Searching for new physics in atmospheric neutrino oscillations with IceCube Tom Stuttard Niels Bohr Institute NBI Neutrino Summer School 2021

Why search for new physics?

- Our current understanding of the Universe described by:
 - Standard Model (SM)
 - Theory of General Relativity (GR)
- Despite the success of these theories, many open questions remain...

Why search for new physics in neutrino oscillations?

- Neutrinos propagate as a superposition of ≥3 mass states
 - Gives rise to oscillations
- New physics can modify this superposition
 - Results in modified/degraded oscillation effects
 - Neutrinos act as tiny quantum interferometers

Why search for new physics in neutrino oscillations?

- Neutrinos propagate as a superposition of ≥3 mass states
 - Gives rise to oscillations
- New physics can modify this superposition
 - Results in modified/degraded oscillation effects
 - Neutrinos act as tiny quantum interferometers

- Additionally, neutrinos:
 - Can **travel large distances** \rightarrow weak signals can accumulate
 - Are naturally available at high (GeV-PeV) energies → access higher energy scale physics
 - Are unaffected by EM and strong forces \rightarrow avoid diluting potential weak new physics

Atmospheric neutrino oscillations

- Cosmic rays impacting the Earth's atmosphere produce a copious flux of high energy neutrinos
- $\mathcal{O}(mHz)$ neutrino rates detected by IceCube (GeV-PeV) \rightarrow a ν every 15 mins!
- Neutrinos oscillate as they cross the Earth before detection

Atmospheric neutrino oscillations

- Cosmic rays impacting the Earth's atmosphere produce a copious flux of high energy neutrinos
- $\mathcal{O}(\text{mHz})$ neutrino rates detected by IceCube (GeV-PeV) \rightarrow a ν every 15 mins!
- Neutrinos oscillate as they cross the Earth before detection

Non-Standard Interactions

Non-Standard Interactions (NSI)

- Neutrinos propagating in matter experience an effective potential
 - Due to coherent CC forward scattering of v_e with electrons \rightarrow modified oscillations
- New forces/interactions between neutrinos and electrons and/or quarks could produce an additional potential

Non-Standard Interactions (NSI)

- Neutrinos propagating in matter experience an effective potential
 - Due to coherent CC forward scattering of v_e with electrons \rightarrow modified oscillations
- New forces/interactions between neutrinos and electrons and/or quarks could produce an additional potential

• NSI effects typically parameterised using a **modified potential matrix**

$$H_{\text{mat}}(x) = V_{\text{CC}}(x) \begin{pmatrix} 1 + \epsilon_{ee}^{\oplus} - \epsilon_{\mu\mu}^{\oplus} & \epsilon_{e\mu}^{\oplus} & \epsilon_{e\tau}^{\oplus} \\ \epsilon_{e\mu}^{\oplus *} & 0 & \epsilon_{\mu\tau}^{\oplus} \\ \epsilon_{e\tau}^{\oplus *} & \epsilon_{\mu\tau}^{\oplus *} & \epsilon_{\tau\tau}^{\oplus} - \epsilon_{\mu\mu}^{\oplus} \end{pmatrix} \text{Lepton universality violating}$$

Atmospheric neutrino oscillations

- Effects of NSI depend on density of traversed matter
 - Largest signal expected for neutrinos crossing the Earth's core
- Rich phenomenology depending on texture of NSI matrix
 - e.g. depending on underlying nature of new force

NSI constraints from IceCube

- No evidence found of NSI using 3 yrs of IceCube-DeepCore data
 - All matrix elements tested
 - Strongest constraints on μ/τ sector
 - Little power to constrain real vs imaginary components (no $\nu/\bar{\nu}$ discrimination)

Sterile neutrinos

• UNIVERSITY OF COPENHAGEN

Sterile neutrinos

- Only left-handed neutrinos* are produced in weak interactions
 - Parity violation

- Right-handed neutrinos conjectured to exist, but would only experience the gravitational force (hence "sterile")
- Heavy sterile neutrinos can potentially explain the tiny but non-zero active neutrino masses via see-saw mechanisms

Sterile neutrino searches

- Cannot directly detect sterile neutrinos in detectors
- Instead, search for modified oscillations due to active-sterile mixing

$$U_{\rm PMNS}^{\rm Extended} = \begin{pmatrix} U_{e1}^{3x3} & U_{e2}^{3x3} & \dots & U_{en} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & \dots & U_{\mu n} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & \dots & U_{\tau n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ U_{s_n 1} & U_{s_n 2} & U_{s_n 3} & \dots & U_{s_n n} \end{pmatrix}$$

