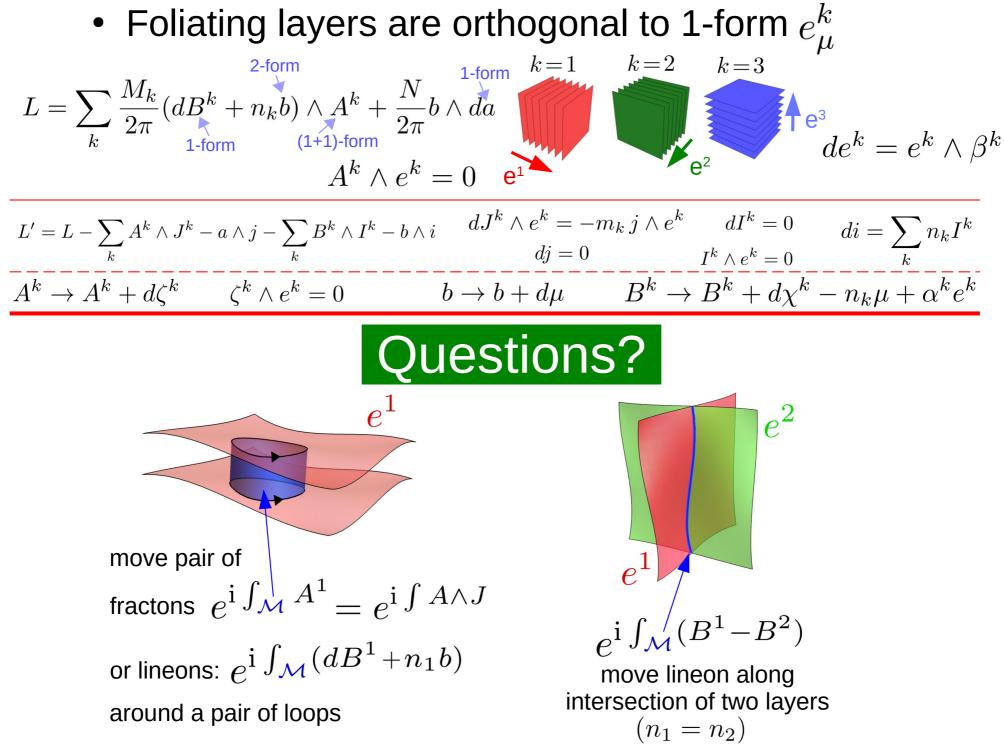












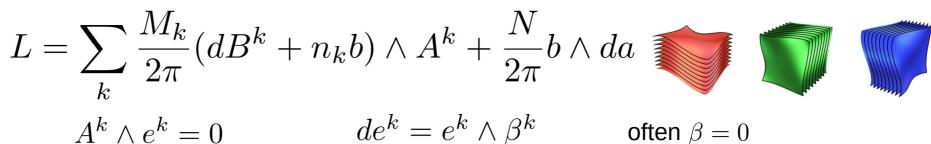
Conclusions

• U(1) fracton models only gauge invariant on certain manifolds

symmetric tensor gauge theory	gauge invariant manifold		
3D gapless traceless scalar	Einstein $R_{ab} \propto g_{ab}$		
3D gapless traceless vector	Einstein with constant curvature		
2D gapped traceless scalar	constant curvature		
2D gapless traceless scalar	constant curvature		
any-D gapless traceful scalar	flat		
any-D gapless traceful vector	flat		
		_	 0040

KS, Prem, Pretko 2018

Foliated QFT for many type-I fracton models



 Resembles coupled BF theories with a foliation-dependent constraint

Slagle 2020

 Gauge invariance enforces particle mobility constraints kslagle@caltech.edu
 kslagle@caltech.edu

• Foliating layers are orthogonal to 1-form
$$e_{\mu}^{k}$$

$$L = \sum_{k} \frac{M_{k}}{2\pi} (dB^{k} + n_{k}b) \wedge A^{k} + \frac{N}{2\pi}b \wedge da$$

$$A^{k} \wedge e^{k} = 0$$

$$e^{1}$$

$$k = 2$$

$$k = 3$$

$$e^{3} de^{k} = e^{k} \wedge \beta^{k}$$

Mobility Constraints

$$\begin{split} dJ^k \wedge e^k &= -j \wedge e^k \\ dI^k &= 0, \quad I^k \wedge e^k = 0 \\ dj &= 0 \\ di &= \sum_k I^k \\ J^k &\to J^k + \phi^k \wedge e^k \end{split}$$

