RIDE Update

Sofus Stray

- We expect DOM charge responses to be similar in the same depth level
- Group DOMs into 106 groups based on zposition

- We expect DOM charge responses to be similar in the same depth level
- Group DOMs into 106 groups based on zposition

- We expect DOM charge responses to be similar in the same depth level
- Group DOMs into 106 groups based on zposition

- We expect DOM charge responses to be similar in the same depth level
- Group DOMs into 106 groups based on zposition
- Calculate mean charge of each DOM
- Divide each charge by the group's median

•
$$RIDE_i = \frac{\left(\frac{\sum_{events} q}{\sum_{eve} hit}\right)_i}{\left(\frac{\sum_{event} q}{\sum_{even} hit}\right)_{monitor}}$$

 Expectations: NQE DOMs have ride value of 1, HQE of 1.35

Recent results

- Ran through 10,000 CORSIKA L2 simulation files
- Used TCN (neural network approach) to predict stopped muons
- Calculate total charge and RIDE-value for each DOM
- Only select DOMs within 75m of muon track

Total charge for each DOM with CORSIKA level 2 files, 8202600 DOM hits

Recent results

- Ran through 10,000 CORSIKA L2 simulation files
- Used TCN (neural network approach) to predict stopped muons
- Calculate total charge and RIDE-value for each DOM
- Only select DOMs within 75m of last 200 meters of muon track

Problems

Problem 1: Some NQE DOMs have a much higher total charge than expected

- More on that later

Total charge for each DOM with CORSIKA level 2 files, 8202600 DOM hits

Problems

Problem 2: NQE DOMs have a higher RIDE value despite HQE DOMs generally having more total charge

 Reason: Mean charge is calculated from every DOM with a charge response instead of every could that could have a charge response

Problems

Problem 2: NQE DOMs have a higher RIDE value despite HQE DOMs generally having more total charge

- Reason: Mean charge is calculated from every DOM with a charge response instead of every could that could have a charge response
- Solution: Calculate mean charge from every DOM within radius of muon track

New Results

- Looks only at last 200 meters
- Calculates mean charge for every DOM within track radius
- Less statistics due to ongoing bug
- Completely different shape
 - Almost a reversal of previous shape
 - Highly unlikely to be due to statistics

Total charge for each DOM with CORSIKA level 2 files, 117317 DOM hits

New Results

- Looks only at last 200 meters
- Calculates mean charge for every DOM within track radius
- · Less statistics due to ongoing bug
- More noisy HQE RIDE
 - Almost certainly due to low statistics
- "Right side" of HQE cluster generally stable
- Less NQE fraction with higher RIDE than HQE clusters

Quick comparison

Discussion

- Possible reasons
 - Bugs in the code
 - Wrong implementation of new mean
 - TCN prediction issues
- Quick detour before going further

Analysis of single group

- Group 40 picked arbitrarily (just needs to be a group with many DOMs)
- Fairly unstable results
 - Likely from lack of statistics
 - Possibly for reasons discussed later

Analysis of single group

- Group 40 picked arbitrarily (just needs to be a group with many DOMs)
- We should expect all DOMs to have a RIDE value of 1

Analysis of single group

- Histogram of group 40, showing monitor
- For all DOMs to have a RIDE value around the monitor, we would expect a much tighter distribution
- Some values, like the mean charge of 0, is entirely explained by lack of statistics

Unexpected high HQE charge analysis

- Figure out what causes the HQE anomalies in both results
- Are abnormal HQEs from the same string?

Total charge for each DOM with CORSIKA level 2 files, 8202600 DOM hits

Total charge for each DOM with CORSIKA level 2 files, 117317 DOM hits

Unexpected high HQE charge analysis

- Figure out what causes the HQE anomalies in both results
- Are abnormal HQEs from the same string?
- Possibly: Analysis of DOMs with >150 total charge come from following strings:

Total charge for each DOM with CORSIKA level 2 files, 117317 DOM hits

Take note of low statistics: These strings *might* not be responsible with more data

Back to old/new data discrepancy

- Possible reasons
 - Bugs in the code
 - Wrong implementation of new mean
 - TCN prediction issues

Back to old/new data discrepancy

- Possible reasons
 - Bugs in the code
 - Wrong implementation of new mean
 - TCN prediction issues

TCN Recap

- Neural Network
- Predicts whether muon is stopped or not
- Trained on muon gun data
- Performs well on said data

Test performance on CORSIKA data

- Should've been done earlier
- Completely terrible performance
- Essentially 50/50
- Possible reasons:
 - Bug in definition of Truth
 - Features don't share same distribution
 - Event ID conflicts
 - Muongun data can't predict CORSIKA data (would be very weird)
 - Possible overtraining (unlikely)

Bugs in Truth definition

- Most likely reason
- Similar culprit (though not a bug) could be a much lesser % of stopped muons in CORSIKA data
 - This doesn't explain why the separation is so unclean

- x and y strongly share distributions
- CORSIKA x/y slightly more strongly centered around 0
- Overrepresentation of DOM hits in lower/higher depth levels for CORSIKA/muon gun respectively

- [25 bins instead of 10 for a bit more detail]
- Time and charge has significant nonoverlapping
- No strong structures appearing
- Muon gun has a much larger time tail

- Bug was also found: Muon gun data uses log10 of charge, CORSIKA just uses charge
- Performance test was with bug fixed
- RIDE calculation did not have the bug fixed
- Prediction is still worthless post-bug-fix
- Does not by itself explain the issue

- Uneven distributions may be rectified by better statistics
- Overall distributions alone don't account for distribution in each event
 - Event ID bugs could still be the culprit

Going forward

- Scour trough code and fix any and all bugs
- Improve statistics of current data
- Look through the TCN code
- Analyse more modern CORSIKA files (current is 2012)
- After above is fixed:
 - Get true stopping variables
 - Run on actual data
 - Compare performance to FiniteReco + MPE