International PhD Summer School on Neutrinos: Here, There & Everywhere July 5 - 9, 2021

Neutrino masses from simple scoto-seesaw model with spontaneous CP violation

Débora Barreiros

debora.barreiros@tecnico.ulisboa.pt

CFTP/IST, U. Lisbon

In collaboration with: F. R. Joaquim, R. Srivastava and J. W. F. Valle

J. High Energ. Phys. 2021, 249 (2021) (arXiv: 2012.05189 [hep-ph])

Motivation

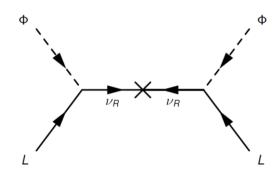
The Standard Model cannot explain:

- Neutrino flavour oscillations (imply existence of neutrino masses and lepton mixing)
- Observed dark matter abundance

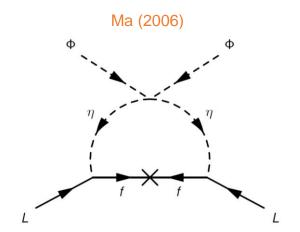
Straightforward and **elegant** solutions:

Type I Seesaw Model

Minkowski (1977), Gell-Mann *et al.* (1979), Yanagida (1979), Glashow (1980), Mohapatra *et al.* (1980), Valle *et al.* (1980)



Scotogenic Model



Our solution:

Consider a model where both mechanisms contribute to neutrino masses with a single discrete symmetry to

accommodate: neutrino oscillation data, dark matter stability and spontaneous CP violation

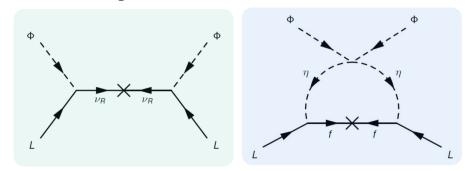
Simplest scoto-seesaw mechanism

Simple and elegant model where the atmospheric mass scale arises at tree level from the type-I seesaw mechanism and the solar mass scale emerges radiatively through a scotogenic loop

Particle content:

	ν_{R}	η	f
SU(2) _L	1	2	1
$U(1)_Y$	0	1/2	0
\mathcal{Z}_2	+	-	-
Multiplicity	1	1	1

Allowed diagrams:



Rojas, Srivastava, Valle (2019)

$$\mathcal{L} - \mathcal{L}_{\text{SM}} = -\overline{L}\mathbf{Y}_{\nu}^{*}\tilde{\Phi}\nu_{R} - \frac{1}{2}M_{R}\overline{\nu_{R}}\nu_{R}^{c} - \overline{L}\mathbf{Y}_{f}^{*}\tilde{\eta}f - \frac{1}{2}M_{f}\overline{f}f^{c}$$

Generates the **atmospheric** neutrino mass scale

Generates the **solar** neutrino mass scale

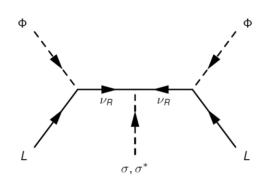
Effective neutrino mass:
$$\mathbf{M}_{\nu} = -v^2 \frac{\mathbf{Y}_{\nu} \mathbf{Y}_{\nu}^T}{M_R} + \mathcal{F}(M_f, m_{\eta_R}, m_{\eta_I}) M_f \mathbf{Y}_f \mathbf{Y}_f^T$$

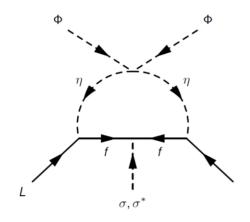
- Predicts one massless neutrino
- Accommodates neutrino oscillation and LFV data
- Provides a viable WIMP dark matter candidate
- But lacks in predictivity!

Adding spontaneous CP violation

The number of parameters can be reduced by requiring the Lagrangian to be CP symmetric and invoking a spontaneous origin for leptonic CP violation

Introducing a new scalar singlet with complex VEV: $\langle \sigma \rangle = ue^{i\theta}$





At the effective level:
$$\mathbf{M}_{\nu} = -v^2 e^{i(\theta_f - \theta_R)} \frac{\mathbf{Y}_{\nu} \mathbf{Y}_{\nu}^T}{|M_R|} + \mathcal{F}(|M_f|, m_{\eta_R}, m_{\eta_I}) |M_f| \mathbf{Y}_f \mathbf{Y}_f^T$$

- CPV is transmitted to the neutrino sector provided that $\theta \neq k\pi$ ($k \in \mathbb{Z}$) and $y_{R,f} \neq \tilde{y}_{R,f}$
- A minimal scalar potential which allows to implement SCPV must contain a phase sensitive term of the type σ^4 + H.c. Branco *et al.* (1999, 2003)

The minimal scoto-seesaw model provides a template for neutrino masses, dark matter and SCPV!

