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Galileon symmetry

Scalar kinetic term has galileon symmetry:
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DBI theory:
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Extensions of Galileon symmetry

Scalar kinetic term also has extended galileon symmetry:
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symmetric, traceless constant tensor
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special galileon:

Clifford Cheung, Karol Kampf, Jiri Novotny, Jaroslav Trnka (2014)
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Extensions of Galileon symmetry

Scalar kinetic term has extended galileon symmetry of all orders:
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symmetric, traceless constant tensors

There do not seem to be interesting interactions at higher orders.

KH, Austin Joyce (2014)

Clifford Cheung, Karol Kampf, Jiri Novotny, Chia-Hsien Shen, Jaroslav Trnka (2016)
Mark Bogers, Tomas Brauner (2018)

Diederik Roest, David Stefanyszyn, Pelle Werkman (2019)



How does all this extend to (A)dS and to higher spins?



(A)dS embedding space

Dirac (1936)

Embed D dimensional (A)dS into D+1 dimensional Minkowski:
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embedding space coordinates intrinsic (A)dS coordinates

(A)dS tensors correspond to embedding space tensors:
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Homogeneity, transverse-ness conditions:
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Rules for projecting derivatives:
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Scalars 1in (A)dS

» Massless scalar preserves shift symmetry:

L=—oVTg(00), 6=

Higher symmetries all broken: ¢ = ¢ +| Cutt 4 €y T T 4y o T A2 4 - |

* There is a special mass which preserves a galileon symmetry:

1 2 2,2 . A
L=—V=g[(09)® - DH?*¢] 0p = SaX ](A)ds
constant embedding space vector
Flat limit:
galileon shift
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Scalars 1n (A)dS

* There is a different mass which preserves second-order galileon symmetry:
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Flat limit:
special galileon galileon shift
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Scalars 1n (A)dS

* Sequence of special mass values: £ =0,1,2,...
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Flat limit:
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Masses come from higher dimensional laplacian:
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Massive higher spins 1in (A)dS

Massive spin s field on (A)dS:
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Symmetry under shifts parametrized by a mixed symmetry ambient space tensor:
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Higher spins 1in (A)dS

Dual CFT, operators: A=k+s+D-—1
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Shift-symmetric fields are “longitudinal modes”

of partially massless fields.



Partially massless fields

Massive spin s field on (A)dS:

(O-H*D+(s—2)—(s—1)(s+D—4)]—m*) ¢,y..p, +---=0

At special values of the mass there are enhanced gauge symmetries:
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Gauge symmetry eliminates helicities 0,1,...,¢

0,1, ,t,t+ 1, s
| |




Dual CFT, operators:

Short multiplets with a level s-t null state:
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Shift symmetries from partially massless fields
« Example: Massless limit of a massive vector:
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Introduce Stiickelberg field:
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Reducibility parameter:if A is such that J,A =0, then symmetry survives the massless limit:
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reducibility parameter — shift symmetry of longitudinal mode



Shift symmetries from partially massless fields

* Example: massless limit of a massive spin-2: Claudia de Rham, KH, Laura A. Johnson (2018)
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Vector Stiickelberg field:

(ghostly) «— Partially massless limit
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Flat limit
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Massless limit m — 0

<«—— Massless AdS limit

1 6
L= Emassless graviton + V — [_§Fiu - —A2]

ohy =V,6 +V,6, 04,=0
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Reducibility parameters are (A)dS Killing vectors:
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Shift symmetries from partially massless fields
o Example: PM limit of a massive Spin—2 m2 — 2H2 Claudia de Rham, KH, Laura A. Johnson (2018)
Shyw =V ,V, €+ H2g,,€

Scalar Stiickelberg field:

(ghostly)
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Flat limit

<«—— Massless AdS limit

Partially massless limit:
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Reducibility parameter: V,V,x + H QXQW =0

Partially massless reducibility parameters:
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Shift symmetries from partially massless fields

General rule:
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PM field shift symmetric field

Reducibility parameters: 6¢u,..u. = Viur - V&g o) +
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Generalized Killing tensors. Finite space of solutions:
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Shift symmetries from partially massless fields

CFT Branching rule: (A, s) > (t+d—1,s)B (s+d—1,1)

A—t+d—1 \

Null module
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Are there interactions preserving these shift symmetries?



