# Muons production and Neutrino trapping in Binary Neutron Star Mergers

in collaboration with Albino Perego

#### GRAN SASSO SCIENCE INSTITUTE G S SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

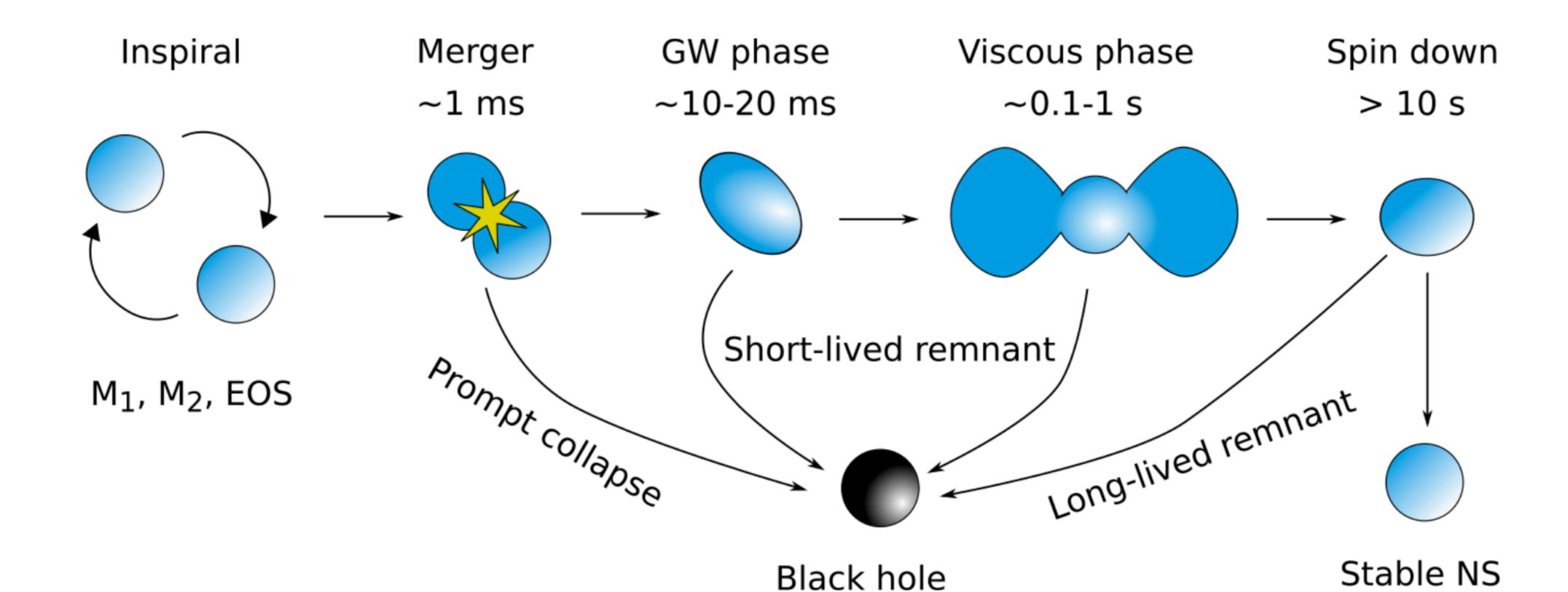
Talk for the Ph.D. School "Neutrinos: Here, There & Everywhere"