Adding a discrete flavour symmetry

DB, F. R. Joaquim, R. Srivastava, J. W. F. Valle (2021)

Consider the most restrictive textures for \mathbf{Y}_{ν} , \mathbf{Y}_{f} and \mathbf{Y}_{ℓ} realizable by minimal discrete flavour symmetry in order to maximise predictability

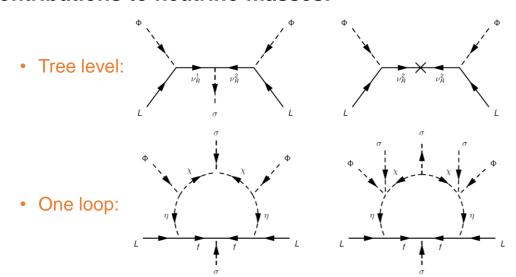
Particle content:

Fields	$\text{SU(2)}_\text{L} \otimes \text{U(1)}_\text{Y}$	$\mathcal{Z}_8^{e- au\star} o \mathcal{Z}_2$
L_e	(2 , -1/2)	$\omega^6 \equiv -i ightarrow +1$
${\sf L}_{\mu}$	(2 , -1/2)	$\omega^{0}\equiv extsf{1} ightarrow extsf{+1}$
$oldsymbol{\mathcal{L}}_{ au}$	(2 , -1/2)	$\omega^{6} \equiv - extstyle{i} ightarrow + extstyle{1}$
$ u_R^1$	(1 , 0)	$\omega^{6} \equiv - extstyle{i} ightarrow + extstyle{1}$
$ u_R^2$	(1 , 0)	$\omega^{0}\equiv extsf{1} ightarrow extsf{+1}$
f	(1 , 0)	$\omega^3 o -1$
Ф	(2 , 1/2)	$\omega^{0}\equiv extsf{1} ightarrow extsf{+1}$
σ	(1 , 0)	$\omega^2 \equiv i ightarrow +1$
η	(2 , 1/2)	$\omega^{5} o -1$
χ	(1 , 0)	$\omega^{3} ightarrow -1$
	$egin{array}{c} L_e \ L_\mu \ L_ au \ u_R^1 \ u_R^2 \ f \ \Phi \ \sigma \ \eta \end{array}$	L_{e} (2, -1/2) L_{μ} (2, -1/2) L_{τ} (2, -1/2) ν_{R}^{1} (1, 0) ν_{R}^{2} (1, 0) Φ (2, 1/2) σ (1, 0) η (2, 1/2)

$$\langle \Phi \rangle = \mathbf{v}, \langle \sigma \rangle = \mathbf{u} \mathbf{e}^{i\theta}, \langle \eta \rangle = \langle \chi \rangle = \mathbf{0}$$

 $^*\mathcal{Z}_8^{e-\mu}$ and $\mathcal{Z}_8^{\mu-\tau}$ are other possible charge assignments, with decoupled τ and e, respectively

Contributions to neutrino masses:



Allowed Yukawa and mass matrices:

$$\mathbf{Y}_{\nu} = \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \\ x_3 & 0 \end{pmatrix} \, \mathbf{M}_{R} = \begin{pmatrix} 0 & M_{12} e^{-i\theta} \\ M_{12} e^{-i\theta} & M_{22} \end{pmatrix} \, \mathbf{Y}_{f} = \begin{pmatrix} y_1 \\ 0 \\ y_2 \end{pmatrix} \, \mathbf{Y}_{\ell} = \begin{pmatrix} w_1 & 0 & w_2 \\ 0 & w_3 & 0 \\ w_4 & 0 & w_5 \end{pmatrix}$$

