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Where do scale-free distributions occur?

- In systems of many interacting nonlinear elements, characterized 
by periods of intense activity (avalanches) separated by inactive 
intervals.

- The distributions of avalanche sizes, durations, etc., follow power
laws [p(s) ~ s-t], which are intrinsically scale-free

- This is the key property suggesting that a system exhibits self-
organized criticality

- A few examples: earthquakes, forest fires, rain intensity, drought 
duration, magnetic domain-wall motion, neural activity, solar 
flares...



  

Why is the observation of power-law avalanche  
distributions in nature a problem?

Systems of many interacting unitsare described by statistical 
mechanics

Statistical mechanics shows that most systems generically exhibit 
non-power-law distributions (i.e., Poisson or exponential), with 
scale-invariant behavior only at a critical point (a continuous phase 
transition)

To reach criticality, one or more parameters (temperature, pressure...)
must be adjusted precisely 

Who is adjusting the parameters of Earth's tectonic plates or of
forest-fire propagation?



  

Self-Organized Criticality (SOC)  

Bak, Tang and Wiesenfeld (Phys Rev Lett,1987) argued that scale-
invariant distributions and 1/f noise could arise without tuning in 
systems far from equilibrium, with a threshold for activity and 
transfer between active elements, when subject to a slow external 
drive.

Threshold dynamics: The response of each element to 
perturbations below a certain value is minimal; strong response or 
activity above this threshold

Coupling: When an active element relaxes, it perturbs its 
neighbors, which may themselves become active →   avalanches

Slow loss mechanism: When activity reaches the edge of the
system, some is lost

Slow external drive: In the absence of activity, the system is 
excited at a rate << rate of relaxation/propagation

 



  

     Sandpile Models: The BTW Sandpile

Square lattice of LxL sites

Each site (i,j) harbors z(i,j) particles or “sand grains” (z is called “height”)

z(i,j) = 0, 1, 2, 3, or 4

If z(i,j) = 4, the site “topples”, transferring one grain to each neighbor:

 z(i,j)         0  and z(i+1,j)       z(i+1,j) + 1 and similarly for the other
three neighbors of site (i,j)

This may cause other neighbors to topple, and so on (avalanche)

When a site at the edge of the system topples, one (or more) grains
are lost

When all sites have z(i,j) < 4, a new grain is added at a randomly chosen
site – infinitely slow drive

  



  

P Bak, How Nature Works (Springer-Verlag, 1996)



  

The simple rules of the BTW sandpile give rise to a scale-invariant avalanche-
size distribution in the stationary state, apparently without adjusting any 
parameters

K Christensen and N R Moloney, Complexity and Criticality, Imperial Coll. Press, 2005



  

Stochastic Sandpile Models

Scaling behavior appears to be simpler in the stochastic sandpile 
(Manna 1991)

Here z(i,j) = 0, 1, or 2.  Sites with z = 2 topple, sending two grains
to randomly chosen neighbors

The stochastic sandpile again features loss of grains at the edges
and addition when there are no toppling sites

This model also produces scale-invariant avalanche distributions, 
with somewhat different exponents than the BTW model



  

1. Natural systems exhibiting scale-free behavior are far from equilibrium. 
    Critical phenomena in far from equilibrium systems?   -Yes!

2. How can such critical phenomena appear without our having to tune
    parameters?  -The parameters are hidden!

Connection with absorbing-state phase transitions:

The protocol of grain addition (in absence of activity) and loss of
grains at boundaries pins the system at a critical point 

(RD, M. A. Muñoz, A. Vespignani and S. Zapperi, Braz. J. Phys., 2000)



  

Phase Transitions

Examples: liquid-vapor, magnetic, binary mixtures...

Formal definition: singular dependence of macroscopic properties 
(e.g., density) on control parameters (temperature, pressure) 
in a system with a very large number of degrees of freedom

Example: magnetic systems (ferromagnetic/paramegnetic transition)
Control parameters are temperature (T) and external magnetic field (H)
Order parameter: magnetization

At the critical point (zero field, T=Tc) there are long-range correlations:

The correlation function of the local magnetization, m(r),
  

C(r) = cov[m(r), m(0)] 

decays as a power law; distribution of cluster sizes also follows a power 
law



  Ising model: typical configurations at various 
temperatures



  

Examples of absorbing-state phase transitions:

 Directed percolation* (DP) (contact process)

 Parity-conserving  (branching-annihilating random walks)

 Conserved DP (conserved stochastic sandpile)** 

*Experiment:Takeuchi et al, Phys Rev Lett 99 234503 (2007)  

**Experiment: L Corté, P M Chaikin, J P Gollub and D J Pine, Nature Phys 2008
Transition between reversible and irreversible deformation in sheared colloidal
suspension

General references on absoring-state phase transitions: 
J Marro and R Dickman, Nonequilibrium Phase Transitions in Lattice Models,      
(Cambridge Press, 1999).
H Hinrichsen,  Adv. Phys. 49 815 (2000).
G Odór, Rev. Mod. Phys. 76,  663 (2004)



  



  

Contact Process: order parameter r  is fraction of active sites

Rigorous results: continuous phase transition between active and 
absorbing state for d ≥  1, at some lc (Harris, Grimmet...)

