Disk & Planet dynamics

Pablo Benítez-Llambay

Assistant Professor pbllambay@nbi.ku.dk

MSc day - 9/10/2020

From galaxy clusters to protoplanetary disks

DSHARP

"Disk substructures at high Angular resolution Project"

Credits: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello

Some fundamental questions...

Are the observed structures evidence of ongoing planet formation? Are these the effects of already formed planets?

Example: Saturn rings

Credits: Cassini mission

A characterization of solid dynamics/evolution in a protoplanetary disk is crucial to understand how planets form.

- Solids evolve in time, both in mass and size.
 Disks are formed by a dust-size distribution.
- 3. Planets form embedded in a disk.

Astrophysical fluid dynamics applied to protoplanetary disks

- Planet-disk interactions including
 - Radiation
 - Magnetic fields
 - Dust dynamics
 - Multi-planet systems
 - Self-gravity
- Dust dynamics in multi-species disks
 - Gas/dust instabilities
- Code development and Numerical methods
 FARGO3D (see http://fargo.in2p3.fr/)

Present and future of the multi-fluid code FARG03D

Publicly released the multi-fluid feature

In collaboration with Leonardo Krapp.

Dust diffusion Module

In collaboration with Philipp Weber and Leonardo Krapp.

Poisson solver

In collaboration with Christopher Andersen and Peter Rodenkirch. Parallelization by fluids Nested meshes In collaboration with David Velasco and Leonardo Krapp.

Dust evolution models?

FARGO3D Multi-fluid