#### Eleonora Loffredo



05.07.2021

## Which is the fate of a Binary Neutron Star (BNS) merger?

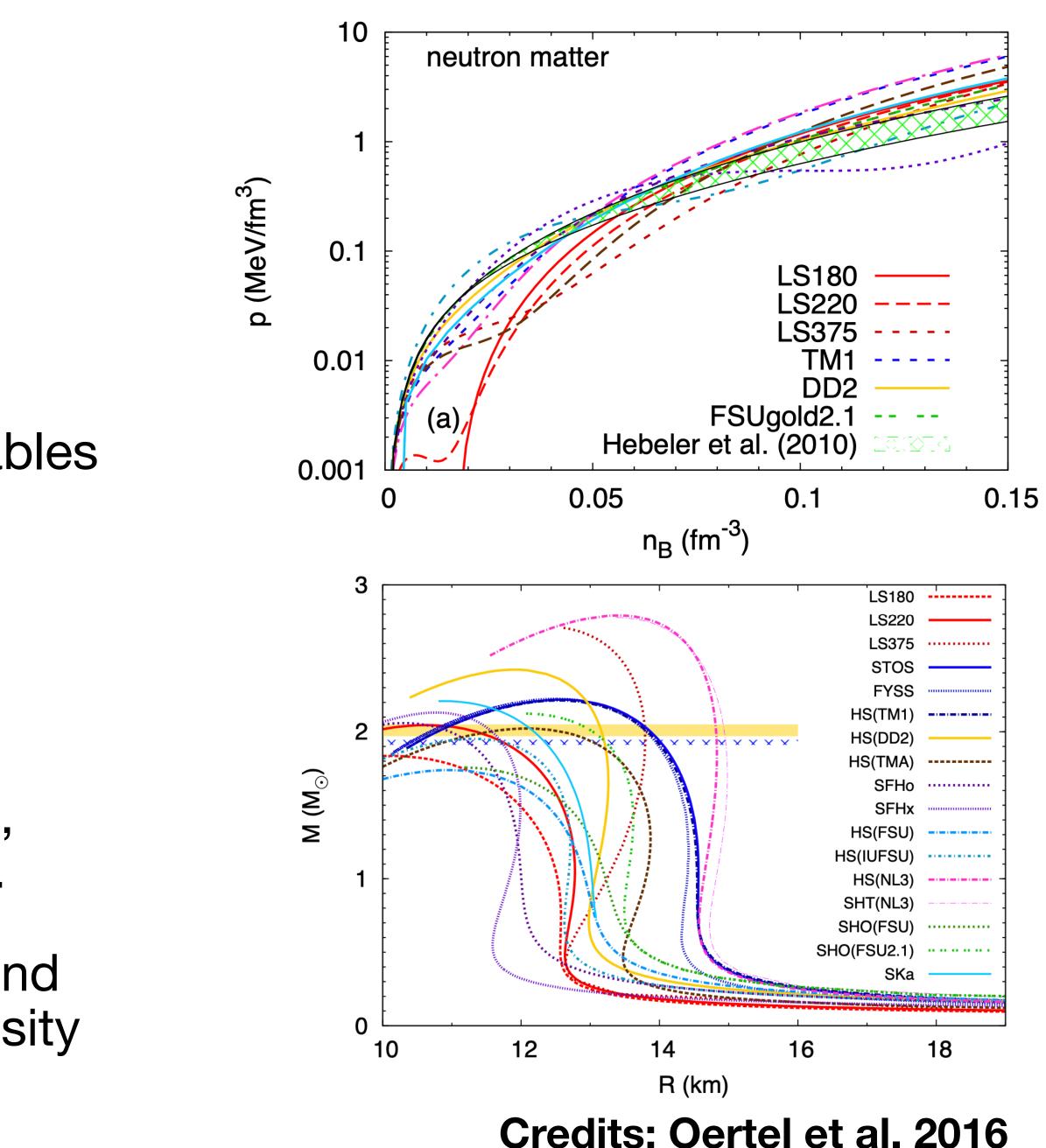


#### Credits: Radice, Bernuzzi, Perego 2020



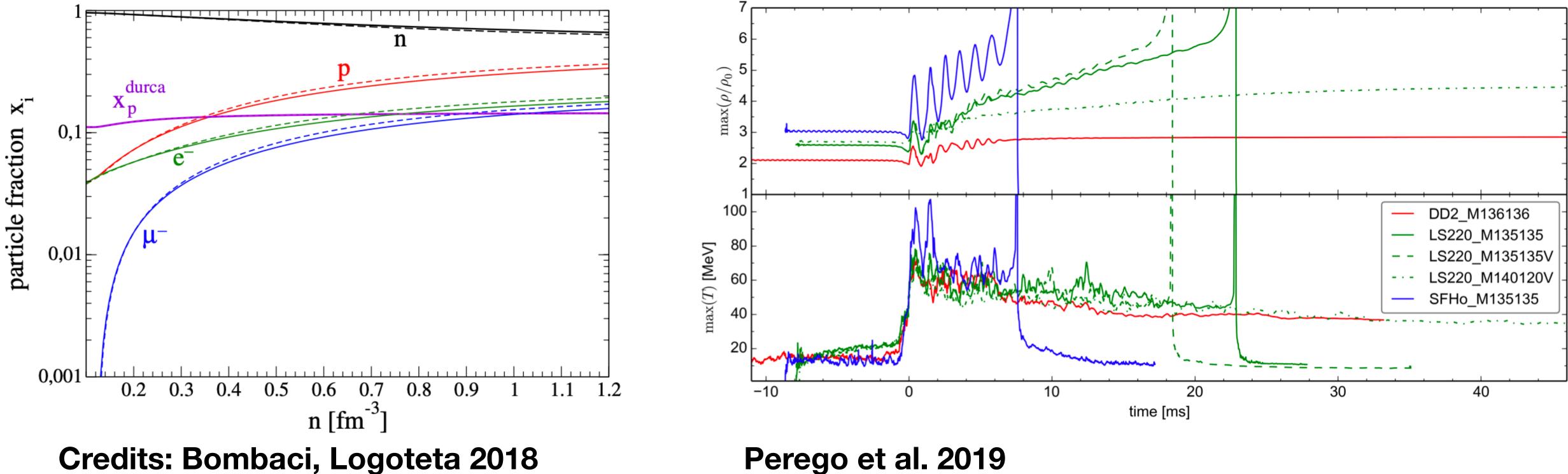
# The Equation of State of nuclear matter

- EOS: relation between matter density, temperature and thermodynamic variables
- The EOS of Neutron Stars is unknown
- Stiffer vs softer EOS
- Modelling of nuclear interaction and relevant degrees of freedom: neutrons, protons, pions, free quarks, muons, ...
- The relevant degrees of freedom depend on the temperature other than the density



## The relevance of muons and trapped neutrinos

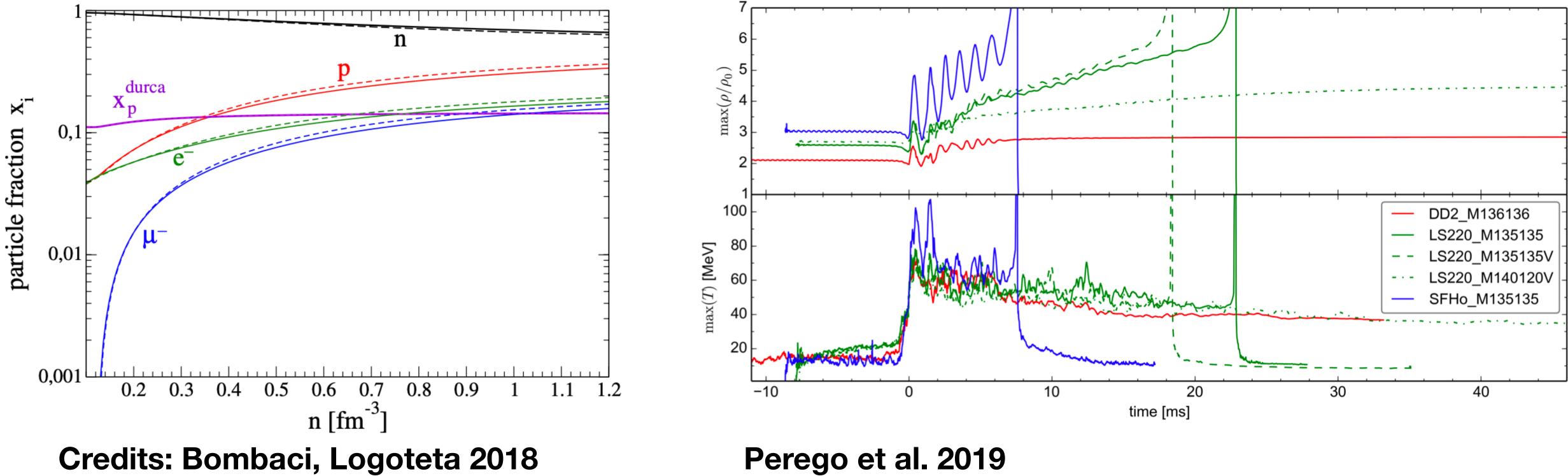
- Muons are included in cold Neutron Star EOS
- Trapped neutrinos can make the EOS softer



• Thermodynamics conditions in BNS mergers favour muons and neutrinos production and neutrino trapping

## The relevance of muons and trapped neutrinos

State of the art simulations of BNS mergers **don't** include muons and trapped neutrinos. The aim of this work is to estimate their impact on the final outcome.



### Method - 1 Modelling the microphysics

- Degrees of freedom: baryons, electrons, positrons, muons, anti-muons, photons and neutrinos

- We assume thermal and weak equilibrium
- Under these assumptions the relevant variables are  $n_b$ , T,  $Y_\rho$  and  $Y_\mu$

• The thermodynamic variables are determined by baryon number density  $n_b$ , temperature T and particle fractions  $Y_i = n_i/n_R$  where  $i = p, e^-, e^+, \mu^- \dots$ • Charge neutrality  $Y_p = Y_e + Y_u$  where  $Y_e = Y_{e^-} - Y_{e^+}$  and  $Y_u = Y_{u^-} - Y_{u^+}$ 

### Method - 1 Modelling the microphysics

 $\gamma + \gamma \longleftrightarrow \mu^+ + \mu^ \gamma + \gamma \longleftrightarrow e^+ + e^ \gamma + \gamma \longleftrightarrow \nu_x + \bar{\nu}_x$  $\nu_{\mu} + e^- \longleftrightarrow \nu_e + \mu$  $\nu_{\mu} + \bar{\nu}_{e} + e^{-} \longleftrightarrow \mu$  $\nu_{\mu} + n \longleftrightarrow p + \mu^{-}$  $\bar{\nu}_e + p \longleftrightarrow n + e^+$  $\bar{\nu}_{\mu} + \nu_{e} + e^{+} \longleftrightarrow \mu^{+}$ 

