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Post-Newtonian parameters describing the compact binary inspiral

POST-NEWTONIAN PARAMETERS
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Post-Newtonian parameters describing the compact binary inspiral

The gravitational chirp of binary black holes
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Post-Newtonian parameters describing the compact binary inspiral

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1945]

1 Einstein quadrupole formula(
dE

dt

)GW

=
G

5c5

{
d3Qij

dt3
d3Qij

dt3
+O

(v
c

)2}
2 Amplitude quadrupole formula

hTT
ij =

2G

c4R

{
d2Qij

dt2

(
t− R

c

)
+O

(v
c

)}TT

+O
(

1

R2

)
3 Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

F reac
i = − 2G

5c5
ρ xj

d5Qij
dt5

+O
(v
c

)7
which is a 2.5PN ∼ (v/c)5 effect in the source’s equations of motion
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Post-Newtonian parameters describing the compact binary inspiral

Radiation reaction and balance equations

1 Conserved Newtonian energy in the source

E =

∫
d3x ρ

[
v2

2
+ Π− U

2

]
2 Eulerian equations of motion in the source

ρ
dvi

dt
= −∂iP + ρ∂iU −

F reac︷ ︸︸ ︷
2G

5c5
ρ xj

d5Qij
dt5

3 Energy loss is due to the work of the radiation reaction force

dE

dt
=

∫
d3xv · F reac = − G

5c5
d3Qij

dt3
d3Qij

dt3
+ total time derivative

4 Obtain the balance equation after averaging over one period

〈dE
dt
〉 = −〈FGW〉 =⇒ φ =

∫
ω dt =

∫
ω

ω̇
dω
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Post-Newtonian parameters describing the compact binary inspiral

Application to compact binaries [Peters & Mathews 1963; Peters 1964]

m

m

1

2

1

2

v

v

 a semi-major axis of relative orbit
e eccentricity of relative orbit
ω = 2π

P orbital frequency

M = m1 +m2

µ = m1m2

M

ν =
µ

M
0 < ν 6

1

4

Averaged energy and angular momentum balance equations

〈dE
dt
〉 = −〈FGW〉 〈dJi

dt
〉 = −〈GGW

i 〉

are applied to a Keplerian orbit (using Kepler’s law GM = ω2a3)

〈dP
dt
〉 = −192π

5c5
ν

(
2πGM

P

)5/3 1 + 73
24e

2 + 37
96e

4

(1− e2)7/2

〈de
dt
〉 = −608π

15c5
ν
e

P

(
2πGM

P

)5/3 1 + 121
304e

2

(1− e2)5/2
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Post-Newtonian parameters describing the compact binary inspiral

Orbital phase evolution of compact binaries
[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

1 Compact binaries are circularized when they enter the detector’s bandwidth

E = −Mc2

2
ν x FGW =

32

5

c5

G
ν2x5

where x =
(
GMω
c3

)2/3
denotes a small PN parameter defined with ω

2 Equating dE
dt = −FGW gives a differential equation for x

dx

dt
=

64

5

c3ν

GM
x5 ⇐⇒ ω̇

ω2
=

96ν

5
ν

(
GMω

c3

)5/3

3 This permits to solve for the orbital phase

φ =

∫
ω dt =

∫
ω

ω̇
dω
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Post-Newtonian parameters describing the compact binary inspiral

Orbital phase evolution of compact binaries
[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

1 The amplitude and phase evolution follow an adiabatic chirp in time

a(t) =

(
256

5

G3M3ν

c5
(tc − t)

)1/4

φ(t) = φc −
1

32ν

(
256

5

c3ν

GM
(tc − t)

)5/8

2 The amplitude and orbital frequency diverge at the instant of coalescence tc
and the merger phase is to be described numerically
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Post-Newtonian parameters describing the compact binary inspiral

The quadrupole formula works for GW150914

The GW frequency is given in terms of the chirp mass M = µ3/5M2/5 by

f =
1

π

[
256

5

GM5/3

c5
(tc − t)

]−3/8
Therefore the chirp mass is directly measured as

M =

[
5

96

c5

Gπ8/3
f−11/3ḟ

]3/5
which gives M = 30M� thus M > 70M�

The GW amplitude is predicted to be1

heff ∼ 4.1× 10−22
(M
M�

)5/6(
100 Mpc

R

)(
100 Hz

fmerger

)−1/6
∼ 1.6× 10−21

The distance R = 400 Mpc is measured from the signal itself [Schutz 1986]