Equations of Motion

$$\frac{M_k}{2\pi}(dB^k + n_k b) \wedge e^k = J^k \wedge e^k$$
$$\frac{M_k}{2\pi}dA^k = I^k$$
$$\frac{N}{2\pi}db = j$$
$$\frac{N}{2\pi}(da + \sum_k m_k A^k) = i$$

• compact gauge fields implies: $\underline{m_k} \equiv \frac{n_k M_k}{N} \in \mathbb{Z}$ and $\underline{n_k} \in \mathbb{Z}$

• Foliating layers are orthogonal to 1-form
$$e_{\mu}^{k}$$

$$L = \sum_{k} \frac{M_{k}}{2\pi} (dB^{k} + n_{k}b) \wedge A^{k} + \frac{N}{2\pi}b \wedge da$$

$$A^{k} \wedge e^{k} = 0$$

$$A^{k} \wedge e^{k} = 0$$

$$A^{k} \wedge e^{k} = 0$$

$$A^{k} \rightarrow A^{k} + d\zeta^{k}$$

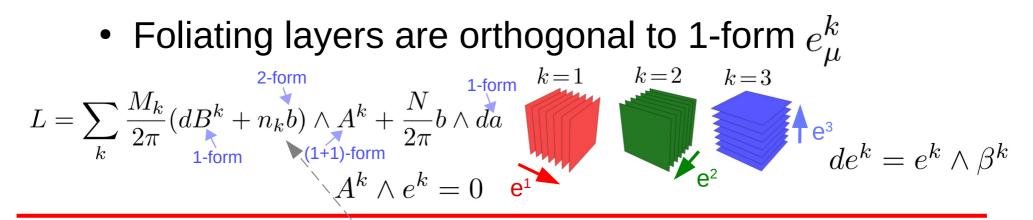
$$B^{k} \rightarrow B^{k} + d\chi^{k} - \underline{n_{k}}\mu$$

$$a \to a + d\lambda - \sum_{k} \underline{m_k} \zeta^k \qquad b \to b \qquad + d\mu$$

• compact gauge fields implies: $\underline{m_k} \equiv \frac{n_k M_k}{N} \in \mathbb{Z}$ and $\underline{n_k} \in \mathbb{Z}$

$$\oint L \to \oint L + \sum_{k} M_{k} \underbrace{\frac{1}{2\pi} \oint (dB^{k} \wedge d\zeta^{k} + d\chi^{k} \wedge dA^{k})}_{\in 2\pi\mathbb{Z}} + N \underbrace{\frac{1}{2\pi} \oint (db \wedge d\lambda + d\mu \wedge da)}_{\in 2\pi\mathbb{Z}}$$

• large gauge transformation invariance implies: $M_k, N \in \mathbb{Z}$



Coefficient Identification

Equations of motion:

 $\oint b \in \frac{2\pi}{N}\mathbb{Z}$

 $\oint_{F} A^{k} \in \frac{2\pi}{M_{k}} \mathbb{Z}$

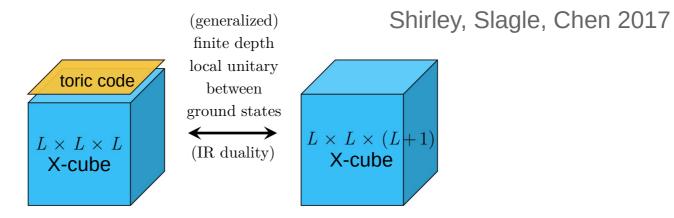
 $db = dA^k = 0$

$$\sum_{k} rac{M_k n_k}{2\pi} \int b \wedge A^k \in 2\pi \sum_k rac{n_k}{N} \mathbb{Z}$$
 same action: $n_k \sim n_k + N_k$

integrate over a 2-manifold between layers:

Foliated Fracton Order (FFO)

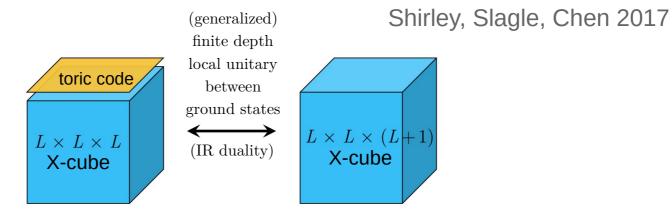
• Exfoliation: a local unitary can decouple a layer:



