Direct Reco Upgrade progress

Friday meeting 05-02-2021

Jonathan Jegstrup

UNIVERSITY OF COPENHAGEN

Intro

- The factor of 2
 - We saw a factor of 2 in difference in the amplitudes in the MC data and direct reco data
- Directo reco's ability to reconstruct a 50 GeV electron

- The simulation steps:
 - 1. Event is created. 50 GeV electron in (x,y,z)=(0,0,0), traveling upwards.
 - 2. Photons are propagated and if they hit a module it is recorded
 - 3. Recorded photons are set to hit either pmt up or pmt down (this methods differs in MC and direct reco)

- From the angle of the photon to the pmt normal an angular acceptance is found for both pmt up and down.
- These are the probabilities of hitting either pmt up or down
- MC method:
 - Draw random number between 0 and 1: r = [0,1]
 - Check whether photons misses both. If (r > P_up + P_dw): miss
 - If it does not miss, check if it hits pmt up else if (r < P_up): add 1 to pmt up
 - If it does not hit up and does not miss, it hits down else: add 1 to pmt down
- Direct Reco method
 - We just add the probability of hitting up divided by oversampling into pmt up and the same into pmt down add P_up/oversampling to pmt up add P_dw/oversampling to pmt down
 - Resimulate same event "oversampling amount of times and do (1) each time

P_up (theta_up)

- Notes
 - This does not happen if the same setup is run with regular DOMs
 - If the method as MC simulation is used in Direct Reco there is no factor of 2

For the next slides, the factor of 2 is factored in so Direct Recomatches MC data

Reconstruction using a const seed

Kasper showed promising results using a smearing of the seed from the truth particle

 I have now used the same seed for all events, which is not equal the true particle:

Parameter	True particle	Seed	Difference
Energy	50 GeV	60 GeV	10 GeV
Time	9904.68ns	9914.68 ns	10 ns
Position (x,y,z)	(0,0,0)	(5,5,5)	(5,5,5)
Azimuth	0	0	0
Zenith	3.14159	3.14159	0

Reconstruction using a const seed

Based on 400 events with an oversampling of 100

Reconstructed - True

Reconstruction using a const seed

Based on 400 events with an oversampling of 100

energy Counts (Reconstructed - True)/True Reconstructed - True time Counts 20 10 -Reconstructed - True Reconstructed - True zenith Counts Reconstructed - True Doing this with regular DOMs showed similar bad results.

Reconstruction using a const seed

Increasing the oversampling does not improve the result either

 Kasper is also running now with a constant seed to see if he sees the same bad results