- Number of sterile neutrinos unknown \rightarrow normally consider one new state
 - 3+1 models
- Huge range of masses theoretically allowed
 - Much recent focus on $\Delta m^2 \sim 1 \ eV^2$ due to short baseline and reactor anomalies

Sterile neutrinos in IceCube

• Two main sterile oscillation signals in atmospheric $\bar{\nu}_{\mu}$ disappearance:

Sterile neutrinos in IceCube

• Two main sterile oscillation signals in atmospheric $\bar{\nu}_{\mu}$ disappearance:

Sterile neutrinos in IceCube

• Two main sterile oscillation signals in atmospheric $\bar{\nu}_{\mu}$ disappearance:

IceCube searches

- IceCube searches performed for both channels
 - 8 yrs of data, 300,000 $\nu_{\mu}/\bar{\nu}_{\mu}$

• Consistent with no sterile \rightarrow major tension with short baseline anomalies

Planck scale physics

Physics at high energy scales

- New high energy theories proposed to solve shortcomings of the SM/GR
 - quantum gravity?
 - $E \sim 10^{19} \text{ GeV}, L \sim 10^{-35} \text{ m}$ (the **Planck scale**)
- SM is then a low energy limit of this new theory

Physics at high energy scales

- New high energy theories proposed to solve shortcomings of the SM/GR
 - quantum gravity?
 - $E \sim 10^{19} \text{ GeV}, L \sim 10^{-35} \text{ m}$ (the **Planck scale**)
- SM is then a low energy limit of this new theory

- Lorentz invariance violation?
- CPT violation?
- Neutrino decoherence?

- These effects are **suppressed at the "low" energies** we observe
 - Need high neutrino energies and statistics to search for these effects

Lorentz invariance violation

Lorentz invariance violation (LIV)

- Lorentz invariance Experimental results are independent of the orientation and velocity of the laboratory frame
- LIV predicted by high energy/GUT theories, e.g. quantum gravity, string theory, SUSY, ...
 - LIV suppressed at energy scales we can currently access
- Example phenomenology:
 - Energy-dependent speed of light (modified dispersion relation)
 - Preferred direction of space-time

Standard Model Extension (SME)

- Effective field theory extending the SM to include all possible Lorentz invariance violating operators
 - Features both CPT preserving and violating operators

- Many SME tests performed
 - Neutrino oscillations, accelerator, γ -ray, CRs, CMB, precision nuclear/atomic lab tests, ...

Atmospheric neutrino tests

• Atmospheric neutrino flavour transitions modified by a LIV field

Nature Physics 14, 961–966 (2018)

IceCube search

- LIV search performed using IceCube data
 - Signal is disappearance of high energy neutrinos as they cross the Earth
 - Only isotropic effects considered
- No LIV effects observed
 - World's most stringent constraints on higher order SME operators

Sidereal effects

- LIV may result in *preferred direction* of Universe
 - Terrestrial physics would then depend on current orientation of Earth w.r.t. this direction
 - Expect sidereal variation in atmospheric neutrino flavour transitions

• Old (2010) IceCube search (PhysRevD.82.112003), an update is overdue!

Neutrino decoherence

Neutrino decoherence

- Neutrino oscillations generally considered to be coherent
 - The wavefunctions of two neutrinos of the same energy travelling the same path evolve identically
- Not true for neutrinos propagating in a **stochastic medium**
 - Neutrino ensemble becomes increasingly out of phase over distance
 - Neutrino decoherence → damping of neutrino oscillations

What stochastic background?

- Quantum gravity → Planck scale space-time fluctuations: **space-time foam**
- Fluctuating space-time curvature → fluctuating travel time/distance between two points = lightcone fluctuations
 - Velocity fluctuations (stochastic LIV) also considered
- Also potential for virtual black hole (VBH) formation
 - Quantum gravity analogue of vacuum polarisation
 - Space-time permeated with Planck scale black holes
 - Propagating neutrinos undergo stochastic (flavour violating?) interactions with VBH background

- Neutrino decoherence generally treated as **open quantum system**
 - Neutrino and environment considered as single quantum system
- State evolution using **Lindblad master equation**:

- Neutrino decoherence generally treated as **open quantum system**
 - Neutrino and environment considered as single quantum system
- State evolution using **Lindblad master equation**:

$$= -i[H, \rho] - \mathcal{D}[\rho]$$
$$\mathcal{D}[\rho] = \begin{pmatrix} 0 & \Gamma_{21}\rho_{12} & \Gamma_{31}\rho_{13} \\ \Gamma_{21}\rho_{21} & 0 & \Gamma_{32}\rho_{23} \\ \Gamma_{31}\rho_{31} & \Gamma_{32}\rho_{32} & 0 \end{pmatrix}$$