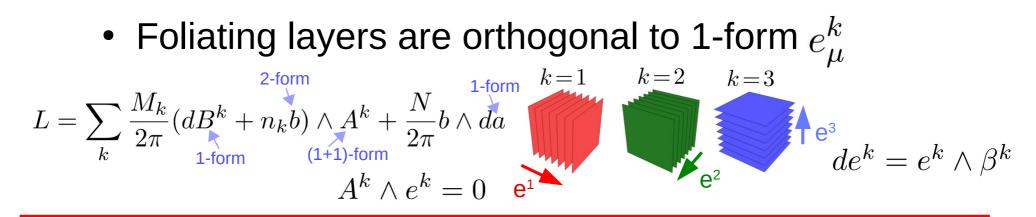
- Toric code anyons become X-cube planons
 - Ground state degeneracy on a torus $2^{2L_x+2L_y+2L_z-3}$ is absorbed via $L_z \to L_z+1$

Foliated Fracton Order (FFO)

• Exfoliation: a local unitary can decouple a layer:



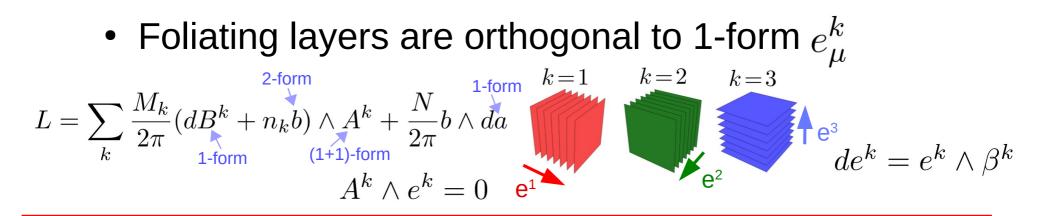
- Toric code anyons become X-cube planons
 - Ground state degeneracy on a torus $2^{2L_x+2L_y+2L_z-3}$ is absorbed via $L_z \to L_z+1$
- It's *not* possible to decouple all layers
 - On a lattice, at least one layer must remain



Exfoliation in Foliated QFT

• Exfoliate all layers within $z_1 < z < z_2$ $(e_1 = dz)$:

- i.e.
$$\tilde{n}_1(z) = \begin{cases} n_1 & z \le z_1 \text{ or } z \ge z_2 \\ 0 & z_1 < z < z_2 \end{cases}$$



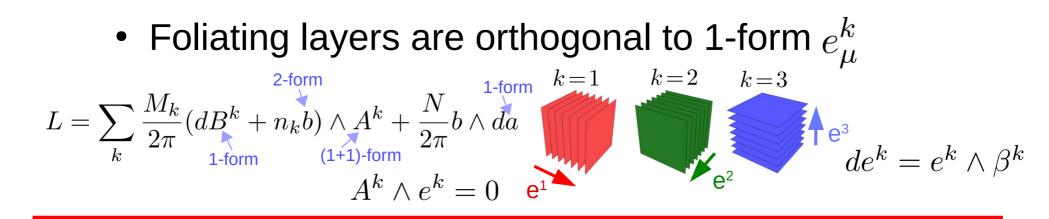
Exfoliation in Foliated QFT

• Exfoliate all layers within $z_1 < z < z_2$ $(e_1 = dz)$:

- i.e.
$$\tilde{n}_1(z) = \begin{cases} n_1 & z \le z_1 \text{ or } z \ge z_2 \\ 0 & z_1 < z < z_2 \end{cases}$$

- claim: this interface can be created and moved by a duality transformation:

$$a \leftrightarrow \tilde{a} = \begin{cases} a & z \leq z_1 \text{ or } z_2 \leq z \\ a + m_1 \int_{z_1}^z A^1 & z_1 < z < z_2 \end{cases}$$
$$A^1 \leftrightarrow \tilde{A}^1 = A^1 + \delta(z - z_2) \int_{z_1}^{z_2} dz A^1$$
$$B^1 \leftrightarrow \tilde{B}^1 = \begin{cases} B^1 & z \leq z_1 \text{ or } z_2 \leq z \\ B^1 - B^1(z_2) + n_1 \int_z^{z_2} b & z_1 < z < z_2 \end{cases}$$