Order parameter:  r     (l - lc)b

(Mean-field theory: lc = 1, b = 1)

Results for lc, critical exponents: series expansion, simulation, 

analysis of the master equation, e-expansion...

Types of critical behavior: 
  Static 
  Dynamic
  Spread of activity: Avalanches!



  



  



  

The contact process is a good example of a critical point in a far from 
equilibrium system, but to observe power-law scaling we must adjust 
the creation rate to its critical value

Let's consider another simple model, activated random walkers

A Markov process defined on a lattice of Ld sites with
periodic boundaries

Particles perform random walks on the lattice
Let ni denote the number of particles at site i (ni = 0, 1, 2,...)

Initially N particles are distributed randomly over the lattice

Dynamics: any site with ni ≥ 2 is active 
Active sites topple at a rate of unity, sending two
particles to randomly chosen neighbors

The number of particles remains constant throughout the evolution

z = N/Ld is a control parameter



  

Activated random walkers (ARW): when site i topples two particles 
jump from i to a nearest neighbor, independently

Examples of topplings in one dimension



  

Activated random walkers: any configuration with without active sites is 
absorbing

Such configurations exist for z  < 1 

There is an absorbing-state phase transition at z = z c (= 0.94885 in one
dimension)

Order parameter: r, the fraction of active sites



  

time

Typical evolution of ARW process



  

As in the contact process, the activated random walkers process exhibits 

scale-invariance at the critical point, but to reach this point we must tune z  
to its critical value.

Now we make two simple changes in the process:

1. Replace the periodic boundary condition with open boundaries  
    When a site at the edge topples, particles may be lost

2. Eventually the system reaches an absorbing configuration
    When this happens a new particle is added at a randomly chosen site

This converts the ARW process into the Manna sandpile!

These changes force the ARW process to its critical point:

If  z   >  z c  there is activity and  z  can only decrease

If  z   <  z c activity will stop and  z  will then increase

Conclusion: z is the hidden parameter whose value is tuned by the sandpile
dynamics!



  

Absorbing-state mechanism for SOC: self-organized criticality in a slowly
driven system corresponds to an absorbing-state phase transition in the
model with the same local dynamics, but with strict conservation

Avalanche exponents are related to critical exponents of conserved model.

Simulations confirm that the critical exponents in SOC and in the absorbing
phase transition are related [Muñoz et al, Phys. Rev. E 59, 6175 (1999)] 

As the system size increases, the fluctuations of z  in the driven sandpile 
are restricted to an ever smaller region centered on the critical density of
the conserved model

The SOC and absorbing “ensembles” are however distinct
(Pruessner and Peters, Phys. Rev. E, 2006, arXiv:0912.2305)

In deterministic sandpiles, the critical density in the conserved version is
a tiny bit higher than in the SOC version. (Fey et al., Phys Rev Lett, 2010)

This was subsequently explained as being due to the choice of initial 
condition. (Poghosyan et al., Phys. Rev. E 84, 066119)



  

In sandpile and related models, an infinite timescale separation between
activity (toppling) and driving is realized by prohibiting addition while
activity is in progress

In natural systems, we can't expect the driving mechanism to “wait” for
all activity to cease before perturbing the system

If the driving rate rate h is very small, scale-free distributions can be
generated over a finite range: the avalanche duration distribution is 
cut off at a time ~1/h

This should be fine from an empirical viewpoint!



  

Alternatives to SOC

In some instances, the validity of power-law distributions have been
questioned; in others, alternative explanations have been proposed

Example: Scale-invariant rain and drought distributions
Rain event intensity: integrated precipitation over a rainy period
The intensity distribution follows a power law

Peters, Hertlein, and
Christensen, Phys.
Rev. Lett., 2002



  

Peters et al. suggest the observed power laws are evidence of 
SOC in the dynamics of evaporation and condensation in 
Earth's atmosphere

Activity: Rapid condensation above a threshold value of 
humidity

Slow drive: Energy influx from Sun, causing evaporation

Loss: Rain falling to Earth

What is the coupling mechanism?



  

Alternative model (RD Phys Rev Lett, 2003)

If condensation occurs in localized regions, chaotic advection can 
generate power-law distributions of rain intensities at fixed 
observation sites 

Simple model: two-dimensional fluid with rain treated as passive 
tracers in a velocity field generated by a system of ideal vortices



  

This simple two-dimensional 
model yields power-law 
distributions but does not 
reproduce the observed 
exponents (1.36 and 1.42 for 
rain intensity and 
drought duration, resp.) 
It does raise the possibility 
that the observed power laws 
are due to chaotic advection



  

SUMMARY

Power-law distributions are observed in many natural and social systems

SOC provides a mechanism for generating scale-invariant behavior without
parameter tuning

The essential ingredients are: (1) a system of many coupled nonlinear 
elements having a threshold for activity; (2) a slow loss mechanism; 
(3) an even slower external drive

SOC works by forcing the system to an absorbing-state critical point

In some instances, alternatives to SOC have been proposed
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