1heff ∼ h
√
N where N ∼ ω2/ω̇ is the number of cycles around frequency ω
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Post-Newtonian parameters describing the compact binary inspiral

The inspiral-merger-ringdown models
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Frequency (Hz)

1.00
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|h G
W

(f
)|/

10
−2

2
(H

z)

inspiral intermediate merger
ringdown

These models interpolate between the different phases play a crucial role

The effective-one-body (EOB) approach [Buonanno & Damour 1999]

The inspiral-merger-ringdown (IMR) [Ajith et al. 2008]

{PN parameters︸ ︷︷ ︸
inspiral

; β2, β3︸ ︷︷ ︸
intermediate

; α2, α3, α4︸ ︷︷ ︸
merger-ringdown

}
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Post-Newtonian parameters describing the compact binary inspiral

PN parameters in the orbital phase evolution

The PN parameters come from a mixture of conservative and dissipative
effects through the energy balance equation

d

conservative energy︷︸︸︷
E

dt
= − FGW︸︷︷︸
dissipative energy flux

The orbital phase φ =
∫
ω dt is obtained as a function of x =

(
GMω
c3

)2/3
and

the symmetric mass ratio ν = m1m2

(m1+m2)2

φ(x) = φ0 −
x−5/2

32ν

∑
p

(
ϕpPN(ν) + ϕ

(l)
pPN(ν) log x

)
xp +O[(log x)2]
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Post-Newtonian parameters describing the compact binary inspiral

The known 3.5PN parameters [Blanchet 2014 for a review]

They are computed with the Multipolar-post-Minkowskian-PN formalism

ϕ0PN = 1 ⇐= Einstein quadrupole formula

ϕ1PN = 3715
1008 + 55

12ν

ϕ1.5PN = −10π

ϕ2PN = 15293365
1016064 + 27145

1008 ν + 3085
144 ν

2

ϕ
(l)
2.5PN =

(
38645
1344 − 65

16ν
)
π

ϕ3PN = 12348611926451
18776862720 − 160

3 π2 − 1712
21 γE − 3424

21 ln 2

+
(
− 15737765635

12192768 + 2255
48 π2

)
ν + 76055

6912 ν
2 − 127825

5184 ν3

ϕ
(l)
3PN = − 856

21

ϕ3.5PN =
(
77096675
2032128 + 378515

12096 ν − 74045
6048 ν

2
)
π
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Post-Newtonian parameters describing the compact binary inspiral

Measurement of PN parameters [LIGO/Virgo]
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Post-Newtonian parameters describing the compact binary inspiral

Inspiral-Merger-Ringdown consistency test [LIGO/Virgo]
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Gravitational wave generation formalism for slow-moving isolated systems

GRAVITATIONAL WAVE GENERATION FORMALISM
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Gravitational wave generation formalism for slow-moving isolated systems

Near zone/exterior zone split in PN expansions

GW

h

r

exterior zone
near zone

matter source

m
m

1

2

Multipole expansion in the exterior zone [Blanchet & Damour 1986]

M(h) = FP
B=0
�−1ret

[
( rr0 )BM(Λ)

]
+

+∞∑
`=0

∂L

{
FL(t− r/c)

r

}
︸ ︷︷ ︸

general retarded homogeneous solution
(with no incoming radiation)

Post-Newtonian expansion in the near zone

h̄ = FP
B=0
�−1ret

[
( rr0 )B τ̄

]
+

+∞∑
`=0

∂L

{
RL(t− r/c)−RL(t+ r/c)

r

}
︸ ︷︷ ︸

general homogeneous retarded-advanced solution
(regular when r → 0)
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Gravitational wave generation formalism for slow-moving isolated systems

Problem of the matching
[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

m
m

1

2

PN expansion

multipole expansion

actual solution

h

r

exterior zone

near zone

matching zone

matching equation =⇒ M(h) =M(h̄)
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Gravitational wave generation formalism for slow-moving isolated systems

Near-zone expansion of the multipole expansion

Lemma 1

FP
B=0
�−1ret

[
( rr0 )BM(Λ)