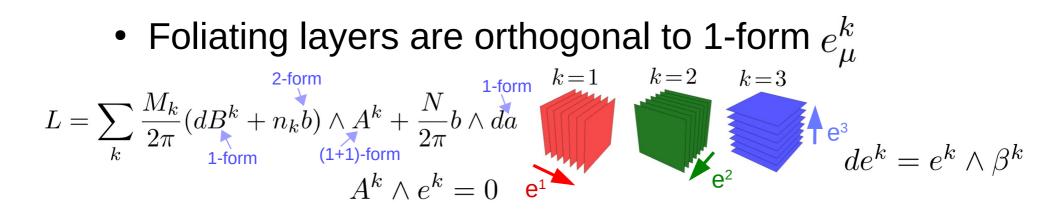


review: Gauge Fields

- Gauge fields on different patches (charts) i, j, k of spacetime are defined up to:
 - 0-form gauge field: $A_i A_j \in 2\pi \mathbb{Z}$
 - 1-form gauge field: $A_i A_j = dg_{ij}$
 - Transition functions g_{ij} satisfy cocycle condition

k

$$g_{ij} + g_{jk} + g_{ki} \in 2\pi\mathbb{Z}$$



Intuition: Foliated Gauge Field

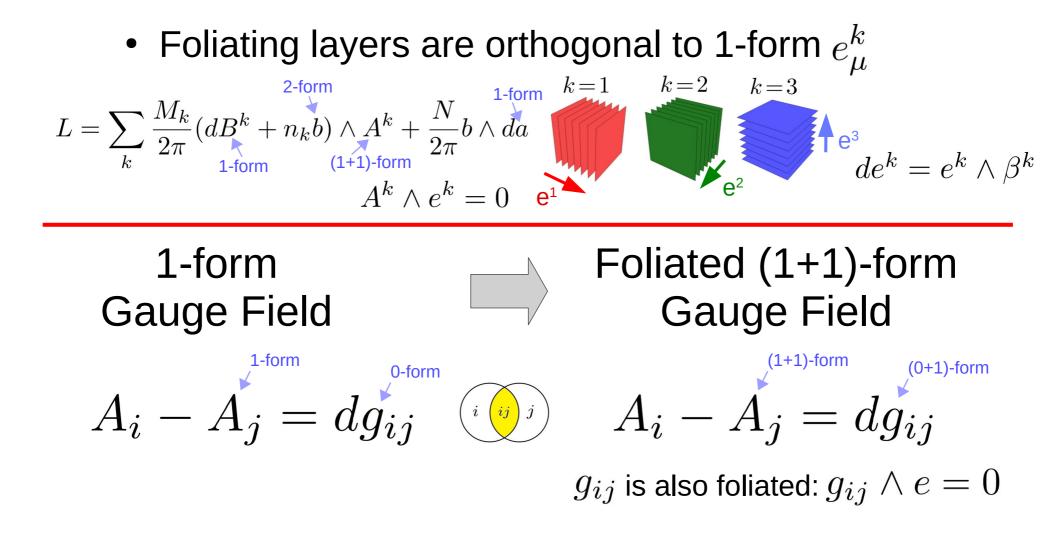
Transition function for each layer
 (but in the continuum)

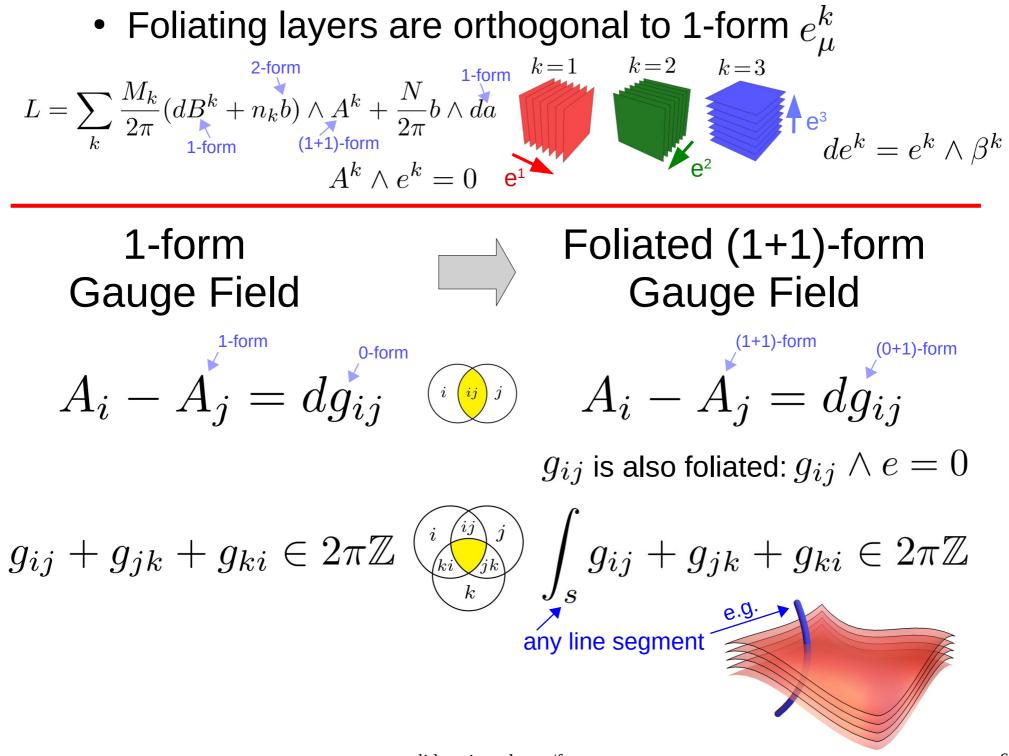
$$A^{(\text{layer }\#1)} \leftarrow A^{(\text{layer }\#1)}_i - A^{(\text{layer }\#1)}_j = dg^{(\text{layer }\#1)}_{ij}$$