Scalar sector

Scalar Potential

$$\begin{split} V &= m_{\Phi}^2 \Phi^\dagger \Phi + m_{\eta}^2 \eta^\dagger \eta + m_{\sigma}^2 \sigma^* \sigma + m_{\chi}^2 \chi^* \chi + \frac{\lambda_1}{2} (\Phi^\dagger \Phi)^2 + \frac{\lambda_2}{2} (\eta^\dagger \eta)^2 + \frac{\lambda_3}{2} (\sigma^* \sigma)^2 \\ &\quad + \frac{\lambda_4}{2} (\chi^* \chi)^2 + \lambda_5 (\Phi^\dagger \Phi) (\eta^\dagger \eta) + \lambda_5' (\Phi^\dagger \eta) (\eta^\dagger \Phi) + \lambda_6 (\Phi^\dagger \Phi) (\sigma^* \sigma) + \lambda_7 (\Phi^\dagger \Phi) (\chi^* \chi) \\ &\quad + \lambda_8 (\eta^\dagger \eta) (\sigma^* \sigma) + \lambda_9 (\eta^\dagger \eta) (\chi^* \chi) + \lambda_{10} (\sigma^* \sigma) (\chi^* \chi) \\ &\quad + \left(\frac{\lambda_3'}{4} \sigma^4 + \frac{m_{\sigma}'^2}{2} \sigma^2 + \mu_1 \chi^2 \sigma + \mu_2 \eta^\dagger \Phi \chi^* + \lambda_{11} \eta^\dagger \Phi \sigma \chi + \text{H.c.} \right) \end{split}$$

From the minimisation conditions for $\langle \Phi \rangle = v$, $\langle \sigma \rangle = ue^{i\theta}$, $\langle \eta \rangle = \langle \chi \rangle = 0$

CP violating solution:

$$m_{\Phi}^2 = -\frac{\lambda_1}{2}v^2 - \frac{\lambda_6}{2}u^2$$
, $m_{\sigma}^2 = -\frac{\lambda_6}{2}v^2 - \frac{\lambda_3 - \lambda_3'}{2}u^2$, $\cos(2\theta) = -\frac{m_{\sigma}'^2}{u^2\lambda_3'}$

corresponds to the global minimum for $(m_{\sigma}^{\prime 4} - u^4 \lambda_3^{\prime 2})/(4\lambda_3^{\prime}) > 0$

Existence of a non-zero vacuum phase at the potential global minimum $\Rightarrow \theta \neq k\pi$ is allowed!

DB, F. R. Joaquim, R. Srivastava, J. W. F. Valle (2021)

	Fields	$\text{SU(2)}_\text{L} \otimes \text{U(1)}_\text{Y}$	$\mathcal{Z}_8^{e- au} o \mathcal{Z}_2$
Fermions	L _e	(2 , -1/2)	$\omega^{6} \equiv -i \rightarrow +1$
	${\it L}_{\mu}$	(2 , -1/2)	$\omega^{ extsf{0}}\equiv extsf{1} o extsf{+1}$
	${\sf L}_{ au}$	(2 , -1/2)	$\omega^{6} \equiv -\mathit{i} \rightarrow +1$
	$ u_R^1$	(1 , 0)	$\omega^{6} \equiv -\mathit{i} \rightarrow +1$
	$ u_R^2$	(1 , 0)	$\omega^{ extsf{0}}\equiv extsf{1} ightarrow extsf{+1}$
	f	(1 , 0)	$\omega^{3} ightarrow-$ 1
Scalars	Ф	(2 , 1/2)	$\omega^0\equiv extsf{1} o extsf{+1}$
	σ	(1 , 0)	$\omega^2 \equiv i ightarrow +1$
	η	(2 , 1/2)	$\omega^{5} o -1$
	χ	(1 , 0)	$\omega^{ extsf{3}} ightarrow - extsf{1}$

Other conclusions:

- Z₈ → Z₂ after SSB, preventing the neutral dark scalars to mix with the neutral non-dark scalars:
 - $\phi \sigma$ mixing
 - $\eta \chi$ mixing
 - degenerate dark charged scalars η [±]
- The lightest of the mass eigenstates resulting from the $\eta \chi$ mixing is a **dark matter candidate** along with the dark fermion f

Low-energy constraints

Allowed Yukawa and mass matrices (for $\mathbb{Z}_8^{e-\tau}$):

$$\mathbf{Y}_{\nu} = \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \\ x_3 & 0 \end{pmatrix} \qquad \mathbf{M}_{R} = \begin{pmatrix} 0 & M_{12} e^{-i\theta} \\ M_{12} e^{-i\theta} & M_{22} \end{pmatrix} \qquad \mathbf{Y}_{f} = \begin{pmatrix} y_1 \\ 0 \\ y_2 \end{pmatrix} \qquad \mathbf{Y}_{\ell} = \begin{pmatrix} w_1 & 0 & w_2 \\ 0 & w_3 & 0 \\ w_4 & 0 & w_5 \end{pmatrix}$$

