Active Self-Organizing Matter

Amin Doostmohammadi

Niels Bohr International Academy

NBIA MSc day, October 2020

Active matter: nature's engines that power life

Each individual cell works as an engine: consumes energy to create motion

https://www.youtube.com/watch?v=hacbn_xcZdU

Active matter: nature's engines that power life

- Out of thermodynamic equilibrium
- Local energy injection
- Collective Motion
 - E. coli bacteria

Cellular tissue

Bacterial swarm, Wensink et al, PNAS (2012)

Benoit Ladoux's Lab, CNRS, Paris

Significance

Biology and Health

Cell invasion

Organ development (morphogenesis)

Provide fundamental understanding of the physics of living systems

Breast cancer cells, Lene Oddershede, NBI

Fly embryo, Tomer, et al., Nature. Meth., 2012

(bio) Technology
Biomimetic design / micromachines
Mi Emulate nature to make materials capable of self-organisation
10 μm

Microgears in bacterial bath, Sokolov et al., PNAS, 2010

Self-deforming droplets, Keber et al., Science, 2014

Cell Competition

with Oliver Meacock (Oxford Zoology) William Durham (University of Sheffield)

Two competing bacteria types

- Make fast moving and slow moving bacteria, which one spreads faster?
- Pseudomonas. aeruginosa: infectious, antibiotic resistant bacteria

Slow vs fast bacteria: collective invasion

• Individual $\Delta pilH$ cells are ~ 2 times faster than individual WT cells

Slow moving bacteria (normal) outcompetes the fast (hyper-mutated) one !

Competition in a mixture of fast & slow bacteria

• Mixing fast moving and slow moving bacteria, which one spreads faster?

Slow moving bacteria (normal) outcompetes the fast (hyper-mutated) one !

Bacteria stand up when two defects collide

Fast defect collision pushes bacteria out of plane

Defects collision in fast moving rods

Evolutionary speed-limit on bacterial colonies

Fast bacteria get trapped in structures of their own creation

Experiments:

Side

000

fast moving bacteria (yellow) stand up when two defects approach and once stood up they can not spread anymore

NA AMERICAN PROVIDENT OF THE OWNER OF THE ADDRESS OF THE ADDRESS OF

Project: analytical + computational

Calculating the flow field associated with rosettes

Involves:

- mean field theory of active liquid crystal
- topological excitations ۲
- Green's function calculation ٠
- Collaboration with experimental group in Oxford ۲

Are they half-skyrmions?

Skyrmions are topological solitons reported in Bose-Einstein condensates, superconductors, thin magnetic films, and chiral nematic liquid crystals.

"Polar jets of bacteria carry microscopic cargoes", Nature Physics 2020 "Binding self-propelled topological defects in active turbulence", Phys. Rev. Research 2020

Experimentally measured flow field

Cell Decision-making

Cells sense mechanical forces

Renaissance in Biophysics

- Force measurement at single cell and at tissue level
- Mechanotransduction:

read mechanical cues \rightarrow translate into cell function (cell division/death, migration)

• Master regulator: YAP (yes-associated protein)

Mechanical forces determine cell response

• Reading forces by shuttling protein (YAP) between nucleus & cytoplasm:

Defects control cell death

cells die and expelled in this area

High levels of mechanical stress at topological defects

del

Resol phase

This makes topological defects hotspots for cell death & extrusion in epithelia

80

-80-40 0

x (µm)

40 80

(mm)

-50 0 50 Pa μm ⁵⁰ "Topological defects in epithelia govern cell apoptosis and extrusion", Nature (2017) "Emergence of active nematic behavior in monolayers of isotrorpic cells", PRL (2019)

Project: Analytical + computational

Studying the defects in stress field & their crosstalk with defects in orientation field

Involves:

- mean field theory of active liquid crystal
- topological defects
- Numerical simulations of active matter
- Collaboration with experimental groups in Paris & Japan

Do they have a biological functionality?

We examine a hypothesis that defects in stress field are responsible for gap formation in tissues.

Gap formation in cells lining surface of blood vessels

Bioinspired, Self-Pumping Fluid

Bioinspired self-organizing matter

System made of subcellular filaments + motor protein

"Active nematics", Nature comm, 2018

• : +1/2 defects

Are active flows always disorderly?

Filaments organise themselves into a shear flow when put under confinement

Francesc Sagues's Lab, Barcelona

Self-pumping flows emerge

- Spontaneous symmetry breaking in a racetrack geometry: Material moves as one coherent unit
- Universality of self-pumping:

Occurs in cells, bacteria, subcellular filaments

Microtubules racetrack

Project: Analytical + computational

Under what physical conditions self-pumping flows can be created?

Involves:

- Lattice-Boltzmann simulations of active fluids
- Examining the effect of boundary properties
- Collaboration with experimental group in Barcelona &theoretical group in Oxford

"Active nematics", Nature comm, 2018 "Flow states and transitions of an Active Nematic in a Three-Dimensional Channel", Phys. Rev. Lett., 2020

Designing a Material that Evolves

Bioinspired self-organizing matter

System made of subcellular filaments + motor protein

Sanchez et al., Nature 2012 Guillamat et al., PNAS 2016

• : +1/2 defects

Doostmohammadi, Ignés, Yeomans, Sagués., "Active nematics", Nature comm, 2018

Topological control of active matter?

Self-deforming vesicles

Keber et al., Science (2015)

Activity controls the morphology of the shell

Project: Computational

Studying local activity to control the shape

Involves:

- Lattice-Boltzmann method
- Phase-field formulation
- Machine learning and neural networks
- Collaboration with experimental groups in Barcelona and Santa Barbara

"Topology & morphology of self-deforming active shells", Phys. Rev. Lett. (2019)

Active Self-organizing Matter

What is New

- A physics understanding of fundamental biological processes
- Designing new ways of controlling active materials

What is Exciting

- To predict cell fate based on its mechanical features
- To program materials that are capable of self-organization, self pumping, self-healing
- To work on interdisciplinary projects with international collaborations

Projects

- Cell competition: calculating flow fields of half-skyrmions
- Cell decision-making: studying stress topological defects
- Self-pumping fluids: how they emerge?
- Designing materials that evolve

What you gain

Being part of a

- diverse
- collaborative
- Interdisciplinary (condensed matter physics | fluid mechanics | mathematics | biochemistry)
 group

Expand your future career prospects

In academia

• Previous students now PhD in Oxford, Cambridge, Stanford

Outside academia

- Demand for physicists with the knowledge of statistical mechanics, pattern formation
- Previous students now in Goldman Sacks, JP Morgan, Nordea

www.doostmohammadilab.com