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Plan of the talk

@ Post-Newtonian parameters describing the compact binary inspiral

© Gravitational wave generation formalism for slow-moving isolated systems

e Toward 4.5PN parameters in orbital phase and 4PN in amplitude
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Post-Newtonian parameters describing the compact binary inspiral

The gravitational chirp of binary black holes

merger phase
inspiralling phase 1

ringdown phase

P

LA
gii\/\/\/\/\/\/\/\/\lu

Time

Luc Blanchet (GReCO) PN description of CBs



Post-Newtonian parameters describing the compact binary inspiral

The gravitational chirp of binary black holes
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Post-Newtonian parameters describing the compact binary inspiral

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1945]
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@ Einstein quadrupole formula

dE\® _ G [dQy 40y Lo (2)
dt 5¢5 | dt3  d#3 c

@ Amplitude quadrupole formula

2G ( d2Q;; R fl’ 1
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© Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

which is a 2.5PN ~ (v/c)° effect in the source’s equations of motion

Luc Blanchet (GReCO) PN description of CBs



Post-Newtonian parameters describing the compact binary inspiral

Radiation reaction and balance equations

© Conserved Newtonian energy in the source
2 U
E:/dgxp[‘;—l—ﬂ—v}

@ Eulerian equations of motion in the source k]
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© Energy loss is due to the work of the radiation reaction force

dE /dSX’U . freac — _id?’Qij dBQij

+ total time derivative

Wi 56 A3 did

@ Obtain the balance equation after averaging over one period

E)=-") = ¢= [wa=[Law
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Post-Newtonian parameters describing the compact binary inspiral

Application to CompaCt binal’ies [Peters & Mathews 1963; Peters 1964]

a semi-major axis of relative orbit
e eccentricity of relative orbit

w = 2% orbital frequency

M=m;+m I 1l
MZ—‘mmAZ;Q Rl e

Averaged energy and angular momentum balance equations

() = —(FEHI S - —ge)

are applied to a Keplerian orbit (using Kepler's law GM = w?a?)

(AP, _ 1927 (2nGM VR
dt Bes /o e c2)iee
de 6087 e [2nGM\"/® 14 1Z¢2

R T e 304
dt 15¢5 P P (1 — e2)5/2
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Post-Newtonian parameters describing the compact binary inspiral

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

© Compact binaries are circularized when they enter the detector’'s bandwidth

Mc? 32 ¢°
v pECWE a2

- e 5G

GMw
=

where z = ( )2/3 denotes a small PN parameter defined with w
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Post-Newtonian parameters describing the compact binary inspiral

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

© Compact binaries are circularized when they enter the detector’'s bandwidth

Mc? 32 ¢
B== 20 v ]:GW:EEG*ﬁxS
where z = (9%3)2/3 denotes a small PN parameter defined with w
@ Equating 4€ = —7°W gives a differential equation for z
de _64c® o & _9%v (GMuw 28
— = — =Y
dt 5 GM "~ w? 5 c?
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Post-Newtonian parameters describing the compact binary inspiral

Orbital phase evolution of compact binaries
[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

© Compact binaries are circularized when they enter the detector’'s bandwidth

Mc? 32 ¢
=Y ZCV:E fGW:5%V25
where z = (9%3)2/3 denotes a small PN parameter defined with w
@ Equating 4€ = —7°W gives a differential equation for z
de _64c® o & _9%v (GMuw 28
— = — =Y
dt 5 GM "~ w? 5 c?

© This permits to solve for the orbital phase

qS:/wdt:/gdw
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Post-Newtonian parameters describing the compact binary inspiral

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

@ The amplitude and phase evolution follow an adiabatic chirp in time

256 G3 M3 e
oft) = (25 - 0)
1 (256 ¢3 o
git) — o 32 (?é—]\l}(% = t))
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Post-Newtonian parameters describing the compact binary inspiral

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

@ The amplitude and phase evolution follow an adiabatic chirp in time

256 G M3 ¥
at) = (TC—5V(tc = t))
1 (256 & R
o(t) = ¢ — 390 <Té—]\l:[(tc = t))

@ The amplitude and orbital frequency diverge at the instant of coalescence ¢,
and the merger phase is to be described numerically
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l
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Gravitational Wave Signal

Luc Blanchet (GReCO) PN description of CBs



Post-Newtonian parameters describing the compact binary inspiral

The quadrupole formula works for GW150914

o The GW frequency is given in terms of the chirp mass M = 13/ M?%/5 by

pol[meEMR R
N E @ %
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Post-Newtonian parameters describing the compact binary inspiral

The quadrupole formula works for GW150914

o The GW frequency is given in terms of the chirp mass M = ;3/°M?/° by

—3/8

g

™

256 GMO/3
[5T(tc v t)]

@ Therefore the chirp mass is directly measured as

5 @ —11/3 § o

which gives M = 30M, thus M > 7T0M,
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Post-Newtonian parameters describing the compact binary inspiral

The quadrupole formula works for GW150914

o The GW frequency is given in terms of the chirp mass M = ;3/°M?/° by

—3/8

g

™

256 GM5/3
[5Cv5(tc ™ t)]

@ Therefore the chirp mass is directly measured as

5 @ —11/3 § o

which gives M = 30M, thus M > 7T0M,
@ The GW amplitude is predicted to be!