At the effective level:

$$\mathbf{M}_{\nu} = -v^{2}\mathbf{Y}_{\nu}\mathbf{M}_{R}^{-1}\mathbf{Y}_{\nu}^{T} + \mathcal{F}(M_{f}, m_{S_{i}})M_{f}\mathbf{Y}_{f}\mathbf{Y}_{f}^{T}$$

$$= \begin{pmatrix} \mathcal{F}(M_{f}, m_{S_{i}}) M_{f} y_{1}^{2} + \frac{v^{2} M_{22}}{M_{12}^{2}} x_{1}^{2} e^{i\theta} & -\frac{v^{2}}{M_{12}} x_{1} x_{2} & \mathcal{F}(M_{f}, m_{S_{i}}) M_{f} y_{1} y_{2} + \frac{v^{2} M_{22}}{M_{12}^{2}} x_{1} x_{3} e^{i\theta} \\ & \cdot & \cdot & -\frac{v^{2}}{M_{12}} x_{2} x_{3} \\ & \cdot & \cdot & \mathcal{F}(M_{f}, m_{S_{i}}) M_{f} y_{2}^{2} + \frac{v^{2} M_{22}}{M_{12}^{2}} x_{3}^{2} e^{i\theta} \end{pmatrix}$$

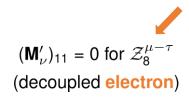
A **zero** in the effective neutrino mass matrix arises as a result of the imposed symmetry

DB, F. R. Joaquim, R. Srivastava, J. W. F. Valle (2021)

Contribution of the scotogenic loop is crucial to ensure the existence of CPV

In the charged-lepton mass basis:

$$\mathbf{M}_{\nu}' = \mathbf{U}_{\ell}^{\mathsf{T}} \mathbf{M}_{\nu} \mathbf{U}_{\ell} = \mathbf{U}^* \operatorname{diag}(m_1, m_2, m_3) \mathbf{U}^{\dagger}$$



$$(\mathbf{M}'_{\nu})_{22} = 0 \text{ for } \mathcal{Z}_{8}^{e-\tau}$$
(decoupled muon)

$$(\mathbf{M}'_{\nu})_{33} = 0 \text{ for } \mathcal{Z}_{8}^{e-\mu}$$

$$(\text{decoupled tau})$$

e.g. for
$$\mathcal{Z}_8^{e-\tau}$$
:
$$\mathbf{U}_\ell = \begin{pmatrix} \cos\theta_\ell & 0 & \sin\theta_\ell \\ 0 & 1 & 0 \\ -\sin\theta_\ell & 0 & \cos\theta_\ell \end{pmatrix}$$

Neutrino oscillation data

Global fit of neutrino oscillation data:

	Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 9.1$)	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
θ ₁₂ (°)	34.3 ± 1.0	31.4 → 37.4	34.3 ± 1.0	31.4 → 37.4
θ ₂₃ (°)	$48.79^{+0.93}_{-1.25}$	41.63 → 51.32	$48.79^{+1.04}_{-1.30}$	41.88 → 51.30
θ ₁₃ (°)	$8.58^{+0.11}_{-0.15}$	8.16 → 8.94	$8.63^{+0.11}_{-0.15}$	8.21 → 8.99
δ/π	$1.20^{+0.23}_{-0.14}$	$0.8 \to 2.00$	1.54 ± 0.13	$1.14 \rightarrow 1.90$
$\Delta m_{21}^2 \ (\times 10^{-5} \ \mathrm{eV^2})$	$7.50^{+0.22}_{-0.20}$	6.94 → 8.14	$7.50^{+0.22}_{-0.20}$	6.94 → 8.14
$ \Delta m_{31}^2 \ (\times 10^{-3} \text{ eV}^2)$	$2.56^{+0.03}_{-0.04}$	2.46 → 2.65	2.46 ± 0.03	2.37 → 2.55

Salas et al. (2020)

Normal Ordering (NO):

•
$$m_1 = m_{\text{lightest}}$$

•
$$m_2 = \sqrt{m_{\text{lightest}}^2 + \Delta m_{21}^2}$$

•
$$m_3 = \sqrt{m_{\text{lightest}}^2 + \Delta m_{31}^2}$$

Inverted Ordering (IO):

•
$$m_3 = m_{\text{lightest}}$$

•
$$m_1 = \sqrt{m_{\text{lightest}}^2 + |\Delta m_{21}^2|}$$

•
$$m_2 = \sqrt{m_{\text{lightest}}^2 + \Delta m_{21}^2 + |\Delta m_{31}^2|}$$

 $(\mathbf{M}'_{\nu})_{ii} = (\mathbf{U}^* \operatorname{diag}(m_1, m_2, m_3) \mathbf{U}^{\dagger})_{ii} = 0$

Corresponds to two low-energy

constraints, testable against

neutrino data!