]
= FP
B=0
�−1sym

[
( rr0 )BM(Λ)

]
− 4G

c4

+∞∑
`=0

∂L

{RL(t− r/c)−RL(t+ r/c)

2r

}
︸ ︷︷ ︸

antisymmetric type homogeneous solution

where the radiation reaction multipole moments are

RL(u) = FP
B=0

∫
d3x ( rr0 )B x̂L

∫ +∞

1

dz γ`(z) M(τ)(x, t− zr/c)︸ ︷︷ ︸
multipole expansion of the pseudo-tensor

The finite part at B = 0 plays the role of an UV regularization (r → 0)
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Gravitational wave generation formalism for slow-moving isolated systems

Far-zone expansion of the PN expansion

Lemma 2

M
(

FP
B=0
�−1sym

[
( rr0 )B τ̄

])
= FP
B=0
�−1sym

[
( rr0 )BM(τ̄)

]
− 1

4π

+∞∑
`=0

∂L

{FL(t− r/c) + FL(t+ r/c)

2r

}
︸ ︷︷ ︸

symmetric type homogeneous solution

FL(u) = FP
B=0

∫
d3x ( rr0 )B x̂L

∫ 1

−1
dz δ`(z) τ̄(x, t− zr/c)︸ ︷︷ ︸

PN expansion of the pseudo-tensor

The finite part at B = 0 plays the role of an IR regularization (r → +∞)
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Gravitational wave generation formalism for slow-moving isolated systems

General solution of the matching equation
[Blanchet 1998; Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

1 In the external zone

M(h) = FP
B=0
�−1ret

[
( rr0 )BM(Λ)

]
− 4G

c4

+∞∑
`=0

∂L

{FL(t− r/c)
r

}
︸ ︷︷ ︸

source’s multipole moments

2 In the near zone

h̄ = FP
B=0
�−1ret

[
( rr0 )B τ̄

]
− 4G

c4

+∞∑
`=0

∂L

{RL(t− r/c)−RL(t+ r/c)

r

}
︸ ︷︷ ︸

non-local tail term (4PN+ order)
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

TOWARD 4.5PN PARAMETERS
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

Tail effects in PN parameters

ϕ0PN = 1 tail terms

ϕ1PN = 3715
1008 + 55

12ν

ϕ1.5PN = −10π

ϕ2PN = 15293365
1016064 + 27145

1008 ν + 3085
144 ν

2

ϕ
(l)
2.5PN =

(
38645
1344 − 65

16ν
)
π

ϕ3PN = 12348611926451
18776862720 − 160

3 π2 − 1712
21 γE − 3424

21 ln 2

+
(
− 15737765635

12192768 + 2255
48 π2

)
ν + 76055

6912 ν
2 − 127825

5184 ν3

ϕ
(l)
3PN = − 856

21

ϕ3.5PN =
(
77096675
2032128 + 378515

12096 ν − 74045
6048 ν

2
)
π
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The gravitational wave tail effect [Blanchet & Damour 1988, 1992]

4PN

1.5PN

matter source

field point

In the near zone (4PN effect)

Stail =
G2M

5c8

∫∫
dtdt′

|t− t′| I
(3)
ij (t) I

(3)
ij (t′)

In the far zone (1.5PN effect)

htailij =
4G

c4r

GM

c3

∫ u

−∞
du′I

(4)
ij (u′) ln

(
u− u′
P

)
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

Diagrammatic expansion in EFT
Effective Field Theory Post-Newtonian

⇐⇒

emission from a quadrupole source

tail effect in radiation field (1.5PN)

non-linear memory effect (2.5PN)

radiation reaction (2.5PN)

tail in radiation reaction (4PN)

The EFT is equivalent to the traditional PN at the level of tree diagrams
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

Tail effects in PN parameters

ϕ0PN = 1 tail terms

ϕ1PN = 3715
1008 + 55

12ν tail-of-tail terms

ϕ1.5PN = −10π

ϕ2PN = 15293365
1016064 + 27145

1008 ν + 3085
144 ν

2

ϕ
(l)
2.5PN =
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16ν
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

Toward 4.5PN parameters

The 4.5PN term is also known and due to the 4.5PN tail-of-tail-of-tail
integral for circular orbits [Marchand, Blanchet & Faye 2017; Messina & Nagar 2017]

