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SUPERNOVAE

99% of kinetic
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Nucleosynthesis of = .
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Gives birth to neutron stars and black holes!
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OUTLINE

How are neutrinos produced in supernovae?
How do we detect supernovae in lceCube?

How tar can we see CCSNe with high energy neutrinos?



CORE COLLAPSE - LOW ENERGY NEUTRINOS

Whenp. .~ 10" g/cm”
Neutrinos are trapped

When p. < 10'% g/cm?

Core bounces
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V emission (some) Shockwave passes
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LOW ENERGY NEUTRINOS

v_Burst Accretion Cooling
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Oscillations will affect the
spectra that lceCube observes
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HOW FAR CAN WE SEE WITH LOW ENERGY
NEUTRINOS?

\ :Milky Way (center) no oscillation 0.5 s
\ normal hierarchy 0.5 s a

Inverted hierarchy 0.5 s
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HIGH-ENERGY NEUTRINOS

Progenitor star experiences mass loss
orior to explosion

'

Circumstellar material (CSM)

'

Shock interacts with CSM nucleon via
inelastic pp. This can give rise to pions,

which decay producing HE neutrinos.

p+p—>n"+X)—>u*+uv,0),— > e D), +v,0),

Neutron star



HIGH-ENERGY NEUTRINOS: FLUX MODEL

Energy fluences for a Galactic SN (d = 10kpc) neutrino
detection sensitivity.
o1l flavor T Observation time
Y — l

E \'\" tmax Emax

> — x K K
H N = b, (E,, 1) * A, AE,) * dE, * di
ur { . E .

3 ) min min

Gives the mean Neutrino energy

Thin line is for a model with s =2.0 and thick for number of
s=2 D neutrinos that
lceCube would
observe

K. Murase https://arxiv.org/abs/1705.04750v2 8



https://arxiv.org/abs/1705.04750v2

| CECUBE DETECTOR
'3.IBEBUBE

50m

N 3

lceCube Laboratory

Data is collected here and
sent by satellite to the data
warehouse at UW-Madison

Digital Optical
Module (DOM) 2450 m

5,160 DOMs
deployed in the ice

https://arxiv.org/pdf/1701.03731.pdf

86 strings of DOMs,
set 125 meters apart

DOMs
are 1/
meters
apart

Amundsen-Scott South
Pole Station, Antarctica

A National Science Foundation-
managed research facility

T

60 DOMs
on each
string



https://arxiv.org/pdf/1701.03731.pdf

HOW DOES ICECUBE OBSERVE NEUTRINOS?
Low energy (~MeV) m
igh energy (>Te

Inverse beta decay
Uv,+p—>n+e”

DOM --=-- No Oscillations
Noise floor —— Scenario A (NH)
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e CCy, +N->pu+X

e Good angular resolution
(~0.5°)

Time Post-Bounce [s] | e Can be difficult to

estimate neutrino energy

* NCiv,,v,p,
e Good energy reconstruction
 Not the best angular

resolution (~few degrees)
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SUPERNOVAE FRACTIONS

SNe la SNe Ibc

02cx /91T Ib
5% | 9% 21%

91bg o

e 15% 54% \

Normal . . lbc-pec
70% 25%

https://arxiv.org/abs/1006.4612v2
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https://arxiv.org/abs/1006.4612v2

I CECUBE SENSITIVITY FOR [I-P (NORTHERN SKY)

Most common type of CCSNe Gives us a limited reach

Expected number of neutrino events for SN type II-P (s=2.0) (Northern sky)
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CCSNe rates: https://arxiv.org/abs/1602.03028 12



https://arxiv.org/abs/1602.03028

I CECUBE SENSITIVITY FOR IIN (NORTHERN SKY))

Not very common type of CCSNe

Expected number of neutrino events for SN type IIn (s=2.0) (Northern sky)

— lIn Tracks v,
lIn Cascade ve + v, + V¢

Interesting because we can reach
galaxies that were previously

Andromedal
Tangulum
SextansA

unreachable through the low
energy neutrinos.
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| CECUBE GENZ

vy Gen2-Radio Gen2-Optical ® IceCube o IceCube Upgrade
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CONCLUSIONS

't we look nearby using HE neutrinos from shock-CSM interaction, we could
potentially have an event with a lot of neutrinos (both tracks and cascades),
which could help us characterize shock dynamics. It is likely the only type of
event that would give us such a flux nearby.

For type lIn, we can extend the reach to ~ a few Mpc. This is currently the
only way to see CCSNe at those distances.

Gen-2 will further expand the reach to high energy neutrinos from CCSNe.
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EFFECTIVE AREA - TRACKS
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TYPES OF SUPERNOVAE

To categorize supernovae, we Hydrogen in spectrum

need both the spectra and
the light curve.

The spectra gives us the

presence of elements that s
helps us categorise the type

(1988)

of supernovae, but the light

Wheeler & Harkness

e.g. Hamuy et al.
{2003) (1990)

curve gives us information on

(2007)

the subtype of supernovae.
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I CECUBE SENSITIVITY FOR II-P (SOUTHERN SKY)

Expected number of muon neutrino events for SN type II-P (s=2.0) (Southern sky)

—— |I-P Tracks vy
-== |I-P Cascades ve + v, + V¢

Not many interesting
galaxies in the
southern sky
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ICECUBE SENSITIVITY FOR IIN (SOUTHERN SKY)

Expected number of muon neutrino events for SN type lIn (s=2.0) (Southern sky)
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MOST SENSITIVE ENERGY (TRACKS -NORTHERN
SKY)

Energy sensitivity
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