

Neutrino Astronomy & Astrophysics

PhD summer school on neutrinos Here, there & Everywhere NBI, Copenhagen

Foteini Oikonomou

July 5th-9th

Norwegian University of Science and Technology

Lecture plan

- Experimental facts and basic theoretical concepts
- Requirements for astrophysical accelerators of high-energy cosmic rays/ • high-energy neutrinos (generic source properties)
- Overview of candidate sources (Active Galactic Nuclei/Starburst • Galaxies/Gamma ray bursts/Pulsars/Tidal Disruption Events) constraints and prospects

Enter the protons

For characteristic values of B, R, and delta, we end up with E_{max} in the UHECR ball park,

$$E_{\rm CR,max} \sim \left(\frac{Z}{1}\right) \left(\frac{\eta}{1}\right) \left(\frac{B}{0.35 \text{ G}}\right)$$

Neutrino production in blazars

Accretion disk

 $p + \gamma \rightarrow n + \pi^+ \rightarrow n + \mu^+ \nu_\mu \rightarrow n + e^+ + \nu_e + \bar{\nu_e} + \bar{\nu_\mu} + \bar{\nu_\mu}$ $p + \gamma \rightarrow p + \pi^0 \rightarrow p + \gamma + \gamma$

Averaged branching ratio,

$$R_{\pi} = \frac{\Gamma(\rightarrow \pi^{+/-})}{\Gamma(\rightarrow \pi^{0})} \sim 1 \qquad \qquad E_{\nu}^{2} \frac{\mathrm{d}N}{\mathrm{d}E_{\nu}}$$

D

p

 $= \frac{3}{2} \frac{1}{2} E_{\gamma}^{2} \frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}} |_{E_{\gamma}=2E_{\nu}} \longrightarrow \text{Upper limit to the neutrino flux}$

Neutrino production in blazars

Neutrino production efficiency ~ cross-section x target number density

Possible contribution of blazars to the diffuse neutrino flux

Constraints on the contribution of blazars to the diffuse neutrino flux: Stacking

TXS 0506+056-IC 170922A

1 0

0.0

× 1.0 N U.5

IceCube, Fermi-LAT, MAGIC, A<mark>GILE,</mark> ASAS-SN, HAWC, H.E.S.S, INTEGRA<mark>L, Ka</mark>nata, Kiso, Kapteyn, Liverpool telescope<mark>, Sub</mark>aru, Swift/ NuSTAR, VERITAS, and VLA/178-403 teams. Science 361, 2018, MAGIC Coll. Astrophys.J. 8<mark>63 (2</mark>018) LIO

Background fluctuation? Chance probability ~0.3%

)9-06	2010-11	2012-03	2013-07	20 <mark>14-</mark> 12	2016-04	202
-170922	A					_
eutrino fl	are 2014/1	5				
amma-ra	y flare 201	7/18				
rmi-LAT	> 300 MeV					
++++++++++++++++++++++++++++++++++++++	_{┶┶╼┙} ┙╎╵╵┥┥╵╙┥┿ _╹	╋ _╋ ┶╺╋╋	╺╾┥ ^{┲╋╋} ╋ <mark>╴╻┝╴┿╣╴╅</mark>	<u>⊢</u> ++L+	<u> </u>	<u>.</u> + ¹ + ¹⁷ + ¹
8						

17-09

IceCube archival search I3±5 more neutrinos!

IceCube Collaboration: M.G. Aartsen et al. Science 361, 147-151 (2018)

Blazar flares: Interesting as neutrino point sources

Image from Biteau, Prandini, Costamante+ Nat. Astr 4, 124–131 (2020)

The jet often "hides" other photon fields from us

A semi-free parameter for models...

erg $u \mathrm{L}_{\nu}$ ຽ 0

)

Optical depth to $\mathsf{p} \gamma$ interactions

 $\tau_{p\gamma}(E'_p) \approx \eta_{p\gamma}(\alpha) \sigma_{p\gamma} r'_b n_{\epsilon'_t} \epsilon'_t \big|_{\epsilon'_t = m_\pi c^2 (m_\pi c^2 + m_p c^2)/2E'_p}$

At the same time $\gamma\gamma$,

$$\tau_{\gamma\gamma}(\varepsilon_{\gamma}') \approx \eta_{\gamma\gamma}(\alpha) r_{\rm b}' \sigma_{\rm T} \epsilon_t' n_{\epsilon_t'} \big|_{\epsilon_t' = m_e^2/E_{\gamma}'}$$

Ratio of optical depths is then,

 $\tau_{p\gamma}(E'_p) \approx \frac{\eta_{p\gamma}(\alpha)}{\eta_{\gamma\gamma}(\alpha)} \frac{\sigma_{\gamma p}}{\sigma_{\gamma\gamma}} \tau_{\gamma\gamma}(E'_{\gamma}) \approx \frac{10^{-28} \text{ cm}^2}{10^{-25} \text{ cm}^2} \tau_{\gamma\gamma}(E'_{\gamma}) \approx 10^{-3} \tau_{\gamma\gamma}(E'_{\gamma})$