5/6 -1/6
100 M 100 H
B ~ 4.1 x 10~22 (1\/;) ( OOR pc) <f00 Z) ~ 1.685¢ 10-2L
(O] L merger

Lhest ~ hv/N where N ~ w? /& is the number of cycles around frequency w
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Post-Newtonian parameters describing the compact binary inspiral

The quadrupole formula works for GW150914

o The GW frequency is given in terms of the chirp mass M = ;3/°M?/° by
1 [256 GMS/3 &
= ?Cvs(tc i)

@ Therefore the chirp mass is directly measured as

5 @ —11/3 § o

™

which gives M = 30M, thus M > 7T0M,
@ The GW amplitude is predicted to be!

5/6 -1/6
100 M 100 H
B ~ 4.1 x 10~22 (1\/;) ( OOR pc) <f00 Z) ~ 1.685¢ 10-2L
(O] L merger

@ The distance R = 400 Mpc is measured from the signal itself [Schutz 1986]

Lhest ~ hv/N where N ~ w? /& is the number of cycles around frequency w
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Post-Newtonian parameters describing the compact binary inspiral

The inspiral-merger-ringdown models

lhGw(f)/1072 (Hz)

100 150 200 250 300
Frequency (Hz)

These models interpolate between the different phases play a crucial role
@ The effective-one-body (EOB) approach [Buonanno & Damour 1999]
@ The inspiral-merger-ringdown (IMR) [Ajith et a/. 2008]

{PN parameters; (2,03 ; ag,a3,04 }
— - & S—

inspiral intermediate merger-ringdown
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Post-Newtonian parameters describing the compact binary inspiral

PN parameters in the orbital phase evolution

Gravitational Wave Signal
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@ The PN parameters come from a mixture of conservative and dissipative
effects through the energy balance equation

conservative energy
d B
dt

GW

dissipative energy flux
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Post-Newtonian parameters describing the compact binary inspiral

PN parameters in the orbital phase evolution

| Wave Signal

005 006 007 008
Time

@ The PN parameters come from a mixture of conservative and dissipative
effects through the energy balance equation

conservative energy
d B
dt

]:GW

dissipative energy flux

3 ’ . ¥ 2/3
o The orbital phase ¢ = [wdt is obtained as a function of z = (E2«) /
R 0 . mim
the symmetric mass ratio v = m

and

BeEV2
o > (#oPn () + eD(v) log ) a7 + O[(log 2)?]
p
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Post-Newtonian parameters describing the compact binary inspiral

The knOWﬂ 3.5PN parameters [Blanchet 2014 for a review]

They are computed with the Multipolar-post-Minkowskian-PN formalism

PoPN
P1PN
©1.5PN

P2PN

O]

l
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P25PN —

P3PN =

35PN =

=L} <= Einstein quadrupole formula
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Post-Newtonian parameters describing the compact binary inspiral

Measurement of PN parameters [icovie
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Post-Newtonian parameters describing the compact binary inspiral

Inspiral-Merger-Ringdown consistency test [ico/vieo

Final spin a
o o o
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Gravitational wave generation formalism for slow-moving isolated systems
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Gravitational wave generation formalism for slow-moving isolated systems

Near zone/exterior zone split in PN expansions

exterior zone B +h
: near zone

GW

matter source

@ Multipole expansion in the exterior zone [Blanchet & Damour 1986]

M(h) = FPO! [(7 )M } +23L{ 7’/0)}

general retarded homogeneous solution
(with no incoming radiation)
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Gravitational wave generation formalism for slow-moving isolated systems

Near zone/exterior zone split in PN expansions

exterior zone B +h
: near zone

matter source

GW

@ Multipole expansion in the exterior zone [Blanchet & Damour 1986]

M(h) = FPO! [(7 )M } +23L{ 7’/0)}

general retarded homogeneous solution
(with no incoming radiation)

@ Post-Newtonian expansion in the near zone

B=FfoDre3[(,(, } +Z {RLt—r/c);RL(t—l-r/c)}

general homogeneous retarded-advanced solution
(regular when 7 — 0)

Luc Blanchet (G 2) PN description of CBs



Gravitational wave generation formalism for slow-moving isolated systems

Problem of the matching

[Lagerstrom et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

multipole expansion

exterior zone . oh
e matching zone

: near zone

matching equation = M (h) = M(h)
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Gravitational wave generation formalism for slow-moving isolated systems

