Coupling a thermal population model on microgrids to a spectral convection scheme

Roel Neggers¹, Philipp Griewank¹,²

1: Research group for Integrated Scale-Adaptive Parameterization and Evaluation (InScAPE), University of Cologne, Germany

2: Institut für Meteorologie und Geophysik, Universität Wien, Vienna, Austria
Representing spatial organization and memory in convective parameterizations

Bulk versus Decentralized parameterization

Example: BiOMi-ED(MF)n, a convective population model

Using LES and observations as training datasets
The challenge

Recent research has highlighted the importance of representing the impacts of mesoscale spatial organization and convective memory in Earth System Models.

Various methods have been proposed, often involving the introduction of new modules in existing bulk formulations.

What other (non-bulk) methods exist that might have the potential of capturing memory and organization?
Alternatives to bulk

Option I: Global LES

Convection is mostly resolved

Option II: Machine learning (ML)

Use AI algorithms to identify relations and train subgrid systems on big data

Option III: Superparameterization

Implement a 2D grid in each GCM gridbox and semi-resolve subgrid processes

Option IV: Decentralized approaches

Conceptual models consisting of an ecosystem of multiple interacting objects, representing the smallest building blocks of convection

Randall et al (BAMS, 2003)
Decentralized frameworks

Examples: Population models, Particle models, Multi plume models

The idea:

• An ecosystem of **independent** but interacting objects
• Let the system evolve freely, instead of superimposing bulk behavior
• Interactions can introduce negative feedback mechanisms which drive equilibration (**self-regulating** bulk behavior)

Böing et al (2016)

Neggers (2015)
Some characteristics

Pros
• Bulk closures become obsolete: Emergent properties
• Possibly subtle responses to weak perturbations in external forcings
• Yield a deeper understanding of the problem
• Still orders of magnitude cheaper than global LES

Cons
• Stability is not guaranteed
• Rules of interaction are crucial, but need to be parameterized
• Added degrees of freedom add to cost → harms applicability as a parameterization?
Why not combine a 2D grid approach with a decentralized approach?

Step 1: Instead of vertical microgrids, use horizontal microgrids:

![Diagram of 2D grid](image)

Step 2: Let a population of objects live on the microgrid, coupled to a vertical transport module consisting of multiple transporting modes

- A horizontal grid can capture spatial organization and memory
- Potentially computationally efficient
- Can well be trained using ML

An ecosystem of interacting, mobile convective objects is modeled on a 2D microgrid

Goals:
• Capture forms of spatial organization and memory
• Fully discrete formulation (for the grey zone)
• Stay computationally efficient

Combining concepts from lattice modeling and Lagrangian particle modeling
Inspired by Böing et al (2016)
Ansatz

Given a reference object birth rate \dot{B}_i per unit area and unit time

Number of births per timestep Δt within a large, finite domain of size L:

$$B_i = \dot{B}_i L^2 \Delta t$$

Assume all births are randomly distributed over N gridcells:

$$N = \frac{L^2}{\Delta x \Delta y}$$

Probability p that a single birth occurs in a specific gridcell:

$$p = 1 / N$$

Assuming all births are independent yields a set of Bernoulli trials (coin flips). The associated probability mass function is a binomial:

$$f_i(b) = \binom{B_i}{b} p^b (1 - p)^{(B_i-b)}$$
Grey zone stochasticity

Is automatically captured through the discrete nature of (sub)sampling the binomial:
A scale-aware stochastic binomial operator

For describing the behavior of a multitude of objects in a cell
This is a defining difference with Lagrangian particle models

Used to describe object births, object demographics, and object movement
Binomial functions are efficient

Can easily be vectorized, allowing large microgrid sizes at little cost:
Results

Two simple rules of object interaction, acting through birth probability p. These represent known physics of **convective thermals**: pulsating growth and environmental deformation.

Under these rules, memory and spatial organization is apparent on the microgrid:

![MODIS true color image of sugar / gravel cloud patterns during EUREC4A (NASA Worldview)]
Coupling BiOMi to ED(MF)^n

Eddy Diffusivity Multiple Mass Flux scheme Neggers, JAMES 2015

A discretized spectral framework for turbulent-convective transport

The macrophysical properties of size-bins of coherent surface-rooted convective structures are estimated independently

This makes bulk mass flux closures redundant, and allows interactions across the size spectrum

Remaining closures (transport):
• Bin initialization
• Size-dependent entrainment (e.g. Griewank et al., 2019; Peters et al, 2020)
• Size density of object number ← BiOMi
Schematic illustration of the coupling:

An online clustering algorithm is applied to read the size density of cluster number from the BiOMi microgrid, which is then fed to EDMF.
Implementation in DALES

Dutch Atmospheric LES (Heus et al., 2010)

BiOMi-ED(MF)n replaces the vertical component of the subgrid transport scheme

Object birth rate is coupled to the surface buoyancy flux

2x2 grid

No interaction between microgrids in different LES gridcolumns

Note: Scale-adaptivity (i.e. dependence on LES gridsize) is introduced through the cluster size density that evolves on the BiOMi microgrid
Results

For subtropical marine Trade wind conditions (RICO shallow cumulus case) DALES gridbox size 100x100 km², microgrid size 1000x1000 at 100m spacing

The coupling of EDMF to BiOMi introduces many extra degrees of freedom, which could easily lead to instability / collapse… yet it doesn’t!
Results

Convective memory: Evolution of largest cluster size on the microgrid
Convective memory: The evolution of cluster size distributions on the microgrid
Results

Spatial organization on the microgrid
Results

Grey zone behavior: Stochasticity due to subsampling

EDMF cloud fraction

100x100 km2

10x10 km2
Results

Stochastics introduced through the cluster distribution on the microgrid shifts the grey zone towards larger sizes:

Blue: Prescribed powerlaw distribution (BraSt et al, 2018)
Using LES and observations

To train the BiOMi rules of interaction, making use of ML algorithms
We need many spatial fields for this! Scale up towards multi-year coverage

What does it take for BiOMI to reproduce these patterns?
Special focus on cloud pattern evolution during diurnal cycles at continental meteorological sites (SGP, CACTI)

Ray-trace rendering of LASSO cloud simulations during the HI-SCALE field campaign at SGP (2016)
Conclusions

A spatially-aware convective population model, consisting of binomial functions on a microgrid, shows promise in capturing convective memory and spatial organization in an efficient way.

Coupling the framework to a transport module illustrates that shallow convective boundary layers can be reproduced, including stochastic effects in the grey zone.

Outlook

So far this is still a research model! To do’s:

• Train rules of interaction for many cases using LES and obs data
• Play with more rules of interaction (rain, radiation, shear, surface heterogeneity)
• Investigate convection-circulation coupling
• Investigate surface-convection coupling
• Assess responses to idealized climate perturbations