At energy,

$$E'_{\gamma} \sim 15 \text{ GeV} \left(\frac{E'_p}{6 \text{ PeV}}\right) \sim 15 \text{ GeV} \left(\frac{E'_{\nu}}{300 \text{ TeV}}\right)$$

This implies that sources optically thin to gamma-rays have inefficient TeV neutrino production

 $p + \gamma \to \pi + X$ $\gamma + \gamma \to e^+ + e^-$

1. $\tau_{\gamma\gamma}(10 - 100 \,\text{GeV}) \lesssim 1$

 $p_{\text{PeV}} + \gamma \rightarrow p + e^+ + e^- \rightarrow$ the electrons undergo synchrotron or Inv. Compton \rightarrow cascade that peaks in keV band

3/8ths of proton energy lost → neutrinos rest (5/8ths) to photons (gamma-rays/X-rays)

$p_{\text{PeV}} + \gamma \rightarrow p + \pi^0 \rightarrow p + \gamma + \gamma \qquad \gamma + \gamma_{\text{jet/BLR}} \rightarrow e^+ e^- \rightarrow \text{synchrotron or inv. Compton}$

3/8ths of proton energy lost \rightarrow neutrinos rest (5/8ths) to photons (gamma-rays/X-rays)

 $N_{\nu_u} \leq 4.9$

 $N_{\nu_{\mu}} = 13.2$

Gamma-ray bursts, basic facts

- Discovered serendipitously in 1967
- Intense short flashes of light peaking in the 10 keV
 I MeV range
- Isotropic equivalent energy release ~10⁵²-10⁵⁵ erg (cf <10⁴⁹ erg/s in AGN)
- Rate ~ 1000 year occur in the Universe
- Short (0.3 second) and long (50 second) bursts two distinct populations

Gamma-ray bursts, basic facts

On August 17th, 2017 LIGO and Virgo reported the detection of GWs from the coalescence of a binary neutron star system

Fermi GBM independently detected the SGRB GRB170817A, 1.7s later

An extensive observational campaign localised SGRB in the early type NGC 4993, at d ~ 40 Mpc

GW170817 and GRB170817A confirm binary neutron stars as progenitors of SGRBs ($p_{chance} \sim 10^{-8}$)

Gamma-ray bursts, basic facts

- shouldn't be able to escape
- ٠

 $\gamma \gamma \rightarrow e^+ e^-$, at threshold, $\varepsilon'_{\gamma,1} \varepsilon'_{\gamma,2} (1 - \cos \theta) \ge 2m_e^2$. For head-on collision $\cos \theta = \pi$, $\varepsilon'_{\gamma,1} = m_e^2 / \varepsilon'_{\gamma,2}$

But
$$\varepsilon = \varepsilon' \Gamma$$
, thus, $\varepsilon_{\gamma,1} = m_e^2 \Gamma^2 / \varepsilon_{\gamma,2}$

 $\tau_{\gamma\gamma} = \sigma_{\rm T} n_{\gamma}' R'$

$$\tau_{\gamma\gamma} = \sigma_{\rm T} \frac{L_{\rm iso}(\varepsilon_{\gamma})}{4\pi R^2 c \Gamma \varepsilon_{\gamma}} \frac{c t_{\rm v}}{\Gamma}$$

Implies $\Gamma > 10^3$ for the brightest GRBs

• ``Compactness'' problem: Photons are crowded in GRBs. The observed luminosity implies that gamma-rays

But, \mathbf{T}_{YY} (10 GeV) < 1, since we observe these photons (gamma-rays that escape are $\sim e^{-\tau_{\gamma\gamma}}$)

Neutrino production in GRBs

Ample photon fields \longrightarrow photopion interactions

 $p + \gamma_{\rm CMB} \rightarrow \Delta^+ \rightarrow n/p + \pi^+/\pi^0$

$$E_{p}E_{\gamma} \gtrsim \frac{m_{\Delta}^{2} - m_{\pi}^{2}}{4} \left(\frac{\Gamma}{1+z}\right)^{2} = 0.16 \text{ GeV}\left(\frac{\Gamma}{1+z}\right)^{2}$$
$$E_{\nu} \geq 8 \text{ GeV}\left(\frac{\Gamma}{1+z}\right)^{2} \left(\frac{E_{\gamma}}{\text{MeV}}\right)^{-1}$$

e.g. prompt emission,

 $z = 1, \Gamma^2 = 10^5, E_{\gamma} \sim 250 \text{ keV} \rightarrow E_{\nu} \sim \text{PeV}$

possible neutrino production sites

Neutrino production in GRBs

A stacked search for neutrinos coincident with prompt GRB emission by IceCube (now a total of 1172 GRBs) has led to limits on the neutrino production in GRBs

Standard, high-luminosity GRBs can account, at most for 1% of the diffuse IceCube flux.

