Pulses & Weights Kasper Pedersen, Msc. Student Icecube, NBI UNIVERSITY OF COPENHAGEN ### Recap Found high charge pulses (charge >= 20) in MC test data in SRTTWOfflinePulsesDC Started digging High Charge Pulse distibutions in OMs # Generating Test MC - Step 1: Make a particle - e^- , 50Gev in DeepCore - Step 2: Propagate Photons - Some weird stuff happens, explanation in next slides - Step 3: Create hits from photons - More weird stuff - Level 1: Filtering - Level 2: More Filtering and Processing # Generating Test MC - Step 1: Make a particle - e^- , 50Gev in DeepCore This is what I have been digging into - Step 2: Propagate Photons - Some weird stuff happens, explanation in next slides - Step 3: Create hits from photons - More weird stuff - Level 1: Filtering - Level 2: More Filtering and Processing # Step 2 – Photon Propagation - Each photon is given a weight - If photon hits a DOM it is saved and has attributes: - Weight - Wavelength - Time (From creation to hit?) - Direction - etc. Weights are used to calculate hitProbability so let's look at the weights of the photons Strange rise and plateauing below 300 nm - Weights are used to calculate hitProbability so let's look at the weights of the photons - Strange rise and plateauing below 300 nm - Coincides with the inverse of the DOM wavelength acceptance - Not same HoleIce as input ?!? Hole Ice: angsens/as.h2-50cm UnshadowedFraction: 1.0, Compensation Factor: 1.38701016332 0.15 0.00 But high weights has low probability of being a hit, so we're somewhat fine? # hitProbability and weight distributions #### Photon weight and hitProbability distributions Only weights above 2k ### Step 3 – Make Hits from Photons ### Let's look at the hit probability $hitProb = w_{photon} \cdot domAcceptance(\lambda_{photon}) \cdot domAngularSensitivity(\theta_{photon}) \cdot scalar$ - But weight is inverse of domAcceptance so this is just 1? - No, a different holeIce model scales the domAcceptance ### Back to the Pulses - Step 3 process - 1. Make hits from photons - 2. Add noise (vuvuzuela) - 3. "Rosencrantz" PMTSimulation - 4. "Guildenstern" DOMLaucher ### Back to the Pulses - Step 3 process - 1. Make hits from photons - 2. Add noise (vuvuzuela) - 3. "Rosencrantz" PMTSimulation ← Adds charge to the MCPE pulses - 4. "Guildenstern" DOMLaucher Do we see high charge pulses here? No high charge pulses in MCPE pulses They first occur in Reco Pulses So are the RecoPulses wrong? # Charge conservation To check how well the RecoPulses reconstructs, check the total charge prevent pr DOM • $$\frac{\sum_{i,k} Q_{MCPE_i}}{\sum_{j,k} Q_{RecoPulse_j}} = C_k$$ - Looks good - Few outliers ### Compare to oscNext data - See high charge pulses here as well but 0.1% (2.6% in our RecoPulses) - Seems to be effect of having less RecoPulses than MCPEPulses but need to conserve overall charge # SRTTWOfflinePulsesDC Data: /oscNext/pass2/genie/level7_v02.00/120000 (ν_e) 15 ### Backup Wavelength vs cos(ang) with photon weight instead of hitProb Photon wavelength vs. cosang ice_model: spice_3.2.1 holeice : angsens/as.flasher_p1_0.30_p2_-1 17 ### Zoom in on MCPEPulses charge distribution #### All Oms charge conservation test ### Time distribution of the photon weight plateau ### Total charge in OM vs. OM Distance from vertex 21 High Charge Pulse distributions in OMs High charge pulses in oscnext data (v_e) # Simulation Steps Extended - Step 1: Create Particle - Step 2: Simulate Photons - Inputs (in c++ script): - DomEfficiency = 1.0 * 1.2 for margin/systematic sets (?) - UnshadowedFraction = 1.2 same as DOMEfficiency (0.9) - IceModel = spice_3.2.1 (spice_mie) - HoleIce = angsens/as.flasher_p1_0.30_p2_-1 (h2-50cm) - Step 3: Add noise and convert to p.e - https://code.icecube.wisc.edu/projects/icecube/browser/IceCube/projects/clsim/trunk/python/traysegments/I3CLSimMakeHitsFromPhotons.py - Inputs (default) - DomEfficiency 1.0 - UnshadowedFraction = 1.2 (1.0) - HoleIce = angsens/as.flasher_p1_0.30_p2_-1 (h2-50cm) - DOMOversizeFactor = 1.0 (5.0) - https://code.icecube.wisc.edu/projects/icecube/browser/IceCube/projects/clsim/trunk/private/clsim/dom/I3PhotonToMCPEConverter.cxx - Level 1 - Level 2