Near-zone expansion of the multipole expansion

Lemma 1

EPOL |(£5)°M(4)] = EPOL [(5) M)

ZaL {RL (t—r/c) QTRL(t—l-T/C)}

antisymmetric type homogeneous solution

where the radiation reaction multipole moments are

+oo
RL(u):gEJ/d3 (= ) acL/l dzve(z) M(T)(x,t— 2r/c)

multipole expansion of the pseudo-tensor

The finite part at B = 0 plays the role of an UV regularization (r — 0)
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Gravitational wave generation formalism for slow-moving isolated systems

Far-zone expansion of the PN expansion

Lemma 2
i (FP O3} {(TO)B*D = FPO.) [(#)BM(f)]
Za { t—r/c)—l—fL(t—Fr/c)}

2r

symmetric type homogeneous solution

= FP/d3 a:L/ dzde(z) T(x t—zr/c)

PN expansion of the pseudo-tensor

The finite part at B = 0 plays the role of an IR regularization (r — +00)
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Gravitational wave generation formalism for slow-moving isolated systems

General solution of the matching equation

[Blanchet 1998; Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

@ In the external zone

My = PO [(2)PMW)] - S35, i e </

T

source's multipole moments

h= FP O [(;0 B ] faL{RL (t—r/c)— RL(t—I—T/c)}

r

non-local tail term (4PN- order)
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

Tail effects in PN parameters

wopN = 1
P1PN = %52 +
p15pn = | =107
popy = 15203365 , 27145, | 3085, 3
‘P%PN (e e
pspy = LZ4BOLL0%6451 _ 16072 17L2, 342419
(- SR o)+ 8
ngN = _%
v3sen = | (Sosezs T 12096 Y~ 6oas )T

tail terms
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The gravitational wave tail effect (sinchet & pamour 1988, 1992]

field point

@ In the near zone (4PN effect)

LGN dedt’ :
il (d (3) (yr
S S 508 // | t’| z] Izj (t )

@ In the far zone (1.5PN effect)

. 4GGM [* —
Rgl= 2o | WIPE)h (u - )
RO

matter source
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

Diagrammatic expansion in EFT
Effective Field Theory

_:
o
PN

Post-Newtonian

@ emission from a quadrupole source

o tail effect in radiation field (1.5PN)

@ non-linear memory effect (2.5PN)

o radiation reaction (2.5PN)

o tail in radiation reaction (4PN)

The EFT is equivalent to the traditional PN at the level of tree diagrams
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

Tail effects in PN parameters

wopn = 1

Sl | 5
PIPN = Tgog T 127

w15pn = | =107

_ 15203365 , 27145 3085 2
2PN = Toig064 T 1oos ¥ T T V

tail terms

tail-of-tail terms

3424
1 JE— S In2

5184

(1) (38645 _ 65
PPN = ( 1344 EV) w
_ 12348611926451 160 -2 _ 1712
¥Y3PN = T18776862720 3
15737765635 , 2255 2 760552 127825 3
+( 12192768 T 48 ”) + Bo12 15
1) _ es6
P3PN = T 21
_ (77096675 , 378515, 74045 2
P3.5PN = (2032128 + 2006 ¥ ~ “6oas ¥ )W
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

Toward 4.5PN parameters

@ The 4.5PN term is also known and due to the 4.5PN tail-of-tail-of-tail
integral for circular orbits [Marchand, Blanchet & Faye 2017; Messina & Nagar 2017]

il

904(1 gPN 7

93098188434443

(P4.5PN = (‘m

1492917260735
1072963584

856 T

_,’_80 2 4 17127 4 3424 In2
Al 22557T2] _ 45293335,,2
48 1016064

10323755, ,3 T
1596672

tail-of-tail-of-tail terms
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

Toward 4.5PN parameters

@ The 4.5PN term is also known and due to the 4.5PN tail-of-tail-of-tail
integral for circular orbits [Marchand, Blanchet & Faye 2017; Messina & Nagar 2017]

_(_93098188434443 /80 2 | 1712 3424
{PaLEPN = ( 50514901760 T3 & + oy JE+ 57 In2
1492917260735 _ 2255,.2] ., 452933352 _ 10323755, 3
e [ 1072963584 Rl ] V' = T016064 1596672 © )”
@) _ Eee of-tail-of-tai
aspn = o1 T tail-of-tail-of-tail terms

@ However the 4PN term is only known from perturbative BH theory in the
test-mass limit 7 — O [Tagoshi & Sasaki 1994; Tanaka, Tagoshi & Sasaki 1996]

PaPN =

1)
Soz(lPN G

2550713843998885153 _ 45245
2214468081745920 756

——718596785 In3+ O(v)