Standard GRB models constrained

IceCube neutrino flux

IceCube Coll 843 (2017) 112

Tidal disruption events

- Super Massive Black Holes are orbited by star clusters
- Millions or billions of stars in random orbits Tidal forces may deform, or tear into pieces a star approaching too closely
- Predicted rates of I TDE in 10000 to 10⁹ years per super massive black hole (SMBH)
- For tidal forces to be relevant they must be stronger than the star's self gravity

Tidal acceleration > Accel. due to self gravity

$$\frac{GM_{\rm SMBH}R_{\star}}{R_t^3} = \frac{GM_{\star}}{R_{\star}^2}$$

Tidal disruption events

Flare of electromagnetic radiation at high peak luminosity (X-rays)

Located in the core of an otherwise quiescent, inactive galaxy

Extreme flares can host a relativistic hadronic jet

Typically 50% of the star's mass expected to stay bound to the SMBH and be ultimately accreted

≤100 candidate TDEs observed so far, 3 with jets (hard X-ray spectrum)

Timescale of months to years

25

Swift J1644+57

Test case, Swift J1644+57, jetted TDE observed in ``blazar'' mode

Observed for ~600 days, in a small quiescent galaxy in the Draco constellation at z = 0.35

$$E_{\rm max} \sim 10^{20} \text{ eV } Z \frac{BR}{3 \times 10^{17} \text{ G cm}} \frac{\Gamma}{10}$$

Neutrinos from TDEs?

Photopion interactions in the jet (conditions similar to AGN/GRB)

One problem is that jetted TDEs are very rare

 $n = 10^{-11} Mpc^3 cf GRBs, n = 10^{-9} Mpc^3$

Non-jetted TDEs 10 - 100 times more numerous, but not clear if (where?) they accelerate 10¹⁷ eV protons

Stacking limits from IceCube (jetted TDEs < 1%, non-jetted < 26%)

AT 2019dsg + IC191001A

)0 TeV muon neutrino

re (radio emitting) TDE

19dsg association by

Starburst galaxies

Starburst definition: High star-formation rate per unit stellar mass compared to average galaxy at that redshift (> $100 \times$ Milky Way)

Starburst episodes are short-lived (<10⁸ yrs)

Centrally driven strong outflows (``superwinds'')

Column densities $\Sigma_g > 0.1 \text{g/cm}^2$ and magnetic fields B ~ 1 mG (B ~ Σ_g), which are much larger than those of ``normal'' spiral galaxies ($\Sigma_g \approx 0.003 \text{g/cm}^2$, B ~ 5μ G in the Milky way)

TeV gamma-ray detections from NGC 253 (~3 Mpc) & M82 (~4 Mpc) - consistent with point like at VHE

And a handful more in GeV gamma-rays (NGC4945, NGC1068, Circinus, Arp 220)

Proton-proton interactions Gas reservoirs (Starburst galaxies, Galaxy Clusters...)

$$\begin{array}{c} p+p \rightarrow N\pi + X \\ \pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_\mu + \bar{\nu}_\mu + \nu_e \end{array}$$

Energy

• • •

Starburst galaxies: Calorimetric environments?

Large disc density implies pp interaction time much faster than in normal galaxies

Enhanced magnetic field → Enhanced confinement time of protons

Starbursts may be calorimetric for protons if

 $t_{\rm loss,pp} < t_{\rm confinement}$

 $t_{\rm loss,pp} < t_{\rm starburst}$

31

Reservoir model

Cosmic rays in a calorimetric environment (e.g. ``starburst'')

The highest energy cosmic rays escape (observed)

Lower energy cosmic rays are confined

CRs lose all their energy in interactions with ambient gas

Neutrinos appear correlated with parent calorimeters

Neutrinos from starburst galaxies

Cannot produce the IceCube flux unless we focus on >100 TeV data only due to diffuse gamma-ray constraints

Fermi has detected >200 Galactic pulsars

Collapsing stars with mass $> 8 M_{Sun}$

Collapse leads to heating up and density approaches nuclear densities

 $e^- + p^+ \rightarrow n + \nu_e$

"neutronisation"

The core of the star was originally $R_{star} \sim 10^{3-4} \text{ km}$

whereas the neutron star radius is $R_{NS} \sim 10 \text{ km}$

Conservation of angular momentum leads to spin periods ~second

Conservation of magnetic flux leads to $B \sim 10^{10} \text{ G}$

Interesting recent results from LHAASO/Tibet AS-Y/HAWC

LHAASO Sky @ >100 TeV

-120° 5 0

 $-_{15}$ LHAASO has reported the detection of 530 photons with energy up to 1.4 PeV from 12 Galactic sources

Most directions consistent with known Galactic pulsars

Among sources Crab pulsar (confirmed) journal in Science yesterday! Cygnus Cocoon starforming region (very likely)

LHAASO has the potential to distinguish between leptonic and hadronic origin of the Cygnus signal in ~2 years

Putting everything together...

non – jetted TDEs < 26%

Jetted TDEs < 1%

Galactic < 15%

The future

GVD - Lake Baikal

KM3NeT - France/Italy

P-ONE - Canada (Pacific)

IceCube GenII

How to detect them?

38

Ultra-high energy neutrinos How to detect them? Extensive-air showers

Thank you for your attention!

