Understanding of convective organisation is needed for tropical nowcasting.

Douglas Parker
Professor of Meteorology
School of Earth and Environment & School of Mathematics
University of Leeds
NWP for tropical Africa is not winning the battle to forecast storms:

- “Forecast performance is generally … worst … over tropical Africa, where models misrepresent the high degree of convective organization, such that even post-processed forecasts are hardly better than climatology.”


Continuous Ranked Probability Skill Score (CRPSS) for 1-day ECMWF (a) raw and (b) postprocessed forecasts for accumulated precipitation amount relative to Extended Probabilistic Climatology during 2009–2017.

Nowcasting is needed – but currently very limited.
What is nowcasting? For Africa we propose:

1. **Nowcasting includes analysis of near-real-time observations,** to define the current weather conditions.

2. **Nowcasting forward projects observed weather features, by extrapolation** but also more sophisticated methods using a wide range of data and *dynamical understanding* …

In addition, nowcasting is typically … Facilitated by computer systems that bring together disparate data and process them ready for input by seasoned forecasters.

Roberts et al. 2021. Weather
What do we need for African nowcasting?

   - Initiation and growth
   - Organisation
   - Movement
   - Decay

2. Algorithms to automate the use of those (e.g. but not only, machine-learning).

3. Means of communicating complex information to forecast users (often requires conceptual models).
Learning from RCE
(Gorm Jensen, at this meeting)

The diurnal path to persistent dry patches

Dry patches are initiated by a moist event leading to stabilisation of profile over following hours.

Figure 3.4: Autocorrelation of GPCP precipitation anomalies at a 1-day lag in JAS, for the 1997-2006 period. (after Roehrig et al., 2013)
Conni Klein – this meeting: what atmospheric conditions favour convective cores?

925hPa divergence and wind anomaly

Spec. Humidity anomaly & low-level wind shear

Cores favoured where midday conditions show:
- Large low-level specific humidity from nocturnal advection (convective instability)
- Strong wind shear (more organised convection)
- Low level convergence (stronger ascent)

Convective core in Sahel region within MCS > 15,000km²
Drier soil enhances:
meridional T gradient, AEJ (wind shear), instability (dry capping), q-convergence -> **MCSs get colder, bigger & produce more rain**

*Klein et al., PNAS in review*
Satellite-based African Nowcasting

• Prior to SWIFT, Nowcasting was not formally being conducted in these countries.

• We have made NWC SAF products available and we are starting to adapt them. Operational agencies are starting to use them. Universities using them for teaching.

• Evaluation shows impressive skill for rainfall.

• We are innovating on new nowcasting algorithms, including AI.

GMet NWCSAF installation, February 2021: Dr. Jeffrey N. A. Aryee (KNUST), Mr. Kwesi Twentewa Quagraine (KNUST), Mr. Alfred Obodai (GMet), and Mr. Nutifafa Agbenor-Efunam Yao (KNUST).

• The hardware has successfully been installed at Kwame Nkrumah University of Science and Technology (KNUST), Kumasi.

• KNUST staff have then installed the software at GMet: an African solution.
NFLICS prototype nowcast system for Senegal

Pre-calculated at UKCEH

Historical MSG data (2004-2019) → database of conditional climatological probabilities

Real-time (UKCEH and ANACIM)

Real-time MSG data (via SWIFT currently) → convective structure identification

Identified convective structures (blue contours)

Real-time nowcast (0-6h) of convective activity & flood risk

Probability of convective structures (%) given the current identified locations of convection.

Real-time Visualisation GUI

UK Centre for Ecology & Hydrology
A Neural Weather Model for Eight-Hour Precipitation Forecasting

Wednesday, March 25, 2020

Posted by Nal Kalchbrenner and Casper Sønderby, Research Scientists, Google Research, Amsterdam

Predicting weather from minutes to weeks ahead with high accuracy is a fundamental scientific challenge that can have a wide ranging impact on many aspects of society. Current forecasts employed by many meteorological agencies are based on physical models of the atmosphere that, despite improving substantially over the preceding decades, are inherently constrained by their
Some remarks and assertions

• Nowcasting is vitally important and saves lives, in circumstances where NWP is not able to provide useful guidance.

• The goal of conceptual understanding of convection is not just NWP and parametrisation.

• New statistical methods (including machine learning) will benefit from underlying principles guiding the data and algorithms.

• Evaluation is critical (and complicated).

• The term “nowcasting” has recently migrated from meteorology to economics and epidemiology …