ϕ4.5PN =
(
− 93098188434443

150214901760 + 80
3 π

2 + 1712
21 γE + 3424

21 ln 2

+
[
1492917260735
1072963584 − 2255

48 π2
]
ν − 45293335

1016064 ν
2 − 10323755

1596672 ν
3
)
π

ϕ
(l)
4.5PN = 856

21 π tail-of-tail-of-tail terms

However the 4PN term is only known from perturbative BH theory in the
test-mass limit ν → 0 [Tagoshi & Sasaki 1994; Tanaka, Tagoshi & Sasaki 1996]

ϕ4PN = 2550713843998885153
2214468081745920 − 45245

756 π2 − 9203
126 γE − 252755

2646 ln 2

− 78975
1568 ln 3 + O(ν)

ϕ
(l)
4PN = − 9203

252 + O(ν)

Luc Blanchet (GRεCO) PN description of CBs NL 27 / 33



Toward 4.5PN parameters in orbital phase and 4PN in amplitude

Toward 4.5PN parameters

The 4.5PN term is also known and due to the 4.5PN tail-of-tail-of-tail
integral for circular orbits [Marchand, Blanchet & Faye 2017; Messina & Nagar 2017]

ϕ4.5PN =
(
− 93098188434443

150214901760 + 80
3 π

2 + 1712
21 γE + 3424

21 ln 2

+
[
1492917260735
1072963584 − 2255

48 π2
]
ν − 45293335

1016064 ν
2 − 10323755

1596672 ν
3
)
π

ϕ
(l)
4.5PN = 856

21 π tail-of-tail-of-tail terms

However the 4PN term is only known from perturbative BH theory in the
test-mass limit ν → 0 [Tagoshi & Sasaki 1994; Tanaka, Tagoshi & Sasaki 1996]

ϕ4PN = 2550713843998885153
2214468081745920 − 45245

756 π2 − 9203
126 γE − 252755

2646 ln 2

− 78975
1568 ln 3 + O(ν)

ϕ
(l)
4PN = − 9203

252 + O(ν)

Luc Blanchet (GRεCO) PN description of CBs NL 27 / 33



Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The 4.5PN radiative quadrupole moment

Uij(t) = I
(2)
ij (t) +

GM

c3

∫ +∞

0

dτI
(4)
ij (t− τ)

[
2 ln

(
τ

2τ0

)
+

11

6

]
︸ ︷︷ ︸

1.5PN tail integral

+
G

c5

{
−2

7

∫ +∞

0

dτI
(3)
a<iI

(3)
j>a(t− τ)︸ ︷︷ ︸

2.5PN memory integral

+ instantaneous terms

}

+
G2M2

c6

∫ +∞

0

dτI
(5)
ij (t− τ)

[
2 ln2

(
τ

2τ0

)
+

57

35
ln

(
τ

2τ0

)
+

124627

22050

]
︸ ︷︷ ︸

3PN tail-of-tail integral

+
G3M3

c9

∫ +∞

0

dτI
(6)
ij (t− τ)

[
4

3
ln3

(
τ

2τ0

)
+ · · ·+ 129268

33075
+

428

315
π2

]
︸ ︷︷ ︸

4.5PN tail-of-tail-of-tail integral

+O
(

1

c10

)
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The source type multipole moments

Following the matching between the near zone and the exterior zone

IL = FP
B=0

∫
d3x ( rr0 )B

∫ 1

−1
dz

{
δ` x̂L Σ− 4(2`+ 1)

c2(`+ 1)(2`+ 3)
δ`+1 x̂iL Σ

(1)

i

+
2(2`+ 1)

c4(`+ 1)(`+ 2)(2`+ 5)
δ`+2 x̂ijL Σ

(2)

ij

}(
x, t− rz

c

)
JL = FP

B=0

∫
d3x ( rr0 )Bεab〈i`

∫ 1

−1
dz

{
δ`x̂L−1〉aΣb

− 2`+ 1

c2(`+ 2)(2`+ 3)
δ`+1x̂L−1〉acΣ

(1)

bc

}(
x, t− rz

c

)

Σ =
τ00 + τ ii

c2
Σi =

τ0i

c
Σij = τ ij

where τµν represents the PN expansion of the matter + gravitation stress-energy
pseudo tensor (a priori valid only in the near zone)
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The 4PN mass type quadrupole moment
[Marchand, Henry, Larrouturou, Marsat, Faye & Blanchet 2020]