Lepton mixing (standard parametrisation): Rodejohann, Valle (2011)

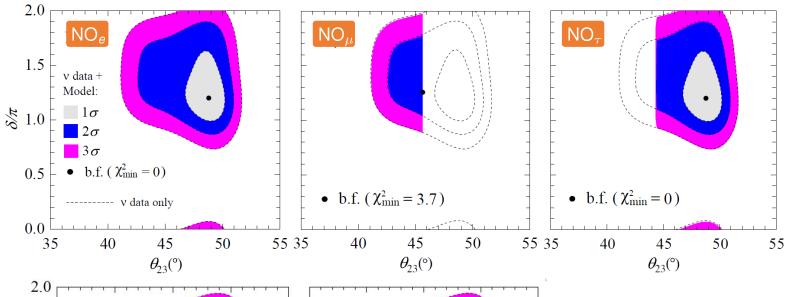
$$\mathbf{U} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13}e^{-i\phi_{12}} & s_{13}e^{-i\phi_{13}} \\ -s_{12}c_{23}e^{i\phi_{12}} - c_{12}s_{13}s_{23}e^{-i(\phi_{23}-\phi_{13})} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{-i(\phi_{12}+\phi_{23}-\phi_{13})} & c_{13}s_{23}e^{-i\phi_{23}} \\ s_{12}s_{23}e^{i(\phi_{12}+\phi_{23})} - c_{12}s_{13}c_{23}e^{i\phi_{13}} & -c_{12}s_{23}e^{i\phi_{23}} - s_{12}s_{13}c_{23}e^{-i(\phi_{12}-\phi_{13})} & c_{13}c_{23} \end{pmatrix}$$

Dirac phase: $\delta = \phi_{13} - \phi_{12} - \phi_{23}$

Majorana phases: ϕ_{13} , ϕ_{12}

θ_{23} and δ predictions

DB, F. R. Joaquim, R. Srivastava, J. W. F. Valle (2021)



decoupled **electron**: $(\mathbf{M}'_{\nu})_{11} = 0$

decoupled muon: $(\mathbf{M}'_{\nu})_{22} = 0$

decoupled tau: $(\mathbf{M}'_{\nu})_{33} = 0$

2.0

1.5

1.0

0.5

• b.f. $(\chi^2_{min} = 0)$ 0.0

35

40

45

50

55

35

40

45

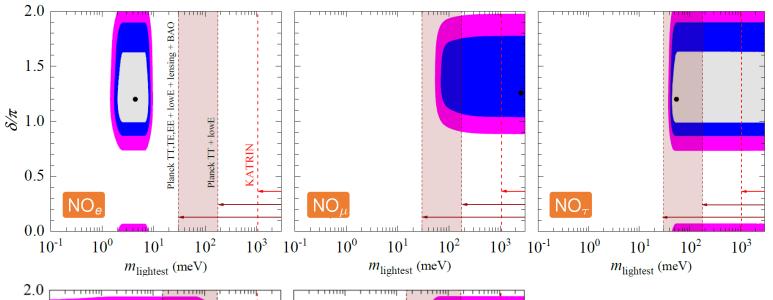
50

55 $\theta_{23}(^\circ)$

- IO_e is not compatible with data since $(\mathbf{M}'_{\nu})_{11} = 0$ leads to vanishing $0\nu\beta\beta$ decay rate
- For NO_e , IO_{μ} and IO_{τ} the model allowed regions coincide with the experimental ones
- NO $_{\mu}$ (NO $_{\tau}$) selects the first (second) octant for θ_{23}

Constraints on the lightest neutrino mass

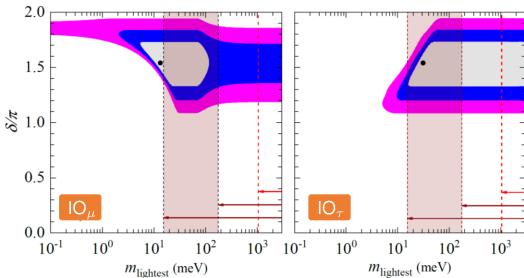
DB, F. R. Joaquim, R. Srivastava, J. W. F. Valle (2021)