Most studies use a general form for the decoherence operator, characterised by damping parameters, Γ

- Neutrino decoherence generally treated as **open quantum system**
 - Neutrino and environment considered as single quantum system
- State evolution using **Lindblad master equation**:

$$\dot{\rho} = -i[H,\rho] - \mathcal{D}[\rho]$$

$$\mathcal{D}[\rho] = (D_{\mu\nu}\rho^{\nu})b^{\mu} \qquad D = \begin{pmatrix} \Gamma_{0} & \beta_{01} & \beta_{02} & \beta_{03} & \beta_{04} & \beta_{05} & \beta_{06} & \beta_{07} & \beta_{08} \\ \beta_{01} & \Gamma_{1} & \beta_{12} & \beta_{13} & \beta_{14} & \beta_{15} & \beta_{16} & \beta_{17} & \beta_{18} \\ \beta_{02} & \beta_{12} & \Gamma_{2} & \beta_{23} & \beta_{24} & \beta_{25} & \beta_{26} & \beta_{27} & \beta_{28} \\ \beta_{03} & \beta_{13} & \beta_{23} & \Gamma_{3} & \beta_{34} & \beta_{35} & \beta_{36} & \beta_{37} & \beta_{38} \\ \beta_{04} & \beta_{14} & \beta_{24} & \beta_{34} & \Gamma_{4} & \beta_{45} & \beta_{46} & \beta_{47} & \beta_{48} \\ \beta_{05} & \beta_{15} & \beta_{25} & \beta_{35} & \beta_{45} & \Gamma_{5} & \beta_{56} & \beta_{57} & \beta_{58} \\ \beta_{06} & \beta_{16} & \beta_{26} & \beta_{36} & \beta_{46} & \beta_{56} & \Gamma_{6} & \beta_{67} & \beta_{68} \\ \beta_{07} & \beta_{17} & \beta_{27} & \beta_{37} & \beta_{47} & \beta_{57} & \beta_{67} & \Gamma_{7} & \beta_{78} \\ \beta_{08} & \beta_{18} & \beta_{28} & \beta_{38} & \beta_{48} & \beta_{58} & \beta_{68} & \beta_{78} & \Gamma_{8} \end{pmatrix}$$

- Neutrino decoherence generally treated as **open quantum system**
 - Neutrino and environment considered as single quantum system
- State evolution using **Lindblad master equation**:

$$\dot{\rho} = -i[H,\rho] - \mathcal{D}[\rho]$$

• Energy-dependence typically added "by hand":

$$\Gamma(E) = \Gamma(E_0) \left(\frac{E}{E_0}\right)^n \quad \text{or} \quad \Gamma(E) = \zeta_{\text{Planck}} \frac{E^n}{M_{\text{Planck}}^{n-1}}$$
w.r.t. arbitrary E₀ (usually 1 GeV)

w.r.t. Planck scale "Natural" expectation: $\zeta \sim O(1)$

Tom Stuttard

36

• Signal is damping of neutrino flavour transitions \rightarrow increases with baseline

Example scenario 1: Flavour violating v-VBH interactions Energy-independent

Signal across all E (IceCube + DUNE synergy)

• Signal is damping of neutrino flavour transitions \rightarrow increases with baseline

Example scenario 1: Flavour violating v-VBH interactions Energy-independent

Standard oscillations for Earth crossing neutrinos weakened

• Signal is damping of neutrino flavour transitions \rightarrow increases with baseline

• Signal is damping of neutrino flavour transitions \rightarrow increases with baseline

• Signal is damping of neutrino flavour transitions \rightarrow increases with baseline

Sensitivity to "natural" Planck scale effects for E^{≤3}-dependence!

Other scenarios

- Rich decoherence phenomenology depending on underlying microphysics
 - Final flavour, large baseline limit, atmospheric vs solar frequency relative damping, unitarity and energy- and distance-dependence depend on operator/scenario tested

New IceCube searches in progress...

Wrapping up

Summary & outlook

- Many open questions remain in fundamental physics...
- Neutrino oscillations are sensitive to the possible answers to many of these questions
- Atmospheric neutrino oscillation measurements with IceCube offer world leading new physics sensitivity
 - High energies, baselines, matter density and statistics...
- No signal found yet...
 - But, new generation of measurements on the way...
 - And, the future is bright in the IceCube Upgrade and Gen2...

Thank you!

Why not astrophysical neutrinos?

- The extremely high energies and baselines of the diffuse astrophysical neutrino flux is also a great testing ground for new physics
- However, poorly understood flux, incoherent nature of sources and low statistics make atmospheric neutrinos preferable in many cases

