





# Velocity mass relation of cluster member galaxies with MUSE

Guillaume MAHLER Durham University

**BUFFALO** meeting - online



### Lensing is great... but it is total mass



#### Abell 370 Lagattuta+19



### Strong lensing (only) sub\_halos mass fraction

From SL only: Total mass vs Subhalos mass Fraction within 500 kpc



# Spectroscopy to the rescue



# **Cluster members**



Cross-matched between a "new" cluster member catalog and the spectroscopic catalog of cluster member

"new" because it is a poor SExtractor run but I needed the effective radius

## **PPFX** - velocity dispersion fit



<- Miles library Indo-US seems more appropriate in the future because of the resolution and Wavelength coverage



## Where to cut ?



## Where to cut ?



## Where to cut ?



### Where to cut?



# Sigma-L fitting relation <=> Faber-Jackson



Values are suspiciously low Input from the collaboration is welcomed here

# Only nicely behaving galaxies



### **Other teams found higher values**



### Reducing the scatter? Does it matter?

### Fundamental plane Based on Galaxy-galaxy fitting



interest. In the SLACS sample, a systematic variation of c with galaxy mass will be apparent in the relationship between the lensing-determined total mass  $M_{\text{lens}}$  within  $R_e/2$  on the one hand and the dimensional mass variable  $M_{\text{dim}} = G^{-1}\sigma_{e2}^2(R_e/2)$  on the other, which we parameterize as

$$\log M_{\rm lens} = \delta \log M_{\rm dim} + \log c_0. \tag{3}$$

A systematic trend of c with mass thus corresponds to a value of  $\delta$  different than 1. Minimizing the scatter orthogonal to the best-fit relation, we find  $\delta = 0.986 \pm 0.034$  ( $\delta = 0.956 \pm$ 0.042) and log  $c_0 = 0.58 \pm 0.16$  (log  $c_0 = 0.74 \pm 0.19$ ) for isothermal (LTM) aperture mass corrections. This relationship

Botlon+07

# Hint of physics? DM stripping?

Abell 2744

#### Dynamical mass vs lensing mass





# Conclusion

- The four stage of sub\_halos mass comparison:
  - Direct lensing fit
  - Partial fit of the Faber-Jackson relation
  - Fondamental plane relation plugged
  - (Fondamental plane fit)