- We assume thermal and weak equilibrium
- Under these assumptions the relevant variables are  $n_b$ , T,  $Y_e$  and  $Y_\mu$

$$\begin{array}{ccc} & e^+ + e^- \longleftrightarrow \mu^+ + \mu^- \\ & e^+ + e^- \longleftrightarrow \nu_x + \bar{\nu}_x \\ & \nu_x + \mu^\pm \longrightarrow \nu_x + \mu^\pm \\ & \nu_x + \mu^\pm \longrightarrow \nu_x + \mu^\pm \\ & \bar{\nu}_\mu + p \longleftrightarrow n + \mu^+ \\ & \bar{\nu}_e + e^- \longleftrightarrow \bar{\nu}_\mu + \mu^- \\ & \nu_e + n \longleftrightarrow p + e^- \\ & \bar{\nu}_\mu + e^+ \longleftrightarrow \bar{\nu}_e + \mu^+ \\ & \psi_e + e^+ \longleftrightarrow \nu_\mu + \mu^+ \end{array}$$

# Method - 2

The lepton fractions

- Consider a fluid element in thermal and weak equilibrium at high enough density
- Neutrinos are trapped, and electron lepton number  $Y_{l,e}$  and muon lepton number  $Y_{l,\mu}$  are conserved

$$\begin{cases} Y_{l,e} = Y_e + Y_{\nu_e}(n_b, T, Y_e, Y_\mu) - Y_{\bar{\nu}_e}(n_b, T, Y_e, Y_\mu) \\ Y_{l,\mu} = Y_\mu + Y_{\nu_\mu}(n_b, T, Y_e, Y_\mu) - Y_{\bar{\nu}_\mu}(n_b, T, Y_e, Y_\mu) \end{cases}$$

• Equivalent set of variables  $(Y_e, Y_\mu)$  •

$$\longleftrightarrow (Y_{l,e}, Y_{l,\mu})$$

# Method - 3

#### The post-processing technique

- At high enough density the neutrinos are trapped  $\rightarrow Y_{l,e}, Y_{l,\mu}$  conserved
- On a time-scale  $t_{weak} \ll dt \ll t_{dvn}$  the internal energy u stays the same

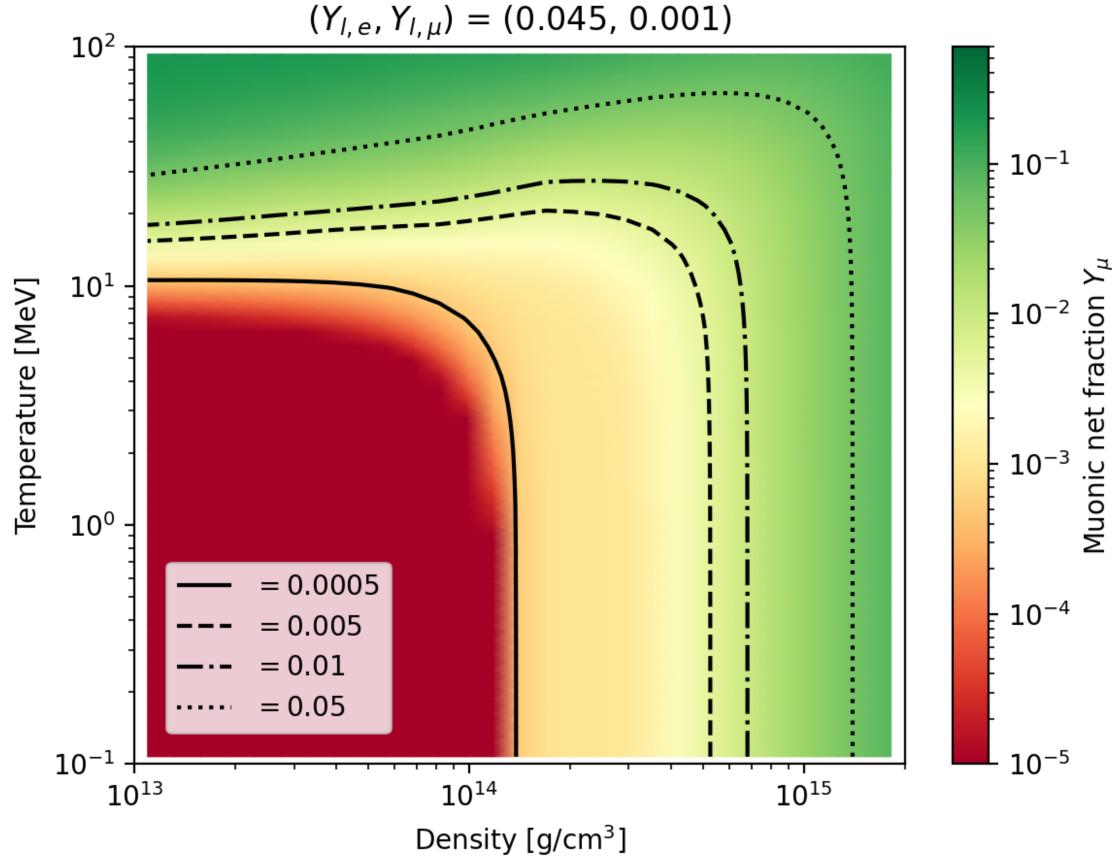
$$\begin{cases} Y_{l,e} = Y_e + Y_{\nu_e}(n_b, T, Y_e, Y_\mu) - Y_{\bar{\nu}_e}(n_b, T, Y_e, Y_\mu) \\ Y_{l,\mu} = Y_\mu + Y_{\nu_\mu}(n_b, T, Y_e, Y_\mu) - Y_{\bar{\nu}_\mu}(n_b, T, Y_e, Y_\mu) \\ u = \sum_i e_i(n_b, T, Y_e, Y_\mu) \quad i = b, e^{+/-}, \mu^{+/-}, \gamma, \nu, \bar{\nu} \end{cases}$$