decoupled **electron**: $(\mathbf{M}'_{\nu})_{11} = 0$

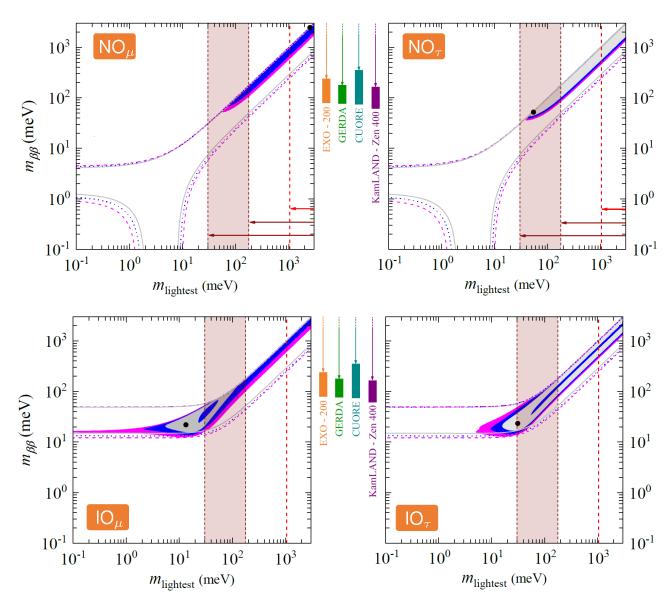
decoupled **muon**: $(\mathbf{M}'_{\nu})_{22} = 0$

decoupled tau: $(\mathbf{M}'_{\nu})_{33} = 0$



- For NO_e , the model establishes upper and lower bounds for $m_{\rm lightest}$
- For NO $_{\tau}$, NO $_{\mu}$ and IO $_{\tau}$ we get lower bounds for m_{lightest} which are very close to the cosmological and KATRIN bounds
- For IO $_{\mu}$, the model establishes upper and lower bounds for $m_{\rm lightest}$ at 1 σ

Constraints on $m_{\beta\beta}$



DB, F. R. Joaquim, R. Srivastava, J. W. F. Valle (2021)

m_{etaeta} in terms of low-energy parameters

NO:
$$m_{\beta\beta} = \left| c_{12}^2 c_{13}^2 \, m_{\text{lightest}} + s_{12}^2 c_{13}^2 \, \sqrt{m_{\text{lightest}}^2 + \Delta m_{21}^2} \, e^{2i\phi_{12}} \right|$$

IO:
$$m_{\beta\beta} = \left| c_{12}^2 c_{13}^2 \sqrt{m_{\text{lightest}}^2 + \Delta m_{21}^2} + \right|$$

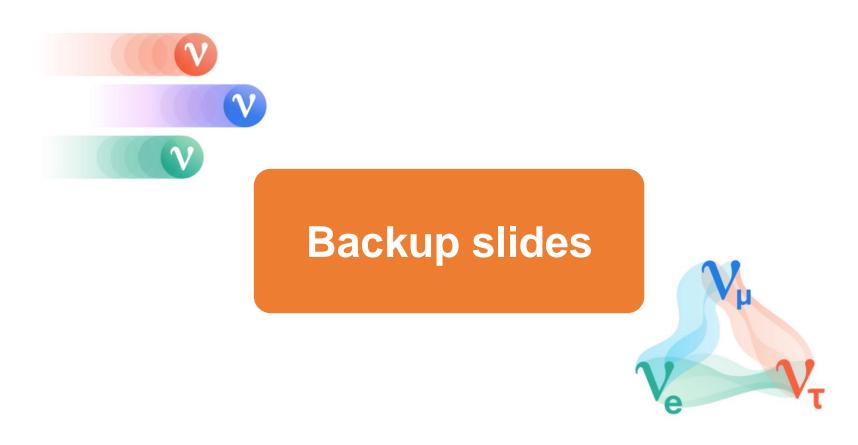
$$s_{12}^2 c_{13}^2 \sqrt{m_{\text{lightest}}^2 + \Delta m_{21}^2 + |\Delta m_{31}^2|} e^{2i\phi_{12}} + s_{13}^2 m_{\text{lightest}} e^{2i\phi_{13}}$$

- NO_e predicts $m_{\beta\beta}$ = 0, allowed by neutrino oscillation data and $m_{\beta\beta}$ current experimental limits
- In all remaining cases the model establishes a lower bound on m_{etaeta}
- Current KamLAND bound nearly excludes the NO cases

Concluding remarks

- We propose a simple scoto-seesaw model where neutrino masses, lepton flavour structure, dark matter stability and spontaneous CP violation are accommodated with a single Z_8 flavour symmetry
- This symmetry is broken down to dark Z_2 by the VEV of a new complex scalar singlet σ
- The complex VEV of σ is the **unique source** of **leptonic CP violation**, arising **spontaneously**
- The generated CP violation is **successfully** transmitted to the leptonic sector via **couplings of** σ to v_R and f
- The Z₈ symmetry leads to low-energy constraints, which translate into a neutrino texture that can be tested against neutrino experimental data
- For NO, the predicted ranges on m_{lightest} will be fully tested by near-future $0 \circ \beta \beta$ -decay experiments and by improved neutrino mass sensitivities from cosmology and β decay
- For **IO**, better determination of the **Dirac phase** from neutrino oscillations and further improvement in expected sensitivities from upcoming **0**υββ-decay experiments is required to test the model

Thank you!



