How do ocean temperature anomalies favor or disfavor the aggregation of deep convective clouds?

1. Questions addressed
 - How an idealized warm circular SST anomaly, referred to as “hot spot”, helps organize convection?
 - How self-aggregation radiative feedbacks modulate this organization?
 - How large-scale circulation generated by SST gradients?
 - Migration towards warm SST? [e.g., Tompkins 2001; Kuang 2012; Coppin Bony 2017]

2. Cloud-resolving simulations with hot spot
 - Near-surface air temperature (colors) and clouds (gray surfaces)
 - Hot spot, small domain
 - Small hot spot & domain
 - Some organization but no aggregation
 - Hot spot, large domain
 - Large hot spot & domain
 - Aggregation even without radiative feedbacks

3. Aggregation due to large-scale circulation induced by the hot spot
 - Radiative feedback
 - No radiative feedback
 - Forced by H.S. instability
 - Pushed
 - Pulled

4. Conclusions
 - When SST anomalies are present, circulation induced by the hot spot can accelerate aggregation
 - Even without radiative feedbacks, hot spots can lead to aggregation
 - Interactive SST delays circulation, thus aggregation [Shamekh et al 2020 JAMES]