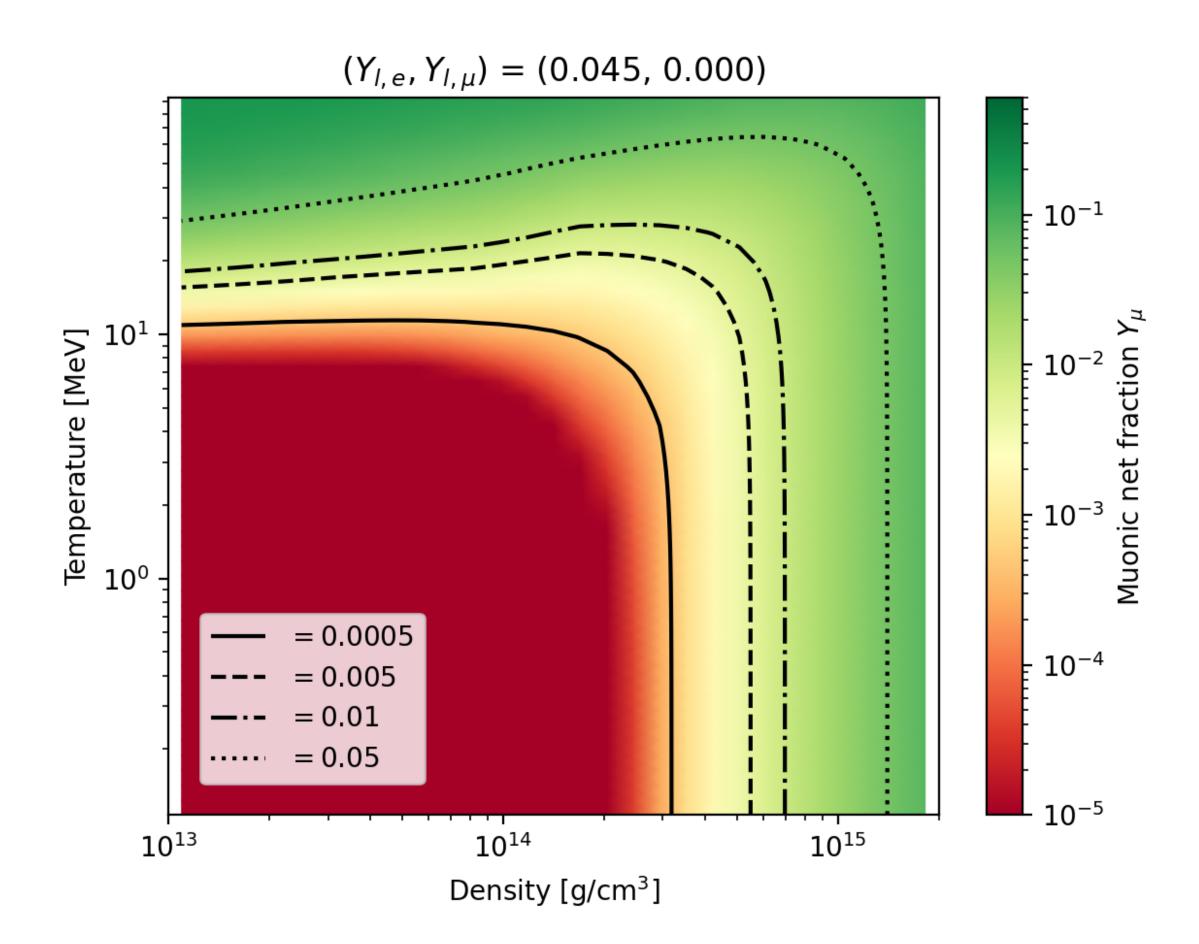
- and  $Y_{l,\mu} = Y_{\mu} = 0$  and no contributions from neutrino trapping
- By solving the system we get the *true* values of  $Y_e, Y_u, T$  and all thermodynamic quantities

• During the merger the temperature of the fluid element increases  $\rightarrow$  creation of muons and neutrinos

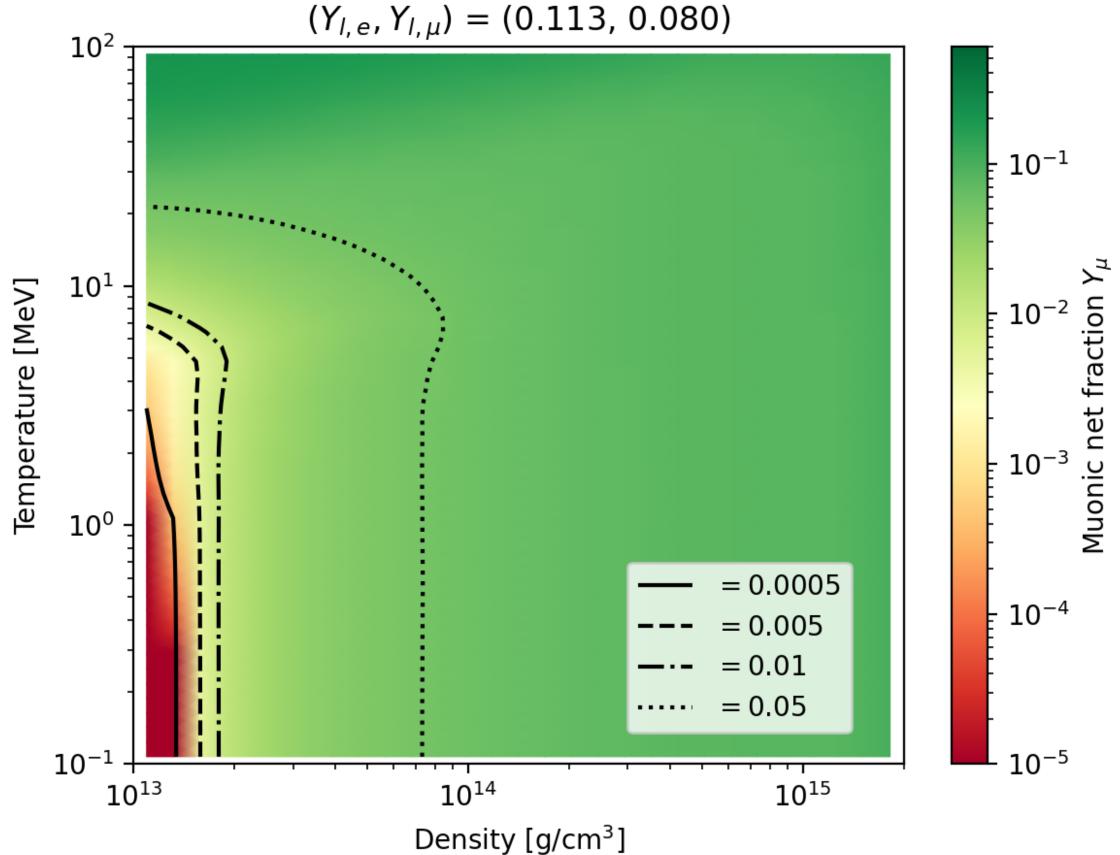
• Numerical relativity simulations provide  $(Y_{l,e}, Y_{l,\mu}, u) \forall (t, x, y, z)$  under the assumptions  $Y_{l,e} = Y_e$ 