$$A^{(\text{layer }\#2)} \leftarrow A^{(\text{layer }\#2)}_i - A^{(\text{layer }\#2)}_j = dg^{(\text{layer }\#2)}_{ij}$$

$$A^{(\text{layer }\#3)}$$

$$\vdots$$





Ground State Degeneracy

• solve equations of motion and plug into action:

$$S = \frac{N}{2\pi} \sum_{k \neq b} \frac{L_k}{l_k} \int_0^{l_k} \mathrm{d}x^k \, p_b^k(t, x^k) \, \partial_t q_b^k(t, x^k)$$

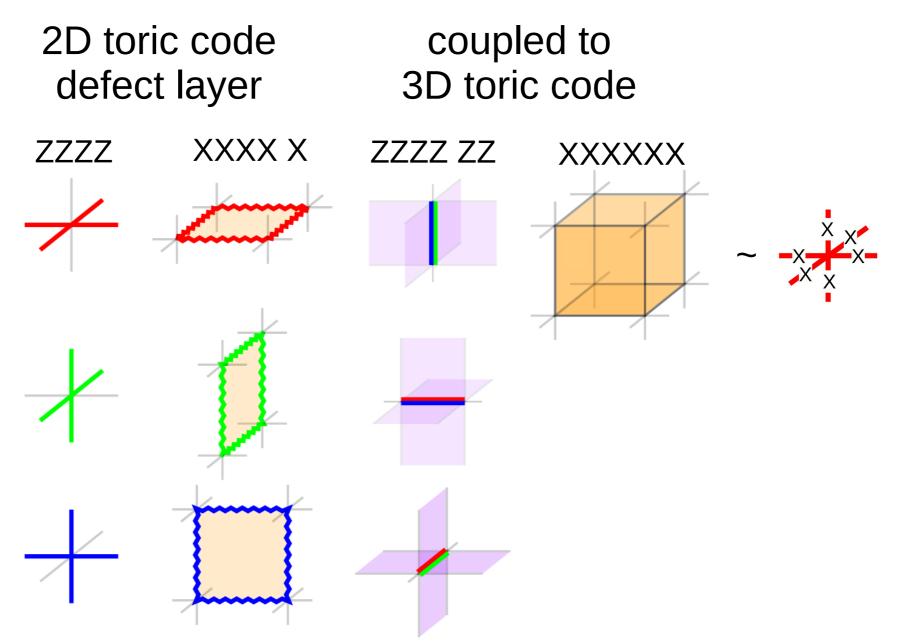
 $0 \le x < l_x, \ 0 \le y < l_y, \ 0 \le z < l_z, \ e_{\mu}^k = \delta_{\mu}^k$

• add a cuttoff for finite degeneracy: $a_k \sim \frac{l_k}{L_k}$

$$S \sim \frac{N}{2\pi} \sum_{k \neq b} \sum_{x^k=0, a_k, \dots, (L_k-1)a_k} p_b^k(t, x^k) \partial_t q_b^k(t, x^k)$$

where $q_a^k(t, 0) = p_a^k(t, 0) = 0$ if $\epsilon^{akb} = 1$
• degeneracy = $N^{2L_x + 2L_y + 2L_z - 3}$

Lattice Model



Example: Discrete Disclination Curvature