Using dimensional regularisation for UV but Hadamard regularization for IR

Iij = µAx〈ixj〉 + · · ·+O
(

1

c9

)
A = 1 + γ

(
− 1

42 − 13
14ν
)

+ γ2
(
− 461

1512 − 18395
1512 ν − 241

1512ν
2
)

+ γ3
(

395899
13200 − 428

105 ln
(
r
r0

)
+
[
3304319
166320 − 44

3 ln
(
r
r′0

)]
ν + · · ·

)
︸ ︷︷ ︸

3PN terms

+ γ4
(
− 1023844001989

12713500800 + 31886
2205 ln

(
r
r0

)
+ · · ·

)
︸ ︷︷ ︸

4PN terms

C =

2.5PN and 3.5PN terms︷ ︸︸ ︷
48
7 + γ

(
− 4096

315 − 24512
945 ν

)
This result has to be completed by dimensional regularization for the IR
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The 3.5PN gravitational-wave (`,m) = (2, 2) mode

h+ − ih× =

+∞∑
`=2

∑̀
m=−`

h`m Y `m−2 (Θ,Φ)

The modes can be compared directly with results from numerical relativity

The dominant mass-type quadrupole mode is

H22 = 1 + x
(
− 107

42 + 55
42ν
)

+ 2πx3/2

+ x2
(
− 2173

1512 − 1069
216 ν + 2047

1512ν
2
)

+ x5/2
(
− 107π

21 − 24 i ν + 34π
21 ν

)
+ x3

(
27027409
646800 − 856

105 γE + 428π
105 i + 2π2

3

+
(
− 278185

33264 + 41π2

96

)
ν − 20261

2772 ν
2 + 114635

99792 ν
3 − 428

105 ln(16x)

)
+ x7/2

(
− 2173π

756 +
(
− 2495π

378 + 14333
162 i

)
ν +

(
40π
27 − 4066

945 i
)
ν2
)

The (`,m) = (2, 2) mode at 4PN order is in progress
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The 3PN current type quadrupole moment
[Henry, Faye & Blanchet 2021]

We need dimensional regularisation for the UV but Hadamard regularization
is sufficient for the IR

To apply dimensional regularization we define the decomposition of a tensor
into irreducible pieces in d dimensions (where we do not have the usual εijk
to define the current moment)

The mass moment IL is given by the usual STF moment, but the
generalization of the current moment involves two tensors Ji|L and Kij|L
having the symmetries of mixed Young tableaux

IL = i` ... i1

Ji|L = i` i`−1 ... i1

i

Kij|L = i` i`−1i`−2 ... i1

j i

The tensor Kij|L is absent in 3 dimensions

](components) =
(d− 3)d(d− 1)`−2(2`+ d− 2)(`+ d− 1)

2`(`+ 1)(`− 2)!
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Toward 4.5PN parameters in orbital phase and 4PN in amplitude

The 3PN current type quadrupole moment
[Henry, Faye & Blanchet 2021]

After dimensional regularization and renormalization

Jij = −µ∆
[
AL〈ixj〉 + · · ·

]
+O

(
1

c7

)
A = 1 + γ

(
67
28 − 2

7ν
)

+ γ2
(

13
9 − 4651

252 ν − ν2

168

)
+ · · ·

The corresponding (`,m) = (2, 1) mode at 3.5PN order reads

H21 =
i

3
∆

[
x1/2 + x3/2

(
− 17

28 + 5ν
7

)
+ x2

(
π + i

[
− 1

2 − 2 ln 2
])

+ x5/2
(
− 43

126 − 509ν
126 + 79ν2

168

)
+ x3

(
π
[
− 17

28 + 3ν
14

]
+ i
[
17
56 + ν

(
− 353

28 − 3
7 ln 2

)
+ 17

14 ln 2
])

+x7/2
(

15223771
1455300 + π2

6 − 214
105γE − 107

105 ln(4x)− ln 2− 2(ln 2)2

+ ν
[
− 102119

2376 + 205
128π

2
]
− 4211

8316ν
2 + 2263

8316ν
3 + iπ

[
109
210 − 2 ln 2

])]
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