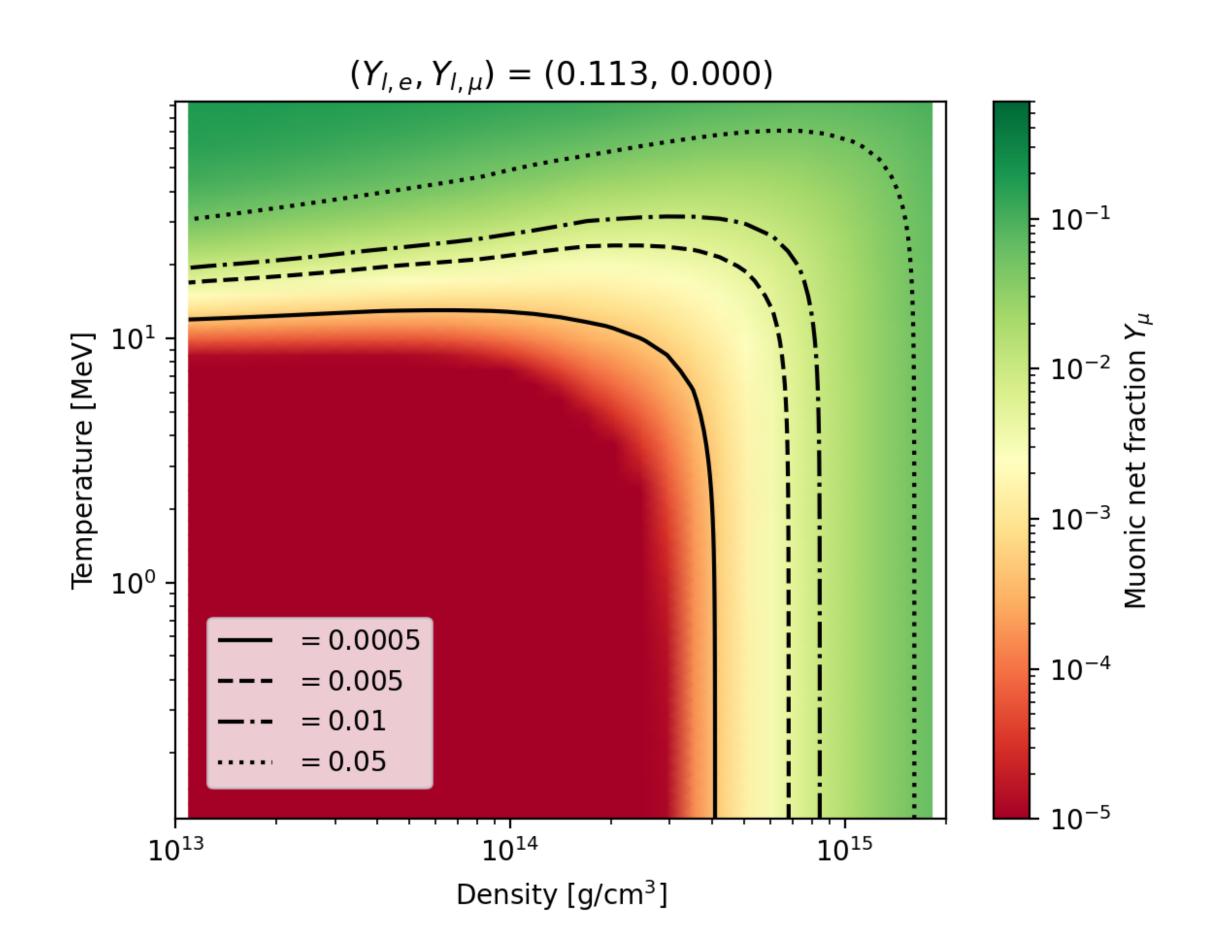
### Results The density-temperature plane - Muons



