

Contribution ID: 16

Type: **Oral**

Neutrinoless double beta decay search with GERDA and LEGEND

Thursday 8 July 2021 14:00 (15 minutes)

The GERDA and LEGEND-200 experiments were designed to search for the neutrinoless double beta decay of ^{76}Ge ($0\nu\beta\beta: 76\text{Ge} \rightarrow 76\text{Se} + 2\text{e}^-$) in high-purity germanium detectors operated in ultra-pure liquid argon. Their ultimate goal is to shed light on the as-yet-unknown nature of neutrinos and possibly explain the matter-antimatter asymmetry in the universe that would be induced in case neutrinos are their own antiparticles. The most stringent limit on the half-life of $0\nu\beta\beta$ -decay has been recently set by GERDA, which ended in late 2019 to allow for the construction of its successor, LEGEND-200. The aim of LEGEND-200 is to increase the sensitivity to $0\nu\beta\beta$ -decay by one order of magnitude. To achieve this goal, an excellent energy resolution and enhanced background vetoing efficiency are crucial. In this talk, I will show the latest results of GERDA and the R&D work for LEGEND, focusing on the construction and characterization of its liquid argon veto.

Author: RODRIGUES ARAUJO, Gabriela (University of Zurich)

Presenter: RODRIGUES ARAUJO, Gabriela (University of Zurich)

Session Classification: Student Talks