

Neutrino Astrophysics

Markus Ahlers, Mauricio Bustamante, D. Jason Koskinen & Irene Tamborra MSc Day, October 9, 2020

Who are we?

Prof. Irene Tamborra tamborra@nbi.ku.dk

Asst. Prof. Mauricio Bustamante mbustamante@nbi.ku.dk

Prof. D. Jason Koskinen koskinen@nbi.ku.dk

Asst. Prof. Markus Ahlers markus.ahlers@nbi.ku.dk

Neutrino Astrophysics

The Elusive Neutrino

three neutrino flavours

- very small masses (unknown origin)
- large mixing between flavour and mass states (unknown mechanism)
- 2nd most abundant particle in the Universe (impact on cosmology)
- unique probe of high-energy astrophysics

Standard Model of Particle Physics

(+ Higgs boson)

Neutrinos as Cosmic Messengers

Unique abilities of **cosmic neutrinos**:

no deflection in magnetic fields (unlike cosmic rays)

no absorption in cosmic backgrounds (unlike gamma-rays)

smoking-gun of unknown sources of cosmic rays

coincident with photons and gravitational waves

BUT, very difficult to detect!

Neutrino Astrophysics

Powerful Probes in Astrophysics

Neutrinos provide us with:

Neutrinos are copiously produced in astrophysical sources, e.g.

Non-Anthropogenic Neutrino Fluxes

Non-Anthropogenic Neutrino Fluxes

Neutrino Astrophysics

Neutrino Flavor Oscillations

Neutrino Astrophysics

Neutrinos in Supernovae and Mergers

Neutrino Interactions

Understood phenomenon.

Neutrinos interact with neutrons, protons and electrons.

We still need to learn a lot about this process!

Stellar Nucleosynthesis

Elements heavier than iron are born in supernovae and neutron-star mergers.

Synthesis of new elements could not happen without neutrinos.

$$n + \nu_{e} + e^{+} p$$

$$p + \overline{\nu_{e}} + e^{+} n$$

Neutrino Astrophysics

Neutrinos In & From Cosmic Accelerators

Multi-Messenger Astronomy

Acceleration of charged nuclei (**cosmic rays**) - especially in the aftermath of cataclysmic events, sometimes visible in **gravitational waves**.

Secondary **neutrinos** and **gamma-rays** from pion decays:

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \qquad \pi^{0} \rightarrow \gamma + \gamma$$
$$\downarrow e^{+} + \nu_{e} + \nu_{\mu}$$

Neutrino Astrophysics

IceCube Observatory

- Giga-ton Cherenkov telescope at the South Pole
- Collaboration of about 300 ray scientists at 53 international institution
 - 60 digital optical modules (DOMs) attached to strings
 - 86 IceCube strings
 instrumenting 1 km³ of clear
 glacial ice
 - 81 IceTop stations for cosmic ray shower detections
 - price tag: ~2 DKK per ton

Breakthrough in 2013

First observation of high-energy astrophysical neutrinos by IceCube!

"track event" (from ν_{μ} scattering)

"cascade event" (from all flavours)

Neutrino Astrophysics

Status of Neutrino Astronomy

No significant steady or transient emission from known Galactic and extragalactic high-energy sources (*except for one candidate*).

Neutrino Astrophysics

Probe of Fundamental Physics

[Ackermann, Ahlers, Anchordoqui, Bustamante et al., Astro2020 arXiv:1903.04334]

Neutrino Astrophysics

Probe of Fundamental Physics

Probe of exotic neutrino mixing, e.g. in Lorentz-invariance violating extensions of the neutrino Standard Model.

Probe of **neutrino-nucleon cross sections** at very-high energies.

[Ackermann, Ahlers, Anchordoqui, Bustamante et al., Astro2020 arXiv:1903.04333 & arXiv:1903.04334]

Summary

Neutrinos:

- Fundamental in most energetic phenomena in our Universe.
- Ideal messengers.
- Carry imprints of engine and population of extreme transients.
- Affect element formation in astrophysical sources.
- Their flavor conversions are crucial but yet to be fully grasped.

M.Sc. projects in Neutrino Astrophysics can cover various aspects:

- impact on stellar evolution
- potential to probe astrophysical environments
- fundamental neutrino properties
- direct probe of the origin of cosmic rays
- observation in neutrino telescopes or experiments

Thank you

for your attention!

Backup Slides

Neutrino Astrophysics

Neutrino Selection I

Neutrino Selection I

Neutrino Selection I

Neutrino Astrophysics

Neutrino Selection II

- Outer layer of optical modules used as virtual veto region.
- Atmospheric muons pass through veto from above.
- Atmospheric neutrinos coincidence with atmospheric muons.
- **Cosmic neutrino** events can start inside the fiducial volume.
- High-Energy Starting Event (HESE) analysis

Neutrino Selection II

- Outer layer of optical modules used as virtual veto region.
- Atmospheric muons pass through veto from above.
- Atmospheric neutrinos coincidence with atmospheric muons.
- **Cosmic neutrino** events can start inside the fiducial volume.
- High-Energy Starting Event (HESE) analysis

Neutrino Selection II

- Outer layer of optical modules used as virtual veto region.
- Atmospheric muons pass through veto from above.
- Atmospheric neutrinos coincidence with atmospheric muons.
- Cosmic neutrino events can start inside the fiducial volume.
- High-Energy Starting Event (HESE) analysis

Multi-Messenger Interfaces

The high intensity of the neutrino flux compared to that of γ -rays and cosmic rays offers many interesting multi-messenger interfaces.

Realtime Neutrino Alerts

Low-latency (<1min) public neutrino alert system established in April 2016.

- ✦ Gold alerts: ~10 per year >50% signalness
- ✦ Bronze alerts: ~20 per year 30-50% signalness

Neutrino alerts (HESE & EHE (red) / GFU-Gold (gold) / GFU-Bronze (brown))

Neutrino Astrophysics

GRBs and Gravitational Waves

Neutrino Astrophysics

GRB 170817A - Revisited

Neutrino Astrophysics