Scalar sector of the Z_8 model

DB, F. R. Joaquim, R. Srivastava, J. W. F. Valle (2021)

Scalar Potential

$$V = m_{\Phi}^2 \Phi^{\dagger} \Phi + m_{\eta}^2 \eta^{\dagger} \eta + m_{\sigma}^2 \sigma^* \sigma + m_{\chi}^2 \chi^* \chi + \frac{\lambda_1}{2} (\Phi^{\dagger} \Phi)^2 + \frac{\lambda_2}{2} (\eta^{\dagger} \eta)^2 + \frac{\lambda_3}{2} (\sigma^* \sigma)^2 + \frac{\lambda_4}{2} (\chi^* \chi)^2 + \lambda_5 (\Phi^{\dagger} \Phi) (\eta^{\dagger} \eta) + \lambda_5 (\Phi^{\dagger} \eta) (\eta^{\dagger} \Phi) + \lambda_6 (\Phi^{\dagger} \Phi) (\sigma^* \sigma) + \lambda_7 (\Phi^{\dagger} \Phi) (\chi^* \chi) + \lambda_8 (\eta^{\dagger} \eta) (\sigma^* \sigma) + \lambda_9 (\eta^{\dagger} \eta) (\chi^* \chi) + \lambda_{10} (\sigma^* \sigma) (\chi^* \chi) + \left(\frac{\lambda_3'}{4} \sigma^4 + \frac{m_{\sigma}'^2}{2} \sigma^2 + \mu_1 \chi^2 \sigma + \mu_2 \eta^{\dagger} \Phi \chi^* + \lambda_{11} \eta^{\dagger} \Phi \sigma \chi + \text{H.c.} \right)$$

Our scalars:
$$\Phi = \begin{pmatrix} \phi^+ \\ \frac{v + \phi_{0R} + i\phi_{0I}}{\sqrt{2}} \end{pmatrix}, \ \eta = \begin{pmatrix} \eta^+ \\ \frac{v_{\eta}e^{i\theta_{\eta}} + \eta_{0R} + i\eta_{0I}}{\sqrt{2}} \end{pmatrix}, \ \chi = \frac{v_{\chi} + \chi_{R} + i\chi_{I}}{\sqrt{2}}, \ \sigma = \frac{ue^{i\theta} + \sigma_{R} + i\sigma_{I}}{\sqrt{2}}$$

Scalar Masses:

•
$$m_{\phi^+} = m_{\phi^-} = m_{\phi_{01}} = 0$$

•
$$m_{\eta^{\pm}}^2 = m_{\eta}^2 + \frac{\lambda_5}{2} v^2 + \frac{\lambda_8}{2} u^2$$

•
$$\mathcal{M}_{\phi\sigma}^2 = \begin{pmatrix} v^2 \lambda_1 & vu\lambda_6 \cos\theta & vu\lambda_6 \sin\theta \\ \cdot & u^2(\lambda^3 + \lambda_3')\cos^2\theta & u^2(\lambda_3 - 3\lambda_3')\cos\theta\sin\theta \\ \cdot & \cdot & u^2(\lambda^3 + \lambda_3')\sin^2\theta \end{pmatrix}$$
 $\phi - \sigma$ mixing $\phi - \sigma$ mixing

$$\mathcal{M}_{\eta\chi}^{2} = \begin{pmatrix} m_{\eta}^{2} + \frac{\lambda_{5} + \lambda_{5}'}{2} v^{2} + \frac{\lambda_{8}}{2} u^{2} & v\left(\frac{\mu_{2}}{\sqrt{2}} + \frac{\lambda_{11}}{2} u \cos\theta\right) & 0 & -\frac{\lambda_{11}}{2} v u \sin\theta \\ \cdot & m_{\chi}^{2} + \frac{\lambda_{7}}{2} v^{2} + \frac{\lambda_{10}}{2} u^{2} + \sqrt{2} u \lambda_{11} \cos\theta & \frac{\lambda_{11}}{2} v u \sin\theta \\ \cdot & \cdot & m_{\eta}^{2} + \frac{\lambda_{5} + \lambda_{5}'}{2} v^{2} + \frac{\lambda_{8}}{2} u^{2} & v\left(-\frac{\mu_{2}}{\sqrt{2}} + \frac{\lambda_{11}}{2} u \cos\theta\right) \\ \cdot & \cdot & m_{\chi}^{2} + \frac{\lambda_{7}}{2} v^{2} + \frac{\lambda_{10}}{2} u^{2} - \sqrt{2} u \lambda_{11} \cos\theta \end{pmatrix}$$

