

NORA VALTONEN-MATTILA HOW FAR CAN WE SEE CORE-COLLAPSE SUPERNOVAE USING NEUTRINOS IN ICECUBE?

05/06/21

SUPERNOVAE

Nucleosynthesis of heavy elements

Gives birth to neutron stars and black holes!

99% of kinetic energy!

OUTLINE

- How are neutrinos produced in supernovae?
- How do we detect supernovae in IceCube?
- How far can we see CCSNe with high energy neutrinos?

CORE COLLAPSE - LOW ENERGY NEUTRINOS

When $\rho_c < 10^{12} \, g/cm^3$

When $\rho_{core} \sim 10^{12} \, g/cm^3$ Neutrinos are trapped

v emission (some)

When $\rho_c \approx 10^{14} \, g/cm^3$ Core bounces

Shockwave passes through the star

4

Fe

Gravit

LOW ENERGY NEUTRINOS

IceCube observes $\bar{\nu}_e$

Oscillations will affect the spectra that IceCube observes

Neutrinos emitted by SN~10⁵⁸ neutrinos

HOW FAR CAN WE SEE WITH LOW ENERGY NEUTRINOS?

HIGH-ENERGY NEUTRINOS

Progenitor star experiences mass loss prior to explosion

Circumstellar material (CSM)

Shock interacts with CSM nucleon via inelastic pp. This can give rise to pions, which decay producing HE neutrinos.

 $p + p - > \pi^{\pm} + (X) - > \mu^{\pm} + \nu_{\mu}(\bar{\nu})_{\mu} - > e^{\pm}\nu_{e}(\bar{\nu})_{e} + \nu_{\mu}(\bar{\nu})_{\mu}$

Neutron star

HIGH-ENERGY NEUTRINOS: FLUX MODEL

Energy fluences for a Galactic SN (d = 10 kpc)

Thin line is for a model with s = 2.0 and thick for s=2.2.

Gives the mean number of neutrinos that IceCube would observe

Observation time

N =

 E_{min}

I_{min}

K. Murase <u>https://arxiv.org/abs/1705.04750v2</u>

Effective area: neutrino detection sensitivity. It is as a function of neutrino direction (declination) and energy.

 $\int t_{max} \int E_{max}$ $\phi_{\nu}(E_{\nu},t) * A_{eff}(E_{\nu}) * dE_{\nu} * dt$

Neutrino energy

I have averaged the declination for northern/ southern sky.

ICECUBE DETECTOR

https://arxiv.org/pdf/1701.03731.pdf

HOW DOES ICECUBE OBSERVE NEUTRINOS?

Low energy (~MeV)

Inverse beta decay $\bar{\nu_e} + p - > n + e^+$

Expected DOM noise rate change for a galactic SN (d~10 kpc)

High energy (>TeV)

TRACKS

- CC: $\nu_{\mu} + N > \mu + X$
- Good angular resolution (~0.5°)
- Can be difficult to estimate neutrino energy

CASCADES

- CC: ν_e, ν_τ
- NC: ν_e, ν_τ, ν_μ
- Good energy reconstruction
- Not the best angular resolution (~few degrees)

SUPERNOVAE FRACTIONS

More frequent, smaller flux of / HE neutrinos

ICECUBE SENSITIVITY FOR II-P (NORTHERN SKY)

CCSNe rates: <u>https://arxiv.org/abs/1602.03028</u>

ICECUBE SENSITIVITY FOR IIN (NORTHERN SKY)

Not very common type of CCSNe

Interesting because we can reach galaxies that were previously unreachable through the low energy neutrinos.

ICECUBE GEN2

Will expand the instrumented volume by an order of magnitude. This will allow us to see further.

CONCLUSIONS

- event that would give us such a flux nearby.
- only way to see CCSNe at those distances.

If we look nearby using HE neutrinos from shock-CSM interaction, we could potentially have an event with a lot of neutrinos (both tracks and cascades), which could help us characterize shock dynamics. It is likely the only type of

For type IIn, we can extend the reach to \sim a few Mpc. This is currently the

Gen-2 will further expand the reach to high energy neutrinos from CCSNe.

BACKUP

EFFECTIVE AREA - TRACKS

TYPES OF SUPERNOVAE

- To categorize supernovae, we need both the spectra and the light curve.
- The spectra gives us the presence of elements that helps us categorise the type of supernovae, but the light curve gives us information on the subtype of supernovae.

ICECUBE SENSITIVITY FOR II-P (SOUTHERN SKY)

Not many interesting galaxies in the southern sky

ICECUBE SENSITIVITY FOR IIN (SOUTHERN SKY)

20

MOST SENSITIVE ENERGY (TRACKS - NORTHERN SKY)