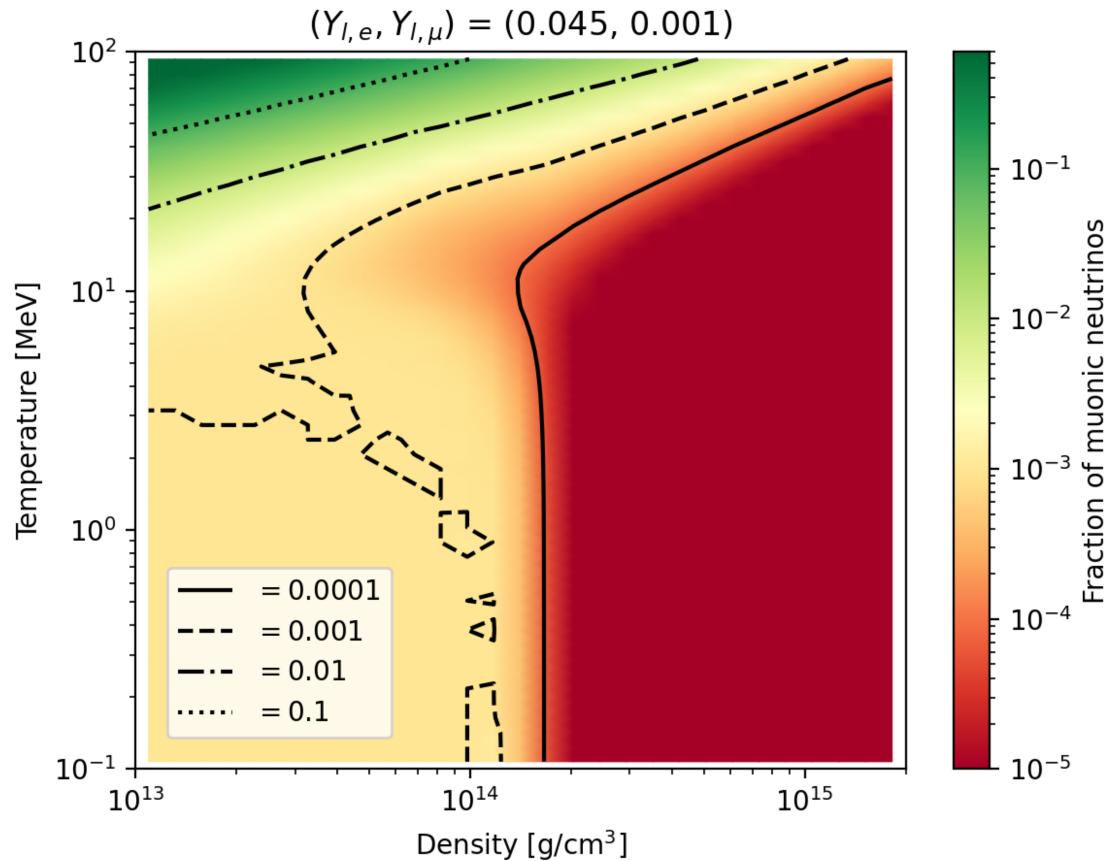


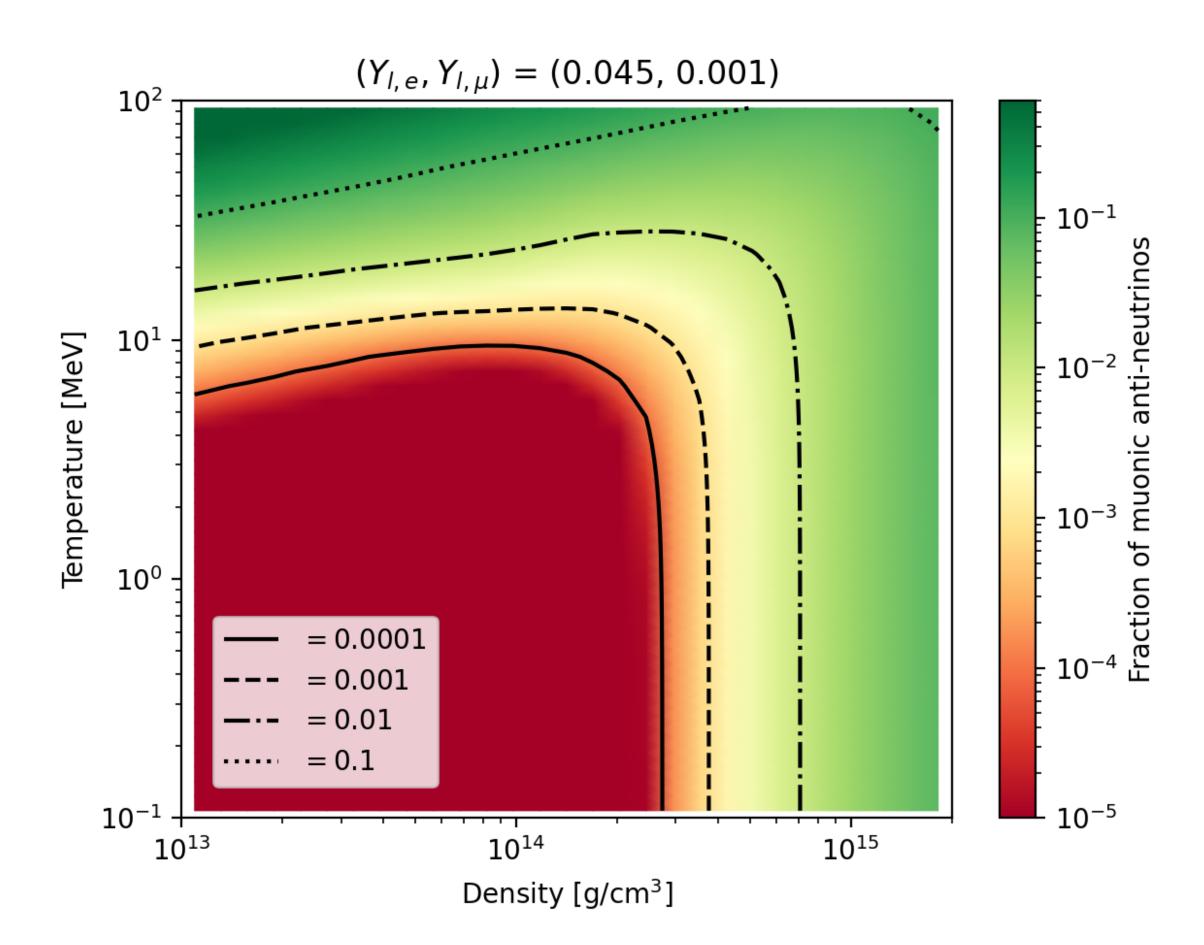
### Results The density-temperature plane - Muons



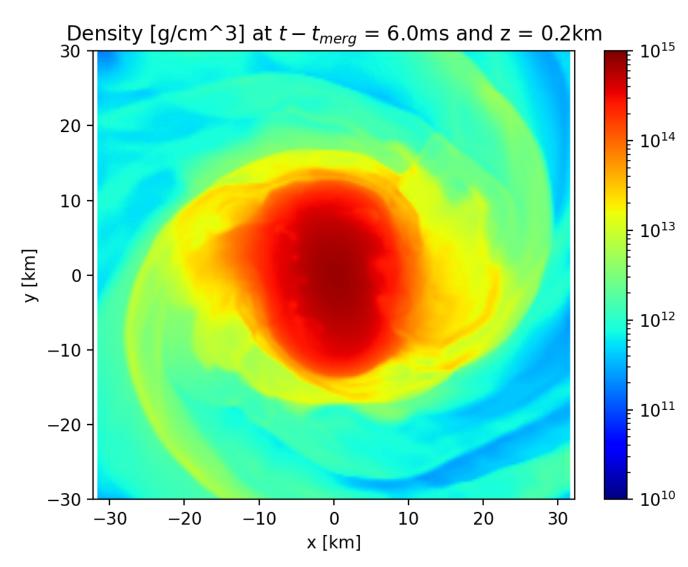


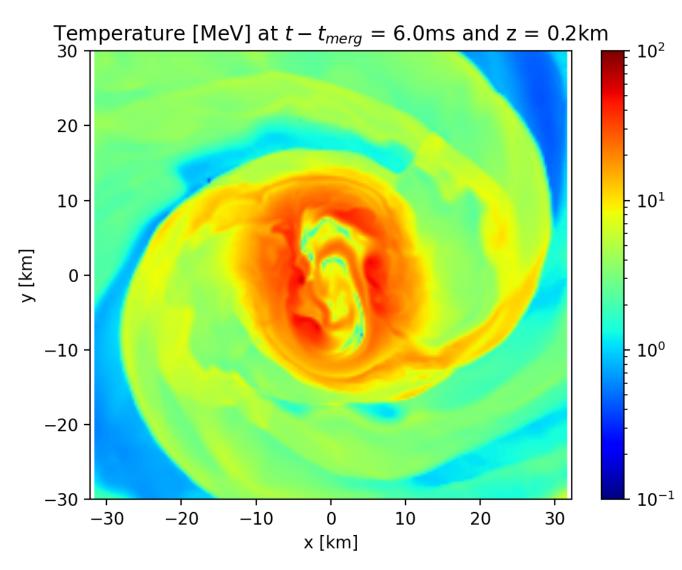
### Results The density-temperature plane - Neutrinos