Algebra of symmetries

(A)dS isometries (unbroken):
Jap® = X 40P — Xpo,®

Commutators give (a real form of) so(D+1) algebra:
\JaB, Jop] = nacJep — npcJap + nppJac — napJpe

Shift symmetries (broken): possible non-linear

«—  deformation
Say.4,P = Xoay Xay), + O (D)

Shifts transform as tensors under (A)dS isometries
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Algebra of symmetries

Remaining commutator has one possible structure (£>0):
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arbitrary constant

Jacobi identities:
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“Abelian” theories

o = 0 is the algebra of the free theory
Sy, P = Xa, Xa,

Interactions can be constructed from the building blocks:
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blocks and its derivatives

These will generally have ghosts.



“Abelian” theories

For k=1 there is a set of ghost-free terms:
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These are the (A)dS galileons:  Garrett Goon, KH, Mark Trodden (2011)
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“Non-abelian” theories

For k=1 there is a possible deformation of the algebra: Jap g,
!
[SA,SB]ZQJAB (
) :
SAP=X4+ad0,4P .

This forms an so(D+2) algebra: Jap = 0 Sa
—S54 | JaB
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Symmetry breaking pattern:

so(D+2) — so(D+1)
S/ AN

D+1 dimensional (A)dS D dimensional (A)dS

This gives ( A)dS DBI galileons. Clark, Love, Nitta, Veldhuis (2005)

Garrett Goon, KH, Mark Trodden (201 1)
KH, Austin Joyce, Justin Khoury (201 1)




“Non-abelian” theories

For k=2 there is a possible deformation of the algebra:
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Symmetry breaking pattern:
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k=2 theory

Lagrangian for D=4: ghost-free, completely fixed by the symmetry
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k=2 theory

Expansion in powers of the field:
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Flat space limit H — 0 is the special galileon:
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k=2 theory

Lagrangian in general D:

PP + (1) x

X X |
' |\ — ) —( S v 4 x ()
i AI(P+2)/2 [y P 2T 4 3) [(3 +2)f; (|¢!2> (J+1)fix (Mg)] 0" o X 7 (1T
N AD+2 (1 B DL ¢D+1>

k 2(D + 1)H? 2 [P

D+3 j+1 j+3 _ - H? _ H? 5
9 9 7 9 _33)7 ¢:1_22A%+1¢7 X:AD+2(8¢)

f

MU

J

fi(x) = 2F1 (

Expansion in powers of the field:

1 1 5 2 12 1 oAy oy (2) 2 6
HcSG_ S(09)" + (D + )H?¢" + - [8 $0” X ) (I1) + O (H )] +0 (¢°)
Flat space limit H — 0

D—1
1)3/2 )
ﬁs(;‘ Z A D+2)/2 +2) 5’“qb5’ ¢X(J (11)

J=0
even



k=2 theory

The potential in general D : Y =1-2iH?¢/APF2)/2
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k=2 theory: simpler formulation
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Z> symmetry no longer manifest

Field redefinition connects to other formulation:



Vector Interactions

Massless decoupling limit of fully non-linear massive gravity on AdS

' Claudia de Rham, KH, Laura A. Johnson (2018)

James Bonifacio, KH, Laura A. Johnson, Austin Joyce (2019)
Non-li P th ; L = 1F FH 0 AL AH 6 A APV A
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Non-abelian extension of k=0 spin-1 shift symmetry:
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Symmetry breaking pattern: Jap =B
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Other higher spin interactions?

There is a series of algebras which result from finite

truncations of various higher spin algebras: Joung Mkrechyan (2015)
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Is there a shift-symmetric theory with an infinite tower of fields

coming from the longitudinal modes of Vasiliev theory?



Summary

« Massive fields of all spins on (A)dS develop shift symmetries at

particular values of the masses, labelled by an integer £=0,1,2...

* These fields correspond to the longitudinal modes of partially

massless gauge fields.

* We found interactions that preserve these symmetries in the
scalar case when k<2 (giving the AdS galileons and special

galileon) and in the vector case when k=0.
* Similar story for Fermions/SUSY  (co appear)

* We believe there are more complicated multi-field interacting
examples, perhaps including those with infinite numbers of fields

(longitudinal modes of Vasiliev).