Expect the paper by the end of August

| Model name<br>(Fit statistics) | Component _ | $\Delta \alpha^{a}$ (") | $\Delta \delta^{a}$ (") | ε <sup>b</sup>         | θ<br>(deg)               | $\sigma_0 \ ({ m km~s^{-1}})$ | r <sub>cut</sub><br>(kpc) | r <sub>core</sub><br>(kpc) |
|--------------------------------|-------------|-------------------------|-------------------------|------------------------|--------------------------|-------------------------------|---------------------------|----------------------------|
| FEconner                       | 01          | $1.5^{+0.2}$            | $0.7^{+0.2}$            | $0.2^{+0.03}_{-0.02}$  | $-83.6^{+4.1}$           | 480.9+10.7                    | [800.0]                   | $3.3^{+0.2}_{-0.2}$        |
| rms = 0.78''                   | O10         | [26.3]                  | [56.9]                  | [0.1]                  | [37.0]                   | $27.1^{+8.0}_{-6.7}$          | $1.2^{+0.2}_{-0.2}$       | [0.1]                      |
| <u> </u>                       | O11         | _                       | _                       | _                      | $-18.3^{+1.1}_{-1.2}$    |                               | -0.2                      | _                          |
| $\log(\mathcal{L}) = -228$     | O2          | $3.1^{+0.2}_{-0.2}$     | $15.7^{+0.4}_{-0.3}$    | $0.46^{+0.02}_{-0.02}$ | $-117.7^{+0.9}_{-1.7}$   | $1007.0^{+20.6}_{-29.3}$      | [800.0]                   | $20.8^{+0.6}_{-0.5}$       |
| $\log(\mathcal{E}) = -332$     | O3          | [-0.0]                  | [0.0]                   | [0.3]                  | [-81.9]                  | $186.9^{+5.5}_{-4.4}$         | $5.7^{+0.8}_{-1.0}$       | [0.1]                      |
| BIC = 714 AICc = 567           | O4          | [7.9]                   | [-9.8]                  | [0.26]                 | [25.7]                   | $149.5^{+7.5}_{-10.5}$        | $0.3^{+0.0}_{-0.0}$       | [0.1]                      |
| -                              | 05          | [5.9]                   | [37.2]                  | [0.2]                  | [-63.9]                  | $410.7^{+5.5}_{-4.0}$         | $17.8^{+1.0}_{-0.9}$      | [0.1]                      |
| -                              | O6          | $-48.2^{+1.0}_{-1.0}$   | $31.6^{+0.7}_{-0.7}$    | $0.41^{+0.03}_{-0.03}$ | $69.4^{+2.2}_{-1.3}$     | $552.0^{+4.2}_{-13.0}$        | [800.0]                   | $17.0^{+0.5}_{-0.7}$       |
| -                              | 07          | $-5.8^{+0.7}_{-0.9}$    | $34.5^{+1.4}_{-1.6}$    | $0.8^{+0.02}_{-0.02}$  | $110.7^{+0.5}_{-0.9}$    | $872.0^{+30.5}_{-39.4}$       | [800.0]                   | $38.4^{+1.6}_{-1.3}$       |
| -                              | 08          | [2.7]                   | [46.8]                  | [0.6]                  | [-84.3]                  | $282.9^{+12.9}_{-11.5}$       | $1.9^{+0.3}_{-0.1}$       | [0.2]                      |
| -                              | O9          | [29.3]                  | [59.3]                  | [0.57]                 | [42.5]                   | 184 0+14.2                    | 0 8+0.1                   | [0 2]                      |
| _                              | Pot0        | -                       | _                       | _                      | -                        | $149.9^{+1.1}_{-1.5}$         | $15.0^{+1.4}_{-0.8}$      | [0.15]                     |
| Alpha() 1                      | 01          | $-0.5^{+1.8}_{-2.8}$    | $0.6^{+1.4}_{-1.6}$     | $0.47^{+0.25}_{-0.3}$  | $-67.7^{+23.7}_{-20.1}$  | $487.3^{+202.4}_{-265.1}$     | [800.0]                   | $2.3^{+2.4}_{-2.1}$        |
| rms = 1.11"                    | O10         | [26.3]                  | [56.9]                  | [0.1]                  | [37.0]                   | $74.4^{+79.6}_{-32.0}$        | $0.8^{+0.6}_{-0.5}$       | [0.1]                      |
| $\chi' / \nu - \tau. \tau$     | 011         | -                       | -                       | -                      | $56.3^{+43.8}_{-77.1}$   | _                             | _                         | -                          |
| $\log(\mathcal{L}) = -396$     | O2          | $2.2^{+3.1}_{-3.7}$     | $5.3^{+10.4}_{-6.5}$    | $0.9^{+0.3}_{-0.43}$   | $-114.8^{+10.4}_{-10.2}$ | $416.8^{+541.8}_{-530.9}$     | [800.0]                   | $21.7^{+5.7}_{-3.5}$       |
| $\log(\mathcal{E}) = -390$     | O3          | [-0.0]                  | [0.0]                   | [0.3]                  | [-81.9]                  | $131.7^{+59.1}_{-60.7}$       | $7.3^{+5.9}_{-4.0}$       | [0.1]                      |
| BIC = 1044  AICc = 900         | O4          | [7.9]                   | [-9.8]                  | [0.26]                 | [25.7]                   | $169.7^{+41.4}_{-54.2}$       | $0.1^{+0.2}_{-0.1}$       | [0.1]                      |
| -                              | 05          | [5.9]                   | [37.2]                  | [0.2]                  | [-63.9]                  | $416.9^{+37.2}_{-34.1}$       | $22.3^{+4.9}_{-5.4}$      | [0.1]                      |
| -                              | O6          | $-42.4^{+7.4}_{-3.5}$   | $31.0^{+4.6}_{-5.3}$    | $1.2^{+0.24}_{-0.36}$  | $57.8^{+11.2}_{-10.8}$   | $1135.2^{+339.7}_{-243.4}$    | [800.0]                   | $10.0^{+3.3}_{-5.1}$       |
| -                              | 07          | $0.1^{+5.5}_{-3.7}$     | $24.6^{+18.5}_{-12.1}$  | $0.3^{+0.33}_{-0.32}$  | $114.3^{+10.1}_{-10.4}$  | $718.8^{+498.5}_{-306.5}$     | [800.0]                   | $34.8^{+5.0}_{-4.9}$       |
| -                              | 08          | [2.7]                   | [46.8]                  | [0.6]                  | [-84.3]                  | $249.8^{+38.0}_{-45.5}$       | $0.6^{+0.9}_{-0.5}$       | [0.2]                      |
| -                              | O9          | [29.3]                  | [59.3]                  | [0.57]                 | [42.5]                   | 02 8+118.3                    | 0 0+1.0<br>-v.o           | [0 2]                      |
| _                              | Pot0        | -                       | -                       | -                      | -                        | [162.192]                     | $24.3^{+0.1}_{-0.1}$      | [0.0]                      |

# Velocity disp what it is?





Fig. 15. Marginalized posterior distributions of the normalizations  $\sigma_0^{ref}$ and  $r_{cut}^{ref}$  of the cluster member scaling relations (see Eq. 8 and 9). Normalizations are computed at the magnitude of the BCG-N ( $mag_{F160W}^{ref} =$ 17.02). Red distributions refer to the LM-4HALOS reference lens model; results from the previous model by B19 model are in blue. Colored contours encompass the 1, 2, 3  $\sigma$  confidence levels; the vertical solid and dashed lines correspond to the 50-th, 16-th and 84-th percentiles of the marginalized distributions. The 1 and 2  $\sigma$  black dashed contours refer to the LM-4HALOS model with  $r_{core}^{ref} = 0.05''$ , instead of  $r_{core}^{ref} = 1'' \times 10^{-4}$ of the reference model. The green and magenta lines are  $\sigma_0$ - $r_{cut}$  curves with constant projected mass, within an aperture of R = 1'' (= 5.34 kpc at z = 0.396), for a circular dPIE profile. The mass values from bottom to top are quoted in the legend. Green curves refer to  $r_{core}^{ref} = 1'' \times 10^{-4}$ , magenta curves refer  $r_{core}^{ref} = 0.05''$  (as in B19).

# Velocity disp what it is?