$$\mathcal{M}_{\eta\eta\chi}^{2} = \begin{pmatrix} m_{\eta\chi}^{2} + \frac{\lambda_{11}}{2} u \cos\theta \\ \cdot & \cdot & m_{\eta\chi}^{2} + \frac{\lambda_{11}}{2} u \cos\theta \\ \cdot & \cdot & m_{\chi}^{2} + \frac{\lambda_{11}}{2} u^{2} - \sqrt{2} u \lambda_{11} \cos\theta \end{pmatrix}$$

$$\mathcal{M}_{\eta\eta\chi}^{2} = \begin{pmatrix} m_{\eta\chi}^{2} + \frac{\lambda_{11}}{2} u \cos\theta \\ \cdot & \cdot & m_{\chi}^{2} + \frac{\lambda_{11}}{2} u \cos\theta \\ \cdot & \cdot & m_{\chi}^{2} + \frac{\lambda_{11}}{2} u \cos\theta \end{pmatrix}$$

$$\mathcal{M}_{\eta\eta\chi}^{2} = \begin{pmatrix} m_{\eta\chi}^{2} + \frac{\lambda_{11}}{2} u \cos\theta \\ \cdot & \cdot & m_{\chi}^{2} + \frac{\lambda_{11}}{2} u \cos\theta \\ \cdot & \cdot & m_{\chi}^{2} + \frac{\lambda_{11}}{2} u \cos\theta \end{pmatrix}$$

The Z_8 symmetry is broken down to a dark Z₂ symmetry, preventing the dark scalars to mix with the non-dark scalars

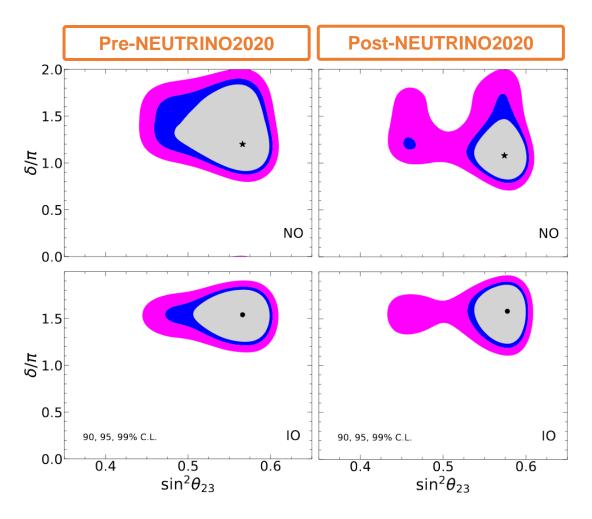
Lightest of the $\mathcal{M}_{\eta\chi}$ eigenstates is a dark matter candidate along with the dark fermion f

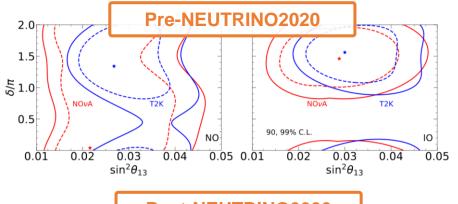
$$-\frac{\lambda_{11}}{2}vu\sin\theta \\
-\sqrt{2}\mu_{1}u\sin\theta \\
v\left(-\frac{\mu_{2}}{\sqrt{2}} + \frac{\lambda_{11}}{2}u\cos\theta\right) \\
+\frac{\lambda_{7}}{2}v^{2} + \frac{\lambda_{10}}{2}u^{2} - \sqrt{2}u\lambda_{11}\cos\theta\right)$$

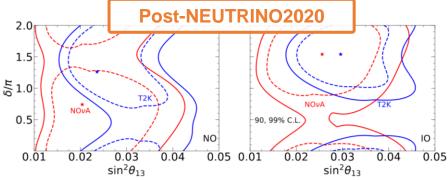
$$\xrightarrow{\eta - \chi \text{ mixing}} (\eta_{0R}, \chi_{R}, \eta_{0I}, \chi_{I})$$

Present status of neutrino oscillation data

Salas et al. (2020)







- Best fit remains for NO with reduced significance (2.7σ)
- Mild preference for the second octant of θ₂₃
- δ is pushed towards **CP conservation for NO**
- δ remains close to maximal CP violation for IO

θ_{23} and δ predictions

DB, F. R. Joaquim, R. Srivastava, J. W. F. Valle (2021)