2 9203
T ME

_ 2527551, 9

(4 2646

9203
252

+ O(v)
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The 4.5PN radiative quadrupole moment

A BSER
Ui;(t) = Ii(j)(t) I VT g dTI,l-(;-l)(t —7) [2 In <QTO> A 6]

1.5PN tail integral

ERIERN )
o 5{—7/ dTIgQJ;iL@ — 7) + instantaneous terms}
C 0 i

2.5PN memory integral

@Rl B o b7 T 124627
dr;V(t—7) [2In* [ — | + =In | —

e /O L G <270> o3 n<2m) * 22050 |

3PN tail-of-tail integral

GRS IR 5 JAR e e 129268 1 AIR
dr(t—7) |z — )+ + oo + ==7°
i /O il o o <2m> ST T

4.5PN tail-of-tail-of-tail integral
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The source type multipole moments

Following the matching between the near zone and the exterior zone

v i 4(2¢+1) il
Shobn et B/ BT - i, Ty
/d 1dz{5"“ PR

2(20+1) RN o) TZ
A it
T AT DT @i+ ) 2 Bt B (e1-7)

1l
fn = / dx (L) Peqp / dz{égi*LDaEb
—1

2041 E ) 2
1) R Y t— —
o2 (PR LB o ~be (’” c )
=00 =it =0z
i:sz_L SRR _ i
C C

where 7" represents the PN expansion of the matter + gravitation stress-energy
pseudo tensor (a priori valid only in the near zone)
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The 4PN mass type quadrupole moment

[Marchand, Henry, Larrouturou, Marsat, Faye & Blanchet 2020]

@ Using dimensional regularisation for UV but Hadamard regularization for IR

1
&

)

461

1512

)+

A:l+7(—é—%y> +72(

+7°( (

T0

395800 _ 428 1,

3304319
13200 ~ 105

166320

18395
1512

241
1512

)
()]

3PN terms

_ 1023844001989 31886 hl(

12713500800

el
7o

4
ot ( + %205

st

J

4PN terms
2.5PN and 3.5PN terms
v)

+7(

O =28

_ 4096 _ 24512
i

315 945

@ This result has to be completed by dimensional regularization for the IR
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The 3.5PN gravitational-wave (¢, m) = (2,2) mode

+o0 4

o S SN (=

(=0 tin=="7
@ The modes can be compared directly with results from numerical relativity

@ The dominant mass-type quadrupole mode is

3/2
H22:1+x(—%+%u)+2m@/

2l 2173 . 1069 2047 2 BB 10 Ay 34
tz ( 1512 216V+1512V)+$ ( 21 24iv + 57 ’/)

3 [ 27027409 _ 856 428 7: | 2w
tz ( 646800 105 YET To5 1 T 53

272185 AT 2O 126110,2 1146353 . 428
+< 33264 1 96 ) 272 Vo 1 Sor0z V 105 1n(16:n))

+a"2 (20 4 (R + 4B v+ (F - SR V)

@ The (¢,m) = (2,2) mode at 4PN order is in progress

PN description of CBs
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The 3PN current type quadrupole moment

[Henry, Faye & Blanchet 2021]

@ We need dimensional regularisation for the UV but Hadamard regularization
is sufficient for the IR

@ To apply dimensional regularization we define the decomposition of a tensor
into irreducible pieces in d dimensions (where we do not have the usual S
to define the current moment)

@ The mass moment [y, is given by the usual STF moment, but the
generalization of the current moment involves two tensors J; 1, and Kjj1,
having the symmetries of mixed Young tableaux

1 =[oe] -]
ek i, __ | 2o [Te—1fte—2f --
Ji|L_ ZZ- Kij]L— G Ra Rt

e

@ The tensor Kjj, is absent in 3 dimensions

(AT, (27 1 d 2 o) (LeE e

t(components) = 200 +1)(¢ — 2)!
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The 3PN current type quadrupole moment

[Henry, Faye & Blanchet 2021]

o After dimensional regularization and renormalization

Jij = —pA [AL“xﬂ +} Lo (;)

G 2 2(13 _ 4651 V2
A=1+(5 - v}t (3‘@”‘@)*“

@ The corresponding (¢, m) = (2,1) mode at 3.5PN order reads

L -;;A[xl/2+m3/2(—% +3) 4 2?(n+i[-1 —2In2])

+$5/2(_ 43 _ 509y 791/2)

126 126 168
3 i 3v o[ L7 353 3 iy
+o7/2 (1520 4 27— Aye — Wn(42) ~ In2 - 2(In2)?

021020 5 M0 R O 108 3 L0 03 300 - 1) O
+’{ 2376 +1287T] s316Y T 33167 er{ ZIHZD}

210
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