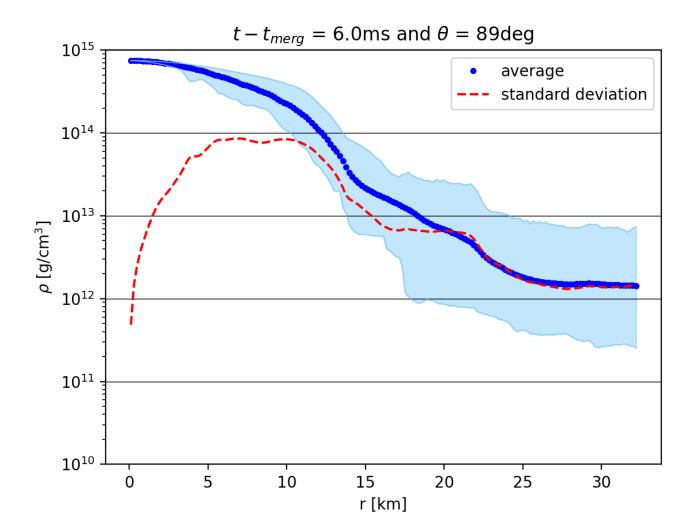


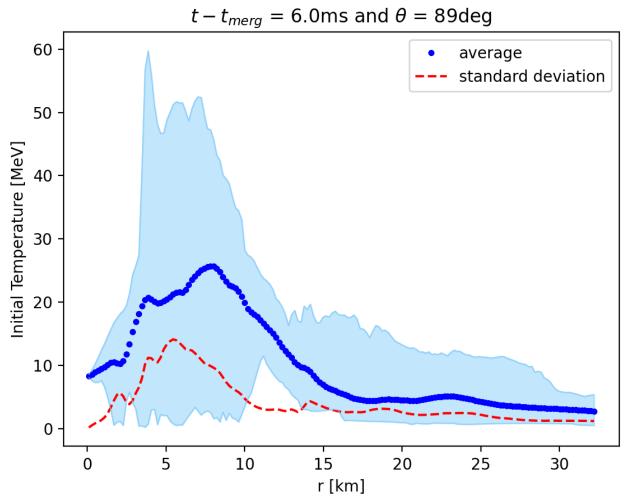


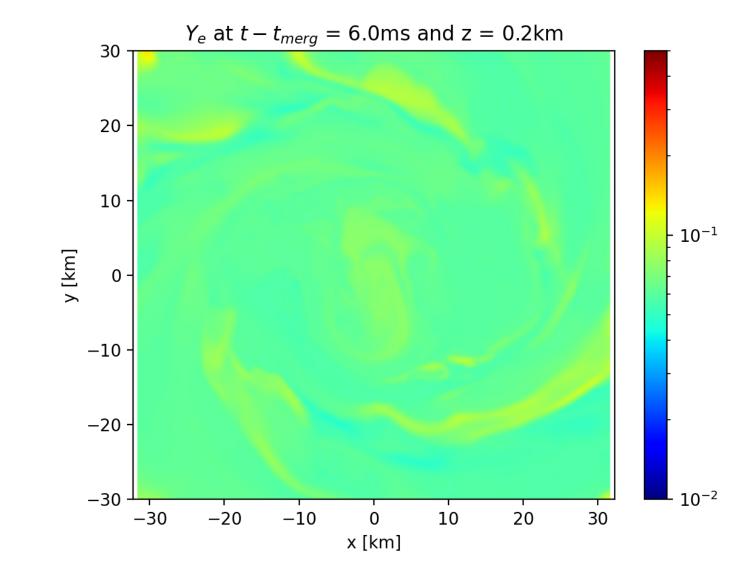
# The outcome of the simulation

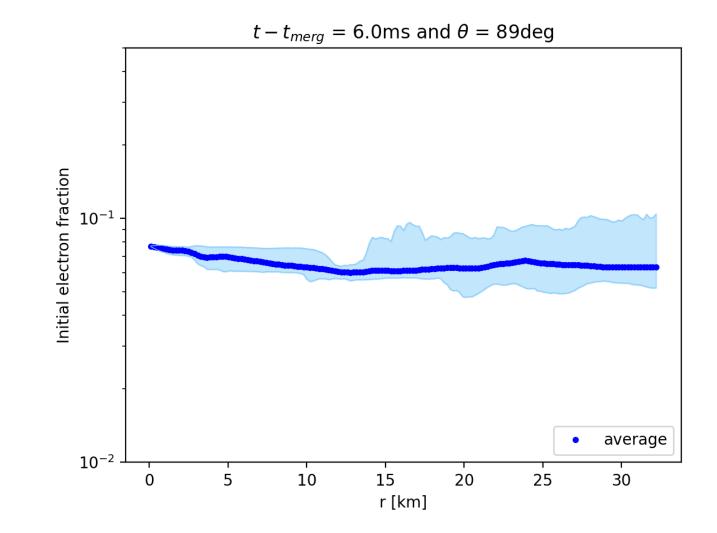




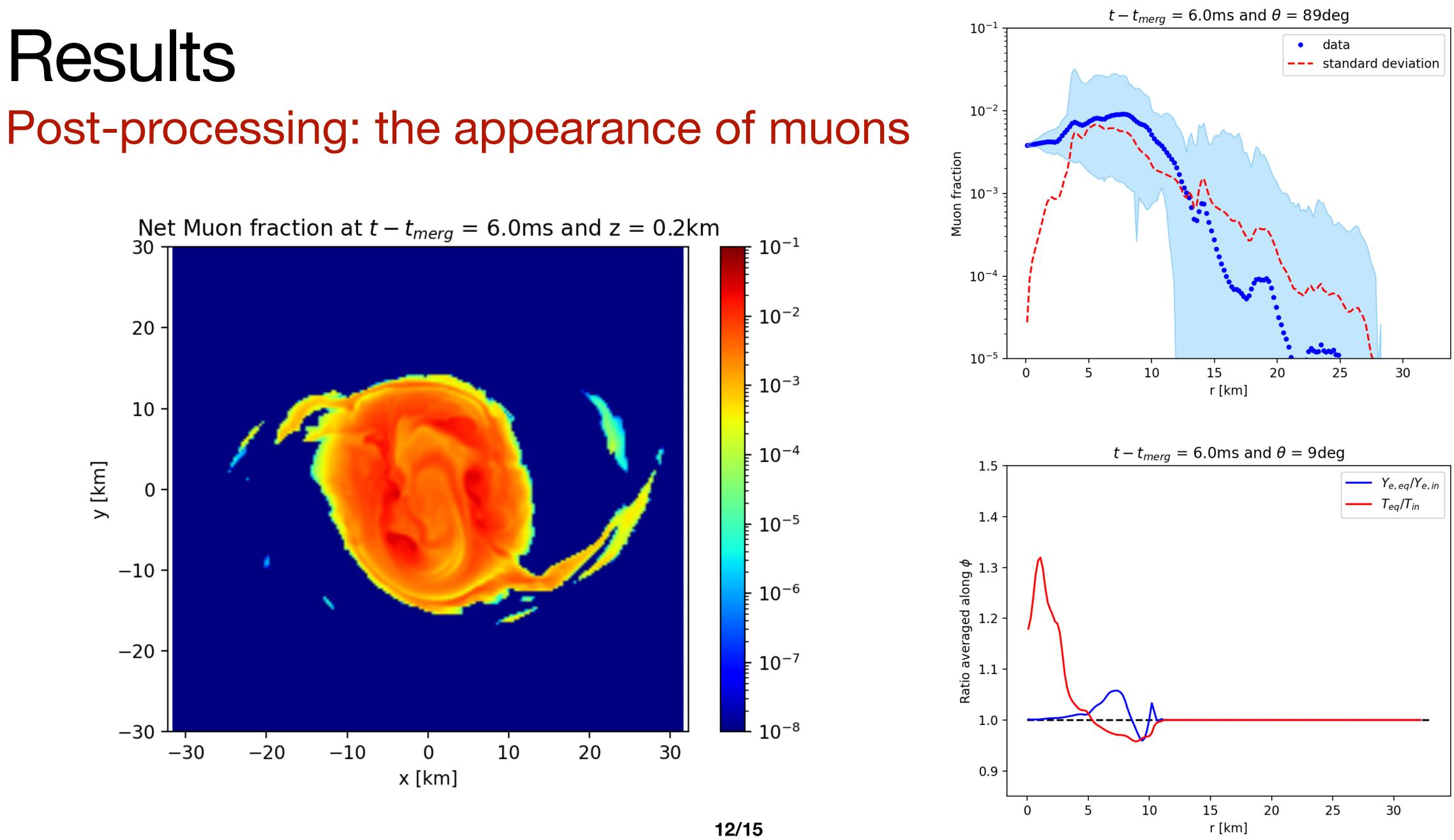




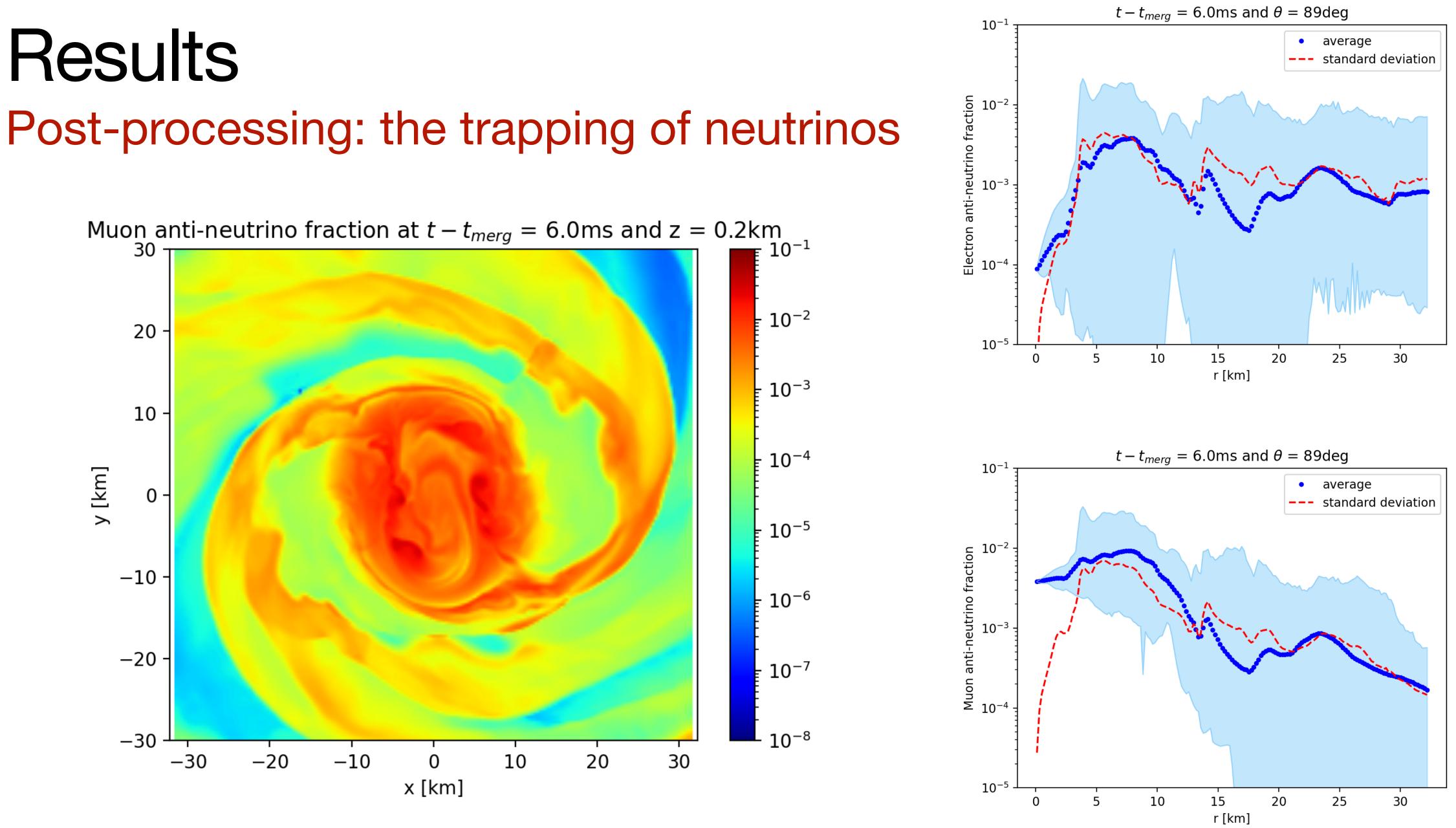




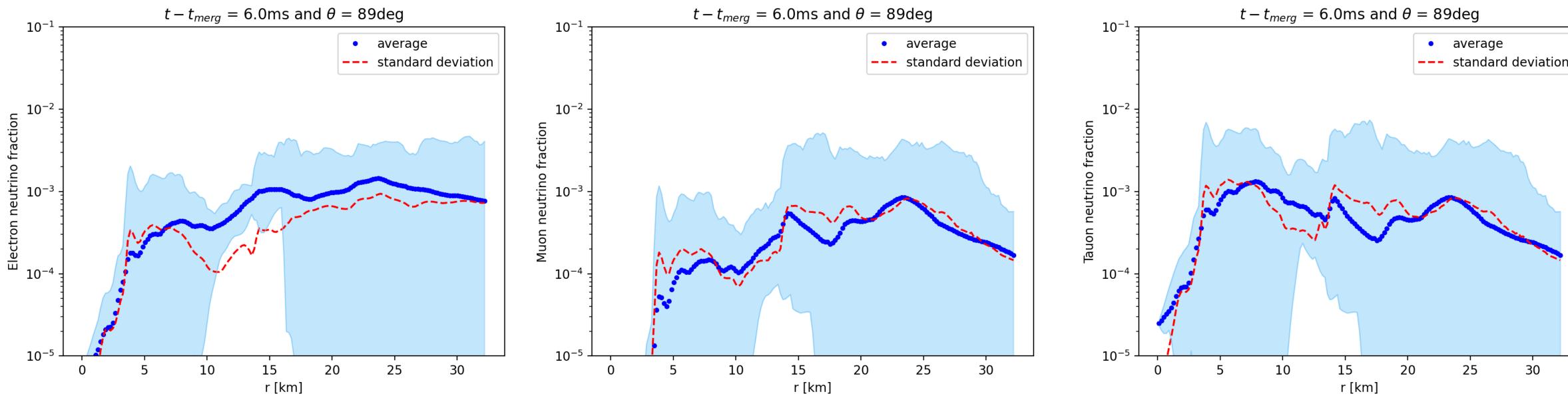
# Results



# Results



### Results Post-processing: the trapping of neutrinos





# Conclusions

- The fraction of muons and/or trapped neutrinos is  $\simeq 10\%$  of  $Y_{
  m 
  ho}$  . The inclusion of muons and trapped neutrinos will improve state of the art simulations.
- Trapped neutrinos tend to increase  $Y_{\rho}$  and to soften the EOS  $\rightarrow$  possibly faster collapse of the remnant

# Outlook

- Check the pressure variation...
- What if we consider  $Y_{l,\mu} \neq 0$  in simulation post-processing?
- What if we change the baryonic EOS?
- What if we change the